A CONTRIBUTION TO THE ANALYSIS OF IN SITU
PERMUTATION

P. Kirschenhofer, H. Prodinger and R. F. Tichy, Vienna, Austria

Abstract. There is a simple algorithm to replace \((x_1, \ldots, x_n)\) by \((x_{p(1)}, \ldots, x_{p(n)})\),
where \(\pi=(p(1), \ldots, p(n))\) is a permutation of \(\{1, 2, \ldots, n\}\), essentially without further
storage requirements. This paper continues some research work by D. E. Knuth about a
characteristic parameter of this algorithm. Using generating function techniques alternative
derivations for several results of Knuth as well as a number of new theorems are
obtained.

1. Introduction

Let \(\pi=(1, \ldots, n)\) be a permutation of the numbers \(1, 2, \ldots, n\)
and let us consider the following part of a program:

\[
\text{for } j:=1 \text{ to } n \text{ do }
\begin{align*}
\text{begin } k:=p(j);
\text{while } k>j \text{ do }
 k:=p(k)
\end{align*}
\] (1.1)

end;

These instructions can be used to check whether \(j\) is a cycle leader, i.e.
the smallest number in its cycle. For this, one has to ask \(k=j?\) after
passing the while-loop.

The detection of the cycle leader is useful if one wants to permute an
array \(x[1], \ldots, x[n]\) along the permutation \(\pi\) essentially without further
storage requirements (in situ permutation). For each cycle \((i_1, \ldots, i_k)\)
the elements \(x[i_1], \ldots, x[i_k]\) should be replaced by \(x[p(i_1)], \ldots, x[p(i_k)]\).
If we do that iff \(i_1\) is the cycle leader, this will be done exactly
once for each cycle. The complete algorithm was developed by Mac
Leod [5] and analyzed by Knuth [4]:

\textit{Mathematic subject classification (1980): 05 A 15, 68 E 05.}

\textit{Key words and phrases: In situ permutation, generating functions, functional differential
equations, asymptotic expansions, combinatorial algorithms.}
One of the three interesting parameters of this analysis is denoted by \(a(\pi) \) and equals the number of times the instruction \(\text{"} k := p(k) \text{"} \) is executed. Knuth [4] has shown that

\[
0 \leq a(\pi) \leq \binom{n}{2};
\]

the average of \(a(\pi) \) is

\[
(n+1) H_n - 2n;
\]

the variance of \(a(\pi) \) is

\[
2n^2 - (n+1)^2 H_n^{(2)} - (n+1) H_n + 4n
\]

(1.4)

(where \(H_n^{(s)} = \sum_{1 \leq k \leq n} k^{-s} \) denotes the \(n \)-th harmonic number of degree \(s \), \(H_n^{(1)} = H_n \)).

In this paper we exploit a method which allows us to get these quantities by less computation. Furthermore, we are able to determine the \(s \)-th factorial moment of \(a(\pi) \) asymptotically, viz.

\[
n! \log^n n + (\gamma - 2) s n \log^{s-1} n + \Theta(n^s \log^{s-2} n), \quad n \to \infty
\]

(1.5)

where \(\gamma \approx 0.57721 \ldots \) is Euler's constant.

Since the \(s \)-th moment is just a linear combination of the \(j \)-th factorial moments for \(j \leq s \), we obtain the same asymptotic expansion for the \(s \)-th moment.

To stress the method of our treatment in a few words, we introduce certain generating functions \(G_n(z) \), obtain a recursion for them, which does not allow getting a simple explicit expression for \(G_n(z) \); from this recursion we obtain differential equations for the generating functions of the \(s \)-th factorial moments, from which we can derive the above asymptotic expansion.

