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For an endomorphism ϕ ∈ EndR(M) of a left R-module RM , we investigate the
structure and the polynomial identities of the zero-level centralizer Cen0(ϕ) and the
factor Cen(ϕ)/ Cen0(ϕ). A double zero-centralizer theorem for Cen0(Cen0(ϕ)) is also
formulated.

1. Introduction

If S is a ring (or algebra), then the centralizer Cen(s) = {u ∈ S | us = su} of an
element s ∈ S is a subring (subalgebra) of S. We have Cen(s) =

⋃
c∈LCen(s) Cenc(s),

where Cenc(s) = {u ∈ S | us = su = c} is called the c-level centralizer and
LCen(s) = {c ∈ S | Cenc(s) �= ∅} is a subring of Cen(s). The zero-level centralizer
Cen0(s) = {u ∈ S | us = su = 0} (or the two-sided annihilator) of s is an ideal of
Cen(s) and u+Cen0(s) �→ us is a natural Cen(s)/ Cen0(s) → LCen(s) isomorphism
of the additive abelian groups.

The aim of this paper is to investigate the zero-level centralizer Cen0(ϕ) and the
factor Cen(ϕ)/ Cen0(ϕ) for an element ϕ in the endomorphism ring EndR(M) of
a left R-module RM . Our treatment follows the arguments of [1] and is heavily
based on the results of [1,6]. Thus, we restrict our attention to the case of a finitely
generated semi-simple RM . First we focus on a nilpotent ϕ, and then we shall see
that, for a non-nilpotent ϕ, the study of Cen0(ϕ) can be reduced to the nilpotent
case.

We were unable to find related results in the literature, in spite of the fact that
the objects of our investigations arise very naturally. Surprisingly, the dimension
formula for the zero-level centralizer of a square matrix has not yet appeared in
linear algebra books (see, for example, [2, 4, 5, 7]).

In § 2 we consider a fixed nilpotent Jordan normal base of RM with respect to a
given nilpotent ϕ ∈ EndR(M) and present all the necessary prerequisites from [1,6].

Section 3 is devoted entirely to the nilpotent case. Theorem 3.3 gives a complete
characterization of Cen0(ϕ) and Cen(ϕ)/ Cen0(ϕ). If the base ring is local, then
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1326 J. Szigeti and L. van Wyk

a more accurate description of these algebras can be found in theorem 3.4. Using
theorem 3.4 and the identities of certain subalgebras of a full matrix algebra over
R/J , where J is the Jacobson radical of R, in theorems 3.6 and 3.8 we exhibit
explicit polynomial identities for Cen0(ϕ) and Cen(ϕ)/ Cen0(ϕ), respectively.

In § 4 we deal with the non-nilpotent case. A complete description of Cen0(ϕ)
(as a particular ideal of an algebra of certain invariant endomorphisms) can be
found in theorem 4.1. If A ∈ Mn(F ) is an n × n matrix over a field F , then the
mentioned dimension formula dimF Cen0(A) = [dimF (ker(A))]2 is an immediate
corollary of theorem 4.1. Theorems 4.5 and 4.6 deal with the containment relation
Cen0(ϕ) ⊆ Cen0(σ), where σ ∈ EndR(M) is another endomorphism. Since this
containment is equivalent to σ ∈ Cen0(Cen0(ϕ)), theorems 4.5 and 4.6 can be
considered as double zero-centralizer theorems.

2. Prerequisites

In order to provide a self-contained treatment, we collect some notation, definitions
and statements from [1, 6]. Let Z(R) and J = J(R) denote the centre and the
Jacobson radical of a ring R (with identity). Let (zk) � R[z] denote the ideal
generated by zk in the ring R[z] of polynomials of the commuting indeterminate z.

