Department van Wiskundige Wetenskappe

Wiskunde

WISKUNDE (BIO) 124

Wiskunde vir Biologiese Wetenskappe

Hierdie module dien as ‘n basiese inleiding tot differensiasie en integrasie van funksies. Die eerste deel van die module handel oor funksies in die algemeen, limiete en kontinuïteit, afgeleides, toepassings van afgeleides (soos die skets van grafieke en optimering) en die kettingreël vir afgeleides. Daarna word die eksponensiële funksie en die natuurlike logaritmiese funksie tesame met eksponensiële groeimodelle behandel. Dan volg die bepaalde integraal en toepassings daarvan, soos byvoorbeeld by oppervlaktes en gemiddeldes van bevolkings, differensiaalvergelykings, met die klem op skeiding van veranderlikes en logistiese groeimodelle. By die tegnieke van integrasie word aandag geskenk aan substitusies en deelwyse integrasie.

Module Inligting

  • 21547 124 (16) Wiskunde (Bio) 124
  • Akademiese jaar 1, semester 1 van die program in Biologiese Wetenskappe.
  • Doseerbelading: 4 lesings en een tutoriaal van 2 ure per week.
  • Taalspesifikasie : A & E
  • Daar is 3 roostergroepe vir Wiskunde (Bio) 124

Groep 1, onderverdeel in 1A (Afrikaans) en 1B (Engels)
Groep 2, onderverdeel in 2A (Afrikaans) en 2B (Engels)
Groep 3, onderverdeel in 3A (Afrikaans) en 3B (Engels)
Dosente

Studiemateriaal

  • L.D. Hoffmann en G.L. Bradley: APPLIED CALCULUS for Business, Economics, and the Social and Life Sciences (10de Uitgebreide Uitgawe), McGraw-Hill, 2010.

Module Contents

  • Hoofstuk 1, Funksies, Grafieke en Limiete.
  • Hoofstuk 2, Differensiasie: Basiese begrippe.
  • Hoofstuk 3, Toepassings van die afgeleide
  • Hoofstuk 4, Die eksponensiële en natuurlike logaritmiese funksies.
  • Hoofstuk 5, Integrasie.
  • Hoofstuk 6, Verdere onderwerpe in Integrasie.
  • Bylae A.
  • Hoofstuk 8.
  • Hoostuk 11.

Leergeleenthede

    • Die leerstof word volledig behandel tydens die voorlesings. Gedurende die tutoriaalperiode is daar geleentheid om probleme onder toesig op te los en onduidelikhede uit die weg te ruim.
    • Die oplossings van die tutoriaalprobleme word in dieselfde week na die tutoriaal beskikbaar gestel.

Assesseering

  • Metode: Verwerf klaspunt (KP40) en slaag eksamen (PP50).
  • Die klaspunt word bepaal deur kort verpligte toetse aan die einde van tutoriaalperiodes, asook die mini-klastoets en die semestertoets.
  • Prestasiepuntformule: PP = 0,4 KP + 0,6 EP, waar EP die eksamenpunt is.
  • Die datums en tye van die klastoets en eksamens word bekend gemaak op Blackboard.
  • Kort tutoriaaltoetse word binne een week nagesien en teruggegee. Finale prestasiepunte word bekend gemaak op die datum soos bepaal in die amptelike Jaarprogram van die Universiteit.

Algemene Inligting

  • Let asseblief op die volgende reëlings in verband met die tutoriale: (a) Bywoning van alle tutoriale is verpligtend, ook vir studente wat die kursus herhaal. (b) Geen ander afsprake (akademies of andersinds) kan gedurende die tutoriaalperiodes nagekom word nie. (c) Studente wat nie die tutoriale volledig bywoon en die tutoriaaltoetse aflê nie, word nie tot die eksamen toegelaat nie, tensy vooraf toestemming van die dosent verkry word.
  • Sakrekenaars mag nie in toetse en eksamens gebruik word nie.

Studiewenke

  • Dit is belangrik dat u die basiese teorie goed verstaan sodat dit toegepas kan word. Daarom moet u elke lesing se werk deeglik deurwerk en seker maak maak dat u die definisies waarop die werk berus verstaan en ken.
  • Ten einde te bepaal of u die werk onder die knie het, moet u gereeld ‘n verskeidenheid van probleme uit die lyste aan die einde van elke afdeling in die handboek doen. Die dosent sal tydens die lesings ‘n aantal van hierdie probleme uitlig, maar dit bly u eie verantwoordelikheid en sal dit nie nagesien word nie.
  • Vra gerus u dosent om te help as u iets nie verstaan nie, of vashaak met ‘n probleem. Die dosent is beskikbaar net na afloop van elke klas, asook in sy/haar kantoor (verkieslik na ‘n afspraak).
  • Hersien elke paragraaf volledig nadat dit in die klas behandel is. Sorg veral dat u nie agter raak nie, want dit is baie moeilik om weer in te haal.

Rasionaal

Die module word aangebied binne die Program in die Biologiese Wetenskappe, en verskaf basiese opleiding in Wiskunde wat noodsaaklik is vir die suksesvolle voltooing van ander modules in hierdie Program.

Uitkomstes

‘n Student wat hierdie module geslaag het, behoort oor die volgende vaardighede te beskik:

  • Verstaan die basiese begrippe oor funksies en limiete, kan afgeleides bepaal en toepas, en ken differensiasie tegnieke soos die kettingreël en implisiete differensiasie.
  • Verstaan begrippe in verband met eksponensiële en logaritmiese funksies en kan dit toepas in eksponensiële groei- en verval-modelle.
  • Kan die bepaalde integraal hanteer en toepas in oppervlakte- en volume-probleme, asook in probleme waar met die gemiddelde van kontinue funksies gewerk word. Kan integrasietegnieke gebruik om substitusies en deelwyse integrasie te hanteer.
  • Kan basiese differensiaalvergelykings oplos.