2. Generating functions

Assume that \(\pi = q(n) \) is the canonical representation of the permutation \(\pi \) as a product of cycles in the way described in Knuth [3, p. 176]. In the following we always represent a permutation in this way; it is known that

\[
a(\pi) = \text{card}\ \{(i,j) : 1 \leq i < j \leq n, \ q(i) < q(k) \ \text{for all} \ k \ \text{with} \ i < k \leq j\}.
\]

(2.1)

By \(a_{nk} \) we denote the number of permutations \(\pi \) of \(n \) elements such that \(a(\pi) = k \) and by

\[
G_n(z) = \sum_{k \geq 0} a_{nk} z^k / n!
\]

the corresponding probability generating function.
THEOREM 1. For \(n \geq 1 \)

\[
G_n(z) = n^{-1} \sum_{k=0}^{n-1} z^k G_k(z) G_{n-1-k}(z);
\]

\[
G_0(z) = 1.
\]

Proof. In the following we write a permutation \(\pi \) of \(\{1, \ldots, n\} \) in the form \(\pi = \rho \sigma \), where \(\rho \) is a permutation of \(n-1-k \) elements and \(\sigma \) a permutation of \(k \) elements. It is immediate that

\[
a(\pi) = a(\rho) + a(\sigma) + k.
\]

Summing up over all permutations \(\pi \) with \(a(\pi) = s \) we obtain

\[
a_{ns} = \sum_{k=0}^{n-1} \binom{n-1}{k} \sum_{i+j+k=s} a_{n-1-k,i} a_{k,j}.
\]

Dividing by \(n! \) and multiplying by \(z^s \) it follows that

\[
a_{ns} z^s/n! = n^{-1} \sum_{k=0}^{n-1} z^k \sum_{i+j+k=s} a_{k,j} z^i \cdot a_{n-1-k,i} z^j/(k!(n-1-k)!).
\]

Summing up over \(s \geq 0 \), Theorem 1 results immediately.

Let us now consider the double generating function \(H(z,u) \) defined by

\[
H(z,u) = \sum_{n \geq 0} G_n(z) u^n.
\]

COROLLARY 1. \(\frac{\partial}{\partial u} H(z,u) = H(z,u) \cdot H(z,zu); \)

\[
H(1,u) = (1-u)^{-1}.
\]

Proof. We multiply the recursion in Theorem 1 by \(nu^{n-1} \) and sum up over all \(n \geq 0 \) to get the result. Since \(G_n(1) = 1 \), the identity for \(H(1,u) \) follows.

In the following we consider the \(s \)-th factorial moments \(\beta_s(n) \) of the random variable given by the probability generating function \(G_n(z) \):

\[
\beta_s(n) = \frac{d^s}{dz^s} G_n(z) \bigg|_{z=1}.
\]

Introducing the generating functions \(f_s(u) \) of the \(s \)-th factorial moments by

\[
f_s(u) = \sum_{n \geq 0} \beta_s(n) u^n,
\]

we obtain by Taylor's formula and (2.4)

\[
H(z,u) = \sum_{s \geq 0} f_s(u) (z-1)^s/s!.
\]
THEOREM 2. For $s \geq 1$

$$f_s(u) - 2(1-u)^{-1} f_s(u) = h_s(u),$$

with

$$h_s(u) = \sum_{i=1}^{s-1} \binom{s}{i} f_i(u) \sum_{r=0}^{s-i} \binom{s-i}{r} u^{r} f_{s-r}^{(s-i)}(u) + (1-u)^{-1} \sum_{r=1}^{s} \binom{s}{r} u^{r} f_{s-r}^{(s)}(u),$$

where $f^{(i)}(u)$ denotes the i-th derivative of the function $f(u)$;

$$f_0(u) = (1-u)^{-1}, \ h_0(u) = -(1-u)^{-2} \text{ and } f_s(0) = 0 \text{ for } s \geq 1.$$

Proof. First note that

$$f_j(zu) = \sum_{k \geq 0} f_j^{(k)}(u)(z-1)^k u^k/k!$$

by Taylor's formula. Inserting (2.6) into the equation of Corollary 1 we get

$$\sum_{s \geq 0} f_s(u)(z-1)^{s}/s! = \left[\sum_{i \geq 0} f_i(u)(z-1)^{i}/i! \right] \left[\sum_{j \geq 0} f_j(zu)(z-1)^{j}/j! \right] = \left[\sum_{i \geq 0} f_i(u)(z-1)^{i}/i! \right] \left[\sum_{j \geq 0} (z-1)^{j}/j! \left(\sum_{k \geq 0} f_j^{(k)}(u)(z-1)^k u^k/k! \right) \right] = \sum_{m \geq 0} \sum_{i+j+k=m} u^k f_i(u) f_j^{(k)}(u)(z-1)^m / (i!j!k!).$$