For an R-endomorphism ϕ : M → M of a (unitary) left R-module RM , a subset

{xγ,i | γ ∈ Γ, 1 � i � kγ} ⊆ M

is called a nilpotent Jordan normal base of RM with respect to ϕ if each R-
submodule Rxγ,i � M is simple,

⊕
γ∈Γ,1�i�kγ

Rxγ,i = M

is a direct sum, ϕ(xγ,i) = xγ,i+1, ϕ(xγ,kγ
) = 0 for all γ ∈ Γ , 1 � i � kγ , and the

set {kγ | γ ∈ Γ} of integers is bounded. Now Γ is called the set of (Jordan) blocks
and the size of the block γ ∈ Γ is the integer kγ � 1.

Theorem 2.1. Let ϕ ∈ EndR(M) be an R-endomorphism of a left R-module RM .
Then the following are equivalent.

(i) RM is a semi-simple left R-module and ϕ is nilpotent of index n.

(ii) There exists a nilpotent Jordan normal base X = {xγ,i | γ ∈ Γ, 1 � i � kγ}
of RM with respect to ϕ such that n = max{kγ | γ ∈ Γ}.

Theorem 2.2. Let ϕ ∈ EndR(M) be a nilpotent R-endomorphism of a finitely
generated semi-simple left R-module RM . If

{xγ,i | γ ∈ Γ, 1 � i � kγ} and {yδ,j | δ ∈ ∆, 1 � j � lδ}

are nilpotent Jordan normal bases of RM with respect to ϕ, then Γ is finite and
there exists a bijection π : Γ → ∆ such that kγ = lπ(γ) for all γ ∈ Γ . Thus, the sizes
of the blocks of a nilpotent Jordan normal base are unique up to a permutation of
the blocks. We also have ker(ϕ) =

⊕
γ∈Γ Rxγ,kγ , and hence dimR(ker(ϕ)) = |Γ |.
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If ϕ ∈ EndR(M) is an arbitrary R-endomorphism of the left R-module RM , then,
for u ∈ M and f(z) = a1 + a2z + · · · + an+1z

n ∈ R[z] (an unusual use of indices),
the multiplication

f(z) ∗ u = a1u + a2ϕ(u) + · · · + an+1ϕ
n(u)

defines a natural left R[z]-module structure on M . This left action of R[z] on M
extends the left action of R on RM . For any R-endomorphism ψ ∈ EndR(M) with
ψ ◦ ϕ = ϕ ◦ ψ, we have ψ(f(z) ∗u) = f(z) ∗ψ(u), and hence ψ : M → M is an R[z]-
endomorphism of the left R[z]-module R[z]M . On the other hand, if ψ : M → M is
an R[z]-endomorphism of R[z]M , then

ψ(ϕ(u)) = ψ(z ∗ u) = z ∗ ψ(u) = ϕ(ψ(u))

implies that ψ ◦ ϕ = ϕ ◦ ψ. Now

Cen(ϕ) = {ψ | ψ ∈ EndR(M) and ψ ◦ ϕ = ϕ ◦ ψ}

is a Z(R)-subalgebra of EndR(M), and the argument above gives that Cen(ϕ) =
EndR[z](M).

Henceforth, RM is semi-simple and we consider a fixed nilpotent Jordan normal
base

X = {xγ,i | γ ∈ Γ, 1 � i � kγ} ⊆ M

with respect to a given nilpotent ϕ ∈ EndR(M) of index n = max{kγ | γ ∈ Γ}.
The Γ -copower

∐
γ∈Γ R[z] is an ideal of the Γ -direct power ring (R[z])Γ compris-

ing all elements f = (fγ(z))γ∈Γ with a finite set {γ ∈ Γ | fγ(z) �= 0} of non-zero
coordinates. The copower (power) has a natural (R[z], R[z])-bimodule structure.
For an element f = (fγ(z))γ∈Γ with fγ(z) = aγ,1 + aγ,2z + · · · + aγ,nγ+1z

nγ , the
formula

Φ(f) =
∑

γ∈Γ,1�i�kγ

aγ,ixγ,i

=
∑
γ∈Γ

( ∑
1�i�kγ

aγ,iϕ
i−1(xγ,1)

)

=
∑
γ∈Γ

fγ(z) ∗ xγ,1

defines a function Φ :
∐

γ∈Γ R[z] → M .

Lemma 2.3. The function Φ is a surjective left R[z]-homomorphism. We then have
ϕ(Φ(f)) = Φ(zf) for all f ∈

∐
γ∈Γ R[z] and the kernel

∐
γ∈Γ

J [z] + (zkγ ) ⊆ ker(Φ) �l

∏
γ∈Γ

R[z]

is a left ideal of the power (and hence of the copower) ring. If R is a local ring (R/J
is a division ring), then

∐
γ∈Γ (J [z] + (zkγ )) = ker(Φ).

Hereafter, we also require that RM be finitely generated, m = dimR(ker(ϕ)),
Γ = {1, 2, . . . , m} and we assume that k1 � k2 � · · · � km � 1 for the block sizes.
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Now
∐

γ∈Γ R[z] = (R[z])Γ , and an element f = (fγ(z))γ∈Γ of (R[z])Γ is a 1 × m
matrix (row vector) over R[z]. For an m × m matrix P = [pδ,γ(z)] in Mm(R[z]),
the matrix product

fP =
∑
δ∈Γ

fδ(z)pδ

of f and P is a 1 × m matrix over (R[z])Γ , where pδ = (pδ,γ(z))γ∈Γ is the δth row
vector of P and

(fP )γ =
∑
δ∈Γ

fδ(z)pδ,γ(z).

Consider the following subsets of Mm(R[z]):

M(X) = {P ∈ Mm(R[z]) | fP ∈ ker(Φ),∀f ∈ ker(Φ)},

I(X) = {P ∈ Mm(R[z]) | P = [pδ,γ(z)], pδ,γ(z) ∈ J [z] + (zkγ ), ∀δ, γ ∈ Γ}

=

⎡
⎢⎢⎢⎣

J [z] + (zk1) J [z] + (zk2) · · · J [z] + (zkm)
J [z] + (zk1) J [z] + (zk2) · · · J [z] + (zkm)

...
...

. . .
...

J [z] + (zk1) J [z] + (zk2) · · · J [z] + (zkm)

⎤
⎥⎥⎥⎦ ,

N (X) = {P ∈ Mm(R[z]) | P = [pδ,γ(z)], zkδpδ,γ(z) ∈ J [z] + (zkγ ), ∀δ, γ ∈ Γ}.

Note that I(X) and N (X) are (R[z], R[z])-sub-bimodules of Mm(R[z]) in a natural
way. For δ, γ ∈ Γ , let kδ,γ = kγ − kδ when 1 � kδ < kγ � n, and kδ,γ = 0 otherwise.
It can be verified that the condition zkδpδ,γ(z) ∈ J [z] + (zkγ ) in the definition of
N (X) is equivalent to pδ,γ(z) ∈ J [z] + (zkδ,γ ) and so

N (X) =

⎡
⎢⎢⎢⎢⎢⎣

R[z] R[z] R[z] · · · R[z]
J [z] + (zk1−k2) R[z] R[z] · · · R[z]
J [z] + (zk1−k3) J [z] + (zk2−k3) R[z] · · · R[z]

...
...

...
. . .

...
J [z] + (zk1−km) J [z] + (zk2−km) J [z] + (zk3−km) · · · R[z]

⎤
⎥⎥⎥⎥⎥⎦

.

Lemma 2.4. I(X) �l Mm(R[z]) is a left ideal, N (X) ⊆ Mm(R[z]) is a subring,
I(X) � N (X) is an ideal and M(X) is a Z(R)-subalgebra of Mm(R[z]). The ideal
zMm(R[z]) � Mm(R[z]) is nilpotent modulo I(X) with znMm(R[z]) ⊆ I(X). If R
is a local ring, then N (X) = M(X).