Comparing the coefficients of $(z-1)^{s}/s!$ we obtain

$$f_s(u) = \sum_{i+j+k=s} s! \cdot u^k f_i(u) f_j^{(k)}(u) / (i!j!k!) = \sum_{i=0}^{s} \binom{s}{i} f_i(u) \sum_{r=0}^{s-i} \binom{s-i}{r} u^r f_{s-i-r}^{(s-i)}(u) = 2(1-u)^{-1} f_s(u) + \sum_{i=1}^{s-1} \binom{s}{i} f_i(u) \sum_{r=0}^{s-i} \binom{s-i}{r} u^r f_{s-i-r}^{(s-i)}(u) + (1-u)^{-1} \sum_{r=1}^{s} \binom{s}{r} u^r f_{s-r}^{(s)}(u),$$

because $\beta_n(n) = 1$ for all n and therefore $f_0(u) = (1-u)^{-1}$.

Since $G_0(z) = 1$ we have $\beta_s(0) = 0$ for $s \geq 1$ and therefore $f_s(0) = 0$ for $s \geq 1$, and the proof of Theorem 2 is complete.

Solving the first order linear differential equation of Theorem 2 we obtain

COROLLARY 2. For $s \geq 1$

$$f_s(u) = (1-u)^{-2} \int_0^u h_s(t)(1-t)^2 \, dt,$$

where f_s and h_s are as in Theorem 2.
3. The first and second order factorial moments

In principle Corollary 2 allows to compute $f_s(u)$ (and thus $\beta_s(n)$) step by step for any s. To illustrate, we determine the first two moments.

THEOREM 3. With $L(u) = -\log(1 - u)$ we have

\[
\begin{align*}
&f_1(u) = L(u) \cdot (1 - u)^{-2} - (1 - u)^{-2} + (1 - u)^{-1}, \\
&f_2(u) = 2L^2(u) \cdot (1 - u)^{-3} - 2L(u) \cdot (1 - u)^{-3} + 2(1 - u)^{-3} - \\
&\quad - L^2(u) \cdot (1 - u)^{-2} - 2(1 - u)^{-2}; \\
&\beta_1(n) = (n + 1) H_n - 2n, \\
&\beta_2(n) = (n + 1)^2 (H_n^2 - H_n^{(2)}) - (4n + 2)(n + 1) H_n + 6n(n + 1).
\end{align*}
\]

Proof. Observing $h_1(u) = u(1 - u)^{-3}$ the formula for $f_1(u)$ is immediate; a short computation yields

\[
h_2(u) = 2L^2(u) (1 - u)^{-4} + 2L(u)(1 - u)^{-4} - 2L(u)(1 - u)^{-3}
\]

from which $f_2(u)$ follows by the formula indicated in Corollary 2.

Expanding $f_1(u)$ resp. $f_2(u)$ we use the following results (compare Greene/Knuth [2, p. 14]):

\[
\begin{align*}
&L(u) \cdot (1 - u)^{-m-1} = \sum_{n \geq 0} (H_{n+1} - H_m) \binom{n+m}{m} u^n, \\
&L^2(u) \cdot (1 - u)^{-m-1} = \sum_{n \geq 0} \left(\left(H_{n+1} - H_m \right)^2 - (H_{n+m}^{(2)} - H_{n+1}^{(2)}) \right) \binom{n+m}{m} u^n.
\end{align*}
\]