Theorem 2.5. Let ϕ ∈ EndR(M) be a nilpotent R-endomorphism of a finitely
generated semi-simple left R-module RM . For P ∈ M(X) and f = (fγ(z))γ∈Γ in
(R[z])Γ , the formula

ψP (Φ(f)) = Φ(fP )

properly defines an R-endomorphism ψP : M → M of RM such that ψP ◦ ϕ =
ϕ ◦ ψP , and the assignment Λ(P ) = ψP gives an M(X)op → Cen(ϕ) homomor-
phism of Z(R)-algebras. If ψ ◦ ϕ = ϕ ◦ ψ holds for some ψ ∈ EndR(M), then
there exists an m × m matrix P ∈ M(X) such that ψ(Φ(f)) = Φ(fP ) for all
f = (fγ(z))γ∈Γ in (R[z])Γ . Thus, Λ : M(X)op → Cen(ϕ) is surjective.
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Lemma 2.6. I(X) ⊆ ker(Λ) (Λ is defined in theorem 2.5). If R is a local ring, then
I(X) = ker(Λ).

3. The zero-level centralizer of a nilpotent endomorphism

We retain all settings from § 2 and define the subsets of Mm(R[z]) as follows:

M0(X) = {P ∈ M(X) | zfP ∈ ker(Φ),∀f ∈ (R[z])Γ },

N0(X) = {P ∈ Mm(R[z]) | P = [pδ,γ(z)], pδ,γ(z) ∈ J [z] + (zkγ−1),∀δ, γ ∈ Γ}.

Since pδ,γ(z) ∈ J [z] + (zkγ−1) and zpδ,γ(z) ∈ J [z] + (zkγ ) are equivalent, we have

N0(X) =

⎡
⎢⎢⎢⎣

J [z] + (zk1−1) J [z] + (zk2−1) · · · J [z] + (zkm−1)
J [z] + (zk1−1) J [z] + (zk2−1) · · · J [z] + (zkm−1)

...
...

. . .
...

J [z] + (zk1−1) J [z] + (zk2−1) · · · J [z] + (zkm−1)

⎤
⎥⎥⎥⎦ .

Lemma 3.1. I(X) ⊆ N0(X), zn−1Mm(R[z]) ⊆ N0(X), N0(X) �l Mm(R[z]) is a
left ideal and N0(X) � N (X) is an ideal. If R is a local ring, then N0(X) = M0(X).

Proof. The containment I(X) ⊆ N0(X) obviously holds and zn−1Mm(R[z]) ⊆
N0(X) is a consequence of (zn−1) ⊆ (zkγ−1). Since the γth column of the matrices
in N0(X) comes from a (left) ideal J [z] + (zkγ−1) of R[z], we can see that N0(X)
is a left ideal of Mm(R[z]).

If P ∈ N0(X) and Q ∈ N (X), then we have zpδ,τ (z) ∈ J [z] + (zkτ ) and qτ,γ(z) ∈
J [z] + (zkτ,γ ). Since kτ + kτ,γ � kγ , it follows that zpδ,τ (z)qτ,γ(z) ∈ J [z] + (zkγ ).
Thus, PQ ∈ N0(X) and N0(X) is an ideal of N (X).

If R is a local ring, then lemma 2.3 gives that

ker(Φ) =
∐
γ∈Γ

(J [z] + (zkγ )).

Let 1δ denote the vector with 1 in its δ-coordinate and 0 in all other places. If
P ∈ M0(X), then z1δP ∈ ker(Φ) implies that zpδ,γ(z) ∈ J [z] + (zkγ ), whence
P ∈ N0(X) follows. If P ∈ N0(X) and f = (fγ(z))γ∈Γ is in (R[z])Γ , then zpδ,γ(z) ∈
J [z] + (zkγ ) implies that zfδ(z)pδ,γ(z) ∈ J [z] + (zkγ ) for all δ ∈ Γ . Thus, zfP ∈
ker(Φ) and P ∈ M0(X) follows.

Lemma 3.2. ker(Λ) ⊆ M0(X) and, for P ∈ M(X), the containments P ∈ M0(X)
and Λ(P ) ∈ Cen0(ϕ) are equivalent. The preimage

M0(X) = Λ−1(Cen0(ϕ)) � M(X)

is an ideal.

Proof. The proof is based on lemma 2.3 and theorem 2.5.
If P ∈ ker(Λ), then Λ(P ) = ψP = 0 gives that Φ(fP ) = ψP (Φ(f)) = 0 for all

f ∈ (R[z])Γ . Since Φ :
∐

γ∈Γ R[z] → M is a left R[z]-homomorphism, Φ(zfP ) =
z ∗ Φ(fP ) = 0 implies that zfP ∈ ker(Φ). In view of ker(Λ) ⊆ M(X), we deduce
that P ∈ M0(X).



1330 J. Szigeti and L. van Wyk

If P ∈ M0(X), then Λ(P ) = ψP and ϕ(ψP (Φ(f))) = ϕ(Φ(fP )) = Φ(zfP ) = 0
for all f ∈ (R[z])Γ . Thus, ψP ◦ ϕ = ϕ ◦ ψP = 0, and hence ψP ∈ Cen0(ϕ).

If Λ(P ) = ψP is in Cen0(ϕ), then ϕ ◦ ψP = 0 and

Φ(zfP ) = ϕ(Φ(fP ))
= ϕ(ψP (Φ(f)))
= 0

for all f ∈ (R[z])Γ . It follows that P ∈ M0(X).
Obviously, the preimage of the ideal Cen0(ϕ) � Cen(ϕ) is also an ideal.

Theorem 3.3. Let ϕ ∈ EndR(M) be a nilpotent R-endomorphism of a finitely
generated semi-simple left R-module RM . The map Λ : M(X)op → Cen(ϕ) induces
the following Z(R)-isomorphisms for the factor algebras:

M0(X)op/ ker(Λ) ∼= Cen0(ϕ),
M(X)op/M0(X) ∼= Cen(ϕ)/ Cen0(ϕ).

Proof. By lemma 3.2, we have

ker(Λ � M0(X)) = ker(Λ) and M0(X) = Λ−1(Cen0(ϕ)).

Thus, theorem 2.5 ensures that the restricted map Λ � M0(X) is a surjective
M0(X)op → Cen0(ϕ) homomorphism of Z(R)-algebras, whence

M0(X)op/ ker(Λ) ∼= Cen0(ϕ)

follows.
In view of lemma 3.2, the assignment

P + M0(X) �→ Λ(P ) + Cen0(ϕ)

is well defined and gives an injective

M(X)op/M0(X) → Cen(ϕ)/ Cen0(ϕ)

homomorphism of Z(R)-algebras. The surjectivity of this homomorphism is a con-
sequence of the surjectivity of Λ (see theorem 2.5).

Theorem 3.4. Let ϕ ∈ EndR(M) be a nilpotent R-endomorphism of a finitely
generated semi-simple left R-module RM . If R is a local ring, then the zero-level
centralizer Cen0(ϕ) of ϕ is isomorphic to the opposite of the factor N0(X)/I(X)
as a Z(R)-algebra:

Cen0(ϕ) ∼= (N0(X)/I(X))op = N0(X)op/I(X).

We also have an isomorphism

Cen(ϕ)/ Cen0(ϕ) ∼= (N (X)/N0(X))op = N (X)op/N0(X)

of the factor Z(R)-algebras.

Proof. The proof follows directly from lemmas 2.4, 2.6, 3.1 and theorem 3.3.
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Define a left ideal of Mm(R/J) as follows:

W(X) = {W = [wδ,γ ] | wδ,γ ∈ R/J and wδ,γ = 0 if kγ � 2}.

The assumption k1 � k2 � · · · � km � 1 ensures that

W(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 R/J · · · R/J

0 · · · 0 R/J · · · R/J
...

. . .
...

...
. . .

...
...

... 0 R/J · · · R/J
...

...
...

...
. . .

...
0 · · · 0 R/J · · · R/J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We shall make use of the ideals

L(X) = (N0(X) ∩ zMm(R[z])) + I(X),
K(X) = (N (X) ∩ zMm(R[z])) + N0(X)

of N (X). We have L(X) ⊆ K(X) and L(X) ⊆ N0(X) implies that L(X) � N0(X).