The following special instances are needed for our computations:

\[
\begin{align*}
&L(u) \cdot (1 - u)^{-2} = \sum_{n \geq 0} \left[(n + 1) H_n - n \right] u^n, \\
&L^2(u) \cdot (1 - u)^{-2} = \sum_{n \geq 0} \left[(n + 1) (H_n^2 - H_n^{(2)}) - 2nH_n + 2n \right] u^n, \\
&L(u) \cdot (1 - u)^{-3} = \sum_{n \geq 0} \left[\binom{n+2}{2} H_n - (3/4)n^2 - (5/4)n \right] u^n, \\
&L^2(u) \cdot (1 - u)^{-3} = \sum_{n \geq 0} \left[\binom{n+2}{2} (H_n^2 - H_n^{(2)}) - (n/2)(5 + 3n)H_n + \\
&\quad + (7/4)n^2 + (9/4)n \right] u^n.
\end{align*}
\]

Inserting into the formulas for $f_1(u)$ and $f_2(u)$ and simplifying we get the announced results for $\beta_1(n)$ and $\beta_2(n)$.

4. Asymptotic results

Although, in principle, Corollary 2 allows to determine $f_s(u)$ explicitly for any s, terms get more and more complicated as s gets large. So we confine ourselves for general s to give the two leading terms of the asymptotic expansion of $f_s(u)$ about the singularity $u=1$. It turns out to be a crucial point in the derivation of the desired result that $f_s(u)$ is a linear combination of functions of the type $L^i(u) \cdot (1-u)^{-j-1}$ (with L from Theorem 3):

In the following we denote by $R_{p,q}(u)$ an unspecified linear combination of terms of the form $L^i(u) \cdot (1-u)^{-j-1}$ where i,j are integers with either $j < q$ and i arbitrary, or $j = q$ and $i \leq p$. With this notation we have

Theorem 4. For $s \geq 0$

$$f_s(u) = s! L^s(u) \cdot (1-u)^{-s-1} + R_{s-1,s}(u).$$

Proof. We proceed by induction and start with $s = 0$:

$$f_0(u) = (1-u)^{-1},$$

and the theorem is valid in this case.

Assuming that the theorem is correct for all j with $0 \leq j \leq s-1$, we prove that the same holds for s. We will frequently use the fact that for

$$g(u) = c q! L^p(u) \cdot (1-u)^{-q-1} + R_{p-1,q}(u) \quad (c \text{ a constant})$$

the derivatives $g^{(i)}(u)$ fulfill

$$g^{(i)}(u) = c (q+i)! L^p(u) \cdot (1-u)^{-q-i-1} + R_{p-1,q+i}(u).$$

Especially we have for $j \leq s-1$

$$f^{(j)}_j(u) = (j+i)! L^j(u) \cdot (1-u)^{-j-i-1} + R_{j-1,j+i}(u).$$

Inserting into the formula for $h_s(u)$ in Theorem 2 we get

$$h_s(u) = \sum_{i=1}^{s-1} \binom{s}{i} [i! L^i(u) \cdot (1-u)^{-i-1} + R_{i-1,i}(u)] \sum_{r=0}^{s-i} \binom{s-i}{r} u^r \times$$

$$\times [(s-i)! L^{s-i-r}(u) \cdot (1-u)^{-s-i-1} + R_{s-i-r-1,s-i}(u)] +$$

$$+(1-u)^{-1} \sum_{r=1}^{s} \binom{s}{r} u^r [s! L^{s-r}(u) \cdot (1-u)^{-s-1} + R_{s-r-1,s}(u)].$$

It follows by a short consideration that all remainder terms $R_{p,q}(u)$ as well as the second sum give a contribution of the form $R_{s-1,s+1}(u)$. The other terms contribute

$$s! L^s(u) \cdot (1-u)^{-s-2} \sum_{i=1}^{s-1} (1+u/L(u))^s = s! L^s(u) \cdot (1-u)^{-s-2} +$$

$$+ R_{s-1,s+1}(u),$$

hence $h_s(u)$ is of the same type.
A contribution to the analysis...

Using Corollary 2 we get

\[f_s(u) = (1-u)^{-2} \int_0^u s! (s-1) L^s(t) \cdot (1-t)^{-s} dt + (1-u)^{-2} \cdot \int_0^u R_{s-1,s-1}(t) dt = \]

\[= s! L^s(u) \cdot (1-u)^{-s-1} + R_{s-1,s}(u) \]

by integration by parts.