Lemma 3.5. There is a natural ring isomorphism N0(X)/L(X) ∼= W(X), which is
also an (R, R)-bimodule isomorphism.

Proof. If P = [pδ,γ(z)] is in N0(X) and pδ,γ(z) has constant term uδ,γ ∈ R, then

pδ,γ(z) − uδ,γ ∈ (J [z] + (zkγ−1)) ∩ zR[z]

and kγ � 2 implies that uδ,γ ∈ J . Thus, [uδ,γ ] ∈ Mm(R) ∩ N0(X) and

P + L(X) = [uδ,γ ] + L(X)

holds in N0(X)/L(X). The assignment

P + L(X) �→ [uδ,γ + J ]

is well defined and gives an N0(X)/L(X) → W(X) isomorphism.

Theorem 3.6. Let R be a local ring and let ϕ ∈ EndR(M) be a nilpotent R-
endomorphism of a finitely generated semi-simple left R-module RM . If

fi(x1, . . . , xr) ∈ Z(R)〈x1, . . . , xr〉, 1 � i � n,

and fi = 0 are polynomial identities of the right ideal W(X) of Mop
m (R/J), then

f1f2 · · · fn = 0 is an identity of Cen0(ϕ).

Proof. Theorem 3.4 ensures that Cen0(ϕ) ∼= N0(X)op/I(X) as Z(R)-algebras.
Hence,

L = L(X)/I(X) � N0(X)/I(X)

can be viewed as an ideal of Cen0(ϕ). The use of lemma 3.5 gives

Cen0(ϕ)/L ∼= (N0(X)op/I(X))/L ∼= N0(X)op/L(X) ∼= W(X)op.
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It follows that fi = 0 is an identity of Cen0(ϕ)/L. Thus, fi(v1, . . . , vr) ∈ L for all
v1, . . . , vr ∈ Cen0(ϕ), and so

f1(v1, . . . , vr)f2(v1, . . . , vr) · · · fn(v1, . . . , vr) ∈ Ln.

Since znMm(R[z]) ⊆ I(X) (see lemma 2.4) implies that Ln = {0}, the proof is
complete.

The assumption k1 � k2 � · · · � km � 1 ensures that

U0(X) = {U ∈ Mm(R/J) | U = [uδ,γ ] and uδ,γ = 0 if 1 � kδ < kγ or kγ = 1}

is a block upper-triangular subalgebra of Mm(R/J). If [uδ,γ ] ∈ U0(X) and uδ,γ �= 0
for some δ, γ ∈ Γ , then 2 � kγ � kδ. Results regarding the polynomial identities of
block upper-triangular matrix algebras can be found in [3].

Lemma 3.7. There is a natural ring isomorphism N (X)/K(X) ∼= U0(X), which is
also an (R, R)-bimodule isomorphism.

Proof. For a matrix P = [pδ,γ(z)] in N (X), consider the assignment

P + K(X) �→ [uδ,γ + J ],

where uδ,γ ∈ R is defined as follows. uδ,γ = 0 if kγ = 1 and uδ,γ is the constant
term of pδ,γ(z) if kγ � 2. Clearly, [uδ,γ ] ∈ Mm(R) ∩ N (X), and

P + K(X) = [uδ,γ ] + K(X).

In view of the definitions of N0(X) and U0(X), the above equality ensures that
our assignment is a well defined N (X)/K(X) → U0(X) map providing the required
isomorphism.

Theorem 3.8. Let R be a local ring and ϕ ∈ EndR(M) be a nilpotent R-
endomorphism of a finitely generated semi-simple left R-module RM . If

fi(x1, . . . , xr) ∈ Z(R)〈x1, . . . , xr〉, 1 � i � n − 1

and fi = 0 are polynomial identities of the Z(R)-subalgebra U0(X) of Mop
m (R/J),

then f1f2 · · · fn−1 = 0 is an identity of the factor Cen(ϕ)/ Cen0(ϕ).

Proof. Theorem 3.4 ensures that Cen(ϕ)/ Cen0(ϕ) ∼= N (X)op/N0(X) as Z(R)-
algebras; hence,

K = K(X)/N0(X) � N (X)/N0(X)

can be viewed as an ideal of Cen(ϕ)/ Cen0(ϕ). The use of lemma 3.7 gives

(Cen(ϕ)/ Cen0(ϕ))/K ∼= (N (X)op/N0(X))/K
∼= N (X)op/K(X)
∼= U0(X)op.

It follows that fi = 0 is an identity of (Cen(ϕ)/ Cen0(ϕ))/K. Thus, fi(v1, . . . , vr) ∈
K for all v1, . . . , vr ∈ Cen(ϕ)/ Cen0(ϕ), and so

f1(v1, . . . , vr)f2(v1, . . . , vr) · · · fn−1(v1, . . . , vr) ∈ Kn−1.
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Since zn−1Mm(R[z]) ⊆ N0(X) (see lemma 3.1) implies that Kn−1 = {0}, the proof
is complete.

4. The zero-level centralizer of an arbitrary endomorphism

Theorem 4.1. Let ϕ ∈ EndR(M) be an R-endomorphism of a finitely generated
semi-simple left R-module RM . Then there exist R-submodules W1, W2 and V of
M such that W = W1 ⊕ W2 and M = V ⊕ W are direct sums, ker(ϕ) ⊆ W ,
ϕ(W ) = W2, ϕ(V ) = V , dimR(W1) = dimR(ker(ϕ)), (ϕ � W ) ∈ EndR(W ) is
nilpotent and, for the zero-level centralizer of ϕ, we have Cen0(ϕ) ∼= T , where

T = {θ ∈ EndR(W ) | θ(W1) ⊆ ker(ϕ) and θ(W2) = {0}} = Cen0(ϕ � W )

is a left ideal of

End∗
R(W ) = {α ∈ EndR(W ) | α(ker(ϕ)) ⊆ ker(ϕ)}

and a right ideal of

End∗∗
R (W ) = {α ∈ EndR(W ) | α(W1 + ker(ϕ)) ⊆ W1 + ker(ϕ) and α(W2) ⊆ W2}.

Proof. The Fitting lemma ensures the existence of an integer t � 1 such that
Im(ϕt) ⊕ ker(ϕt) = M is a direct sum, where the (left) R-submodules

V = Im(ϕt) = Im(ϕt+1) = · · · and W = ker(ϕt) = ker(ϕt+1) = · · ·

of RM are uniquely determined by ϕ. Clearly, ϕ(V ) = V and ϕ(W ) ⊆ W and the
restricted map (ϕ � W ) ∈ EndR(W ) is nilpotent of index q � 1, where ker(ϕq−1) �=
ker(ϕq) = W . Since RW is also finitely generated and semi-simple, theorem 2.1
provides a nilpotent Jordan normal base X = {xγ,i | γ ∈ Γ, 1 � i � kγ} of RW
with respect to ϕ � W (we have xγ,kγ+1 = 0 and q = max{kγ | γ ∈ Γ}). Now
W1 ⊕ W2 = W is a direct sum, where

W1 =
⊕
γ∈Γ

Rxγ,1 and W2 =
⊕

γ∈Γ,1�i�kγ

Rxγ,i+1.

Now we have ker(ϕ) ⊆ ker(ϕt) = W and ker(ϕ) = ker(ϕ � W ) =
⊕

γ∈Γ Rxγ,kγ
by

theorem 2.2. It follows that

dimR(W1) = |Γ | = dimR(ker(ϕ)).

The definition of the nilpotent Jordan normal base ensures that ϕ(W ) = W2.
If θ ∈ T , then

θ(ker(ϕ)) ⊆ θ(W1 ⊕ W2) = θ(W1) + θ(W2) ⊆ ker(ϕ)

implies that T is a left ideal of End∗
R(W ) and a right ideal of End∗∗

R (W ). Clearly,
T = Cen0(ϕ � W ) is a consequence of ϕ(W ) = W2 and the fact that θ(W ) ⊆ ker(ϕ)
for all θ ∈ T .