It should be remarked that from Theorem 4 the leading term of \(\beta_s(n) \) for \(n \to \infty \) is

\[\beta_s(n) \sim n^s \cdot \log^s n, \quad (4.1) \]

either by observing that \(L^s(u) \) varies slowly at infinity and applying Hardy-Littlewood-Karamata's Tauberian Theorem (e.g. [1]) or by the explicit knowledge of the coefficients of functions of the following type (compare Zave [6]):

\[L^p(u) \cdot (1-u)^{-s-1} = \sum_{n \geq 0} P_p(H_n^{(1)} - H_q^{(1)}, \ldots, H_n^{(p)} - H_q^{(p)}) \cdot \left(\begin{array}{c} n + q \\ q \end{array} \right) u^n, \quad (4.2) \]

where \(P_p(s_1, \ldots, s_p) \) is defined by \(P_0 = 1 \) and

\[P_p(s_1, \ldots, s_p) = (-1)^p \, Y_p (-s_1, -s_2, -2s_3, \ldots, -(p-1)!s_p) \]

with \(Y_p \) the \(p \)-th Bell polynomial.

With the information on the structure of the remainder term in Theorem 4 it is possible to determine the second term in the expansion of \(f_s(u) \) about \(u = 1 \) explicitly:

THEOREM 5. For \(s \geq 0 \)

\[f_s(u) = s! L^s(u) \cdot (1-u)^{-s-1} + s! s (H_s - 2) L^{s-1}(u) \cdot (1-u)^{-s-1} + R_{s-2,s}(u). \]

Proof. From Theorem 4 we know that \(f_i(u) \) is of the form

\[f_i(u) = i! L^i(u) \cdot (1-u)^{-i-1} + a_i i! L^{i-1}(u) \cdot (1-u)^{-i-1} + R_{i-2,i}(u) \]

with some constant \(a_i \). Observing that

\[f'_i(u) = (i+1)! L^i(u) (1-u)^{-i-2} + (i + a_i (i+1)) i! L^{i-1}(u) (1-u)^{-i-2} + R_{i-2,i+1}(u), \]

\[f'^{(0)}_i(u) = (i+j)! L^i(u) (1-u)^{-i-j-1} + R_{i-1,i+j}(u). \quad (j \geq 2) \]
and inserting these formulas in the definition of \(h_s(u) \) (Theorem 2) we obtain

\[
h_s(u) = \sum_{i=1}^{s-1} \binom{s}{i} i! L^i(u) (1-u)^{-i} + a_i! L^{i-1}(u) (1-u)^{-i} + R_{i-2,i}(u) \times \\
\times [(s-i)! L^{s-i}(u) (1-u)^{-s+i-1} + a_{s-i} (s-i)! L^{s-i-1}(u) (1-u)^{-s+i-1} + \\
+ (s-i) (s-i)! L^{s-i-1}(u) (1-u)^{-s+i-1} + R_{s-i-2,s-i}(u)] + \\
+ (1-u)^{-1} \sum_{r=1}^{s-i} \binom{s}{r} s! L^{s-r}(u) (1-u)^{-s+1} + R_{s-r-1,s+1}(u) = \\
= s! (s-1) L^s(u) (1-u)^{-s-2} + s! L^{s-1}(u) (1-u)^{-s-2} \times \\
\times \left[s + \sum_{i=1}^{s-1} (a_i + a_{s-i} + s-i) \right] + R_{s-2,s+1}(u).
\]

On the other hand we have

\[
f'_s(u) - 2 (1-u)^{-1} f_s(u) = (s+1)! L^s(u) (1-u)^{-s-2} + \\
+ (s+a_s(s+1)) s! L^{s-1}(u) (1-u)^{-s-2} - \\
- 2s! L^s(u) (1-u)^{-s-2} - 2a_s s! L^{s-1}(u) (1-u)^{-s-2} + R_{s-2,s+1}(u) = \\
= s! (s-1) L^s(u) (1-u)^{-s-2} + (s+a_s(s-1)) s! L^{s-1}(u) (1-u)^{-s-2} + \\
+ R_{s-2,s+1}(u).
\]

Comparing the coefficients of \(s! L^{s-1}(1-u)^{-s-2} \) we obtain the recurrence relation

\[
(s-1) a_s = \left(\frac{s}{2} \right) + 2 \sum_{i=1}^{s-1} a_i.
\]

Subtracting this equation from

\[
sa_{s+1} = \left(\frac{s+1}{2} \right) + 2 \sum_{i=1}^{s} a_i,
\]

we derive

\[
sa_{s+1} = (s-1) a_s + 2a_s + s,
\]

or

\[
a_{s+1} / (s+1) = a_s / s + 1 / (s+1), \quad a_1 = -1.
\]

Summing up we get

\[
a_s / s = -1 + \sum_{i=1}^{s-1} (i+1)^{-1} = H_s - 2,
\]
hence

\[a_s = s(H_s - 2) \]

and the proof is complete.

Combining Theorem 5 with formula (4.2) we reach our final result

THEOREM 6. For \(s \geq 0 \)

\[\beta_s(n) = n^s \cdot \log^s n + s(\gamma - 2)n^s \cdot \log^{s-1} n + \mathcal{O}(n^s \cdot \log^{s-2} n), \]

where \(\gamma = .57721 \ldots \) denotes Euler's constant.

Proof. From Theorem 5 and (4.2)

\[\beta_s(n) = s!P_s(H_{n+s}^{(1)} - H_s^{(1)}, \ldots, H_{n+s}^{(s)} - H_s^{(s)}) \left(\frac{n+s}{s} \right) + \]

\[+ s(H_s^2 - 2)s!P_{s-1}(H_{n+s}^{(1)} - H_s^{(1)}, \ldots, H_{n+s}^{(s-1)} - H_s^{(s-1)}) \left(\frac{n+s}{s} \right) + \]

\[+ \mathcal{O}(n^s \cdot \log^{s-2} n), \]

since

\[P_p(H_{n+s}^{(1)} - H_s^{(1)}, \ldots, H_{n+s}^{(p)} - H_s^{(p)}) = \mathcal{O}(n^p \cdot H_n^p) = \mathcal{O}(n^p \cdot \log^p n). \]

Regarding

\[P_p(s_1, \ldots, s_p) = s^p - \binom{p}{2} s^{p-2} s_2 + \ldots \]

we have

\[\beta_s(n) = \left(\frac{n+s}{s} \right) \left[s! (H_{n+s} - H_s)^s + s!n (H_s - 2)(H_{n+s} - H_s)^{s-1} \right] + \]

\[+ \mathcal{O}(n^s \cdot \log^{s-2} n) = n^s \left[H_{n+s}^s - sH_{n+s}^{s-1} H_s + s(H_s - 2)H_{n+s}^{s-1} \right] + \]

\[+ \mathcal{O}(n^s \cdot \log^{s-2} n) = n^{s-1} \left[(\log(n+s))^s - 2s(\log(n+s))^{s-1} + \gamma s^{s-1} \right] + \]

\[+ \mathcal{O}(n^s \cdot \log^{s-2} n) = n^s \left[\log n + s(\gamma - 2)\log^{s-1} n \right] + \mathcal{O}(n^s \cdot \log^{s-2} n). \]

REFERENCES:

PRILOG ANALIZI (IN SITU) PERMUTACIJA

P. Kirschenhofer, H. Prodinger i R. F. Tichy, Beč, Austrija

Sadržaj

Postoji jednostavni algoritam koji zamjenjuje (prevodi) \((x_1, \ldots, x_n)\) sa \((x_{\pi(1)}, \ldots, x_{\pi(n)})\) gdje je \(\pi = (p(1), \ldots, p(n))\) permutacija od 1, 2, \ldots, \(n\), koji u biti ne zahtijeva dodatno korištenje memorije.

U ovom redu se nastavljaju istraživanja D. E. Knutha o jednom karakterističnom parametru tog algoritma. Korištenjem tehnika funkcija izvodnica dobiveno je osim alternativnih izvoda nekoliko rezultata Knutha i nekoliko novih rezultata.