If α ∈ Cen0(ϕ), then α ◦ ϕ = 0 implies that α(V ) = {0} and α(xγ,i+1) =
α(ϕ(xγ,i)) = 0 for 1 � i � kγ − 1. We also have ϕ ◦ α = 0, whence ϕ(α(xγ,1)) = 0
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and α(xγ,1) ∈ ker(ϕ) follow. Thus α(W2) = {0}, α(W1) ⊆ ker(ϕ) and the assign-
ment α �→ α � W obviously defines a Cen0(ϕ) → T ring homomorphism.

If α, β ∈ Cen0(ϕ) and α � W = β � W , then α(V ) = β(V ) = {0} and V ⊕W = M
ensure that α = β proving the injectivity of the above map.

If θ ∈ T and πW : V ⊕W → W is the natural projection, then θ ◦ πW ∈ Cen0(ϕ).
Indeed, ϕ ◦ θ ◦ πW = 0 is a consequence of θ(W ) ⊆ ker(ϕ) and θ ◦ πW ◦ ϕ = 0 is
a consequence of ϕ(W ) = W2 and θ(W2) = {0}. Hence, the surjectivity of our
assignment follows from θ ◦ πW � W = θ.

Corollary 4.2. Let A ∈ Mn(F ) be an n × n matrix over a field F . Then the
F -dimension of the zero-level centralizer of A in Mn(F ) is

dimF Cen0(A) = [dimF (ker(A))]2.

Proof. Now A ∈ EndF (Fn) and theorem 4.1 ensures that Cen0(A) ∼= T , where

T = {θ ∈ EndF (W ) | θ(W1) ⊆ ker(A) and θ(W2) = {0}}.

Our claim follows from the observation that the elements of HomF (W1, ker(A)) and
T can be naturally identified and dimF (W1) = dimF (ker(A)).

Remark 4.3. Theorem 4.1 shows that the determination of the zero-level central-
izer can be reduced to the nilpotent case. This reduction depends on the use of the
Fitting lemma.

Lemma 4.4. Let ϕ, σ ∈ EndR(M) be R-endomorphisms of a finitely generated semi-
simple left R-module RM such that Cen0(ϕ) ⊆ Cen0(σ). Then ker(ϕ) ⊆ ker(σ) and
Im(σ) ⊆ Im(ϕ).

Proof. We use the proof of theorem 4.1. If γ ∈ Γ and πγ ∈ EndR(M) denotes the
natural

M = V ⊕ W = V ⊕
( ⊕

δ∈Γ,1�i�kδ

Rxδ,i

)
→ Rxγ,kγ

projection, then πγ ◦ ϕkγ−1 ∈ Cen0(ϕ). It follows that πγ ◦ ϕkγ−1 ∈ Cen0(σ). Thus,
we obtain that

πγ ◦ ϕkγ−1 ◦ σ = σ ◦ πγ ◦ ϕkγ−1 = 0.

Since
σ(xγ,kγ ) = σ(πγ(ϕkγ−1(xγ,k1))) = 0,

we have xγ,kγ ∈ ker(σ) for all γ ∈ Γ . Thus,

ker(ϕ) = ker(ϕ � W ) =
⊕
γ∈Γ

Rxγ,kγ ⊆ ker(σ).

The containment Im(σ) ⊆ ker(πγ ◦ ϕkγ−1) is a consequence of πγ ◦ ϕkγ−1 ◦ σ = 0,
whence we obtain that

Im(σ) ⊆ ∩γ∈Γ ker(πγ ◦ ϕkγ−1).
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It is straightforward to see that ker(πγ ◦ ϕkγ−1) = V ⊕ W (γ) and⋂
γ∈Γ

(V ⊕ W (γ)) = V ⊕ W2 = ϕ(V ) + ϕ(W ) = ϕ(V ⊕ W ) = Im(ϕ),

where
W (γ) =

⊕
δ∈Γ,1�i�kδ,(δ,i) �=(γ,1)

Rxδ,i.

Theorem 4.5. Let ϕ, σ ∈ EndR(M) be R-endomorphisms of a finitely generated
semi-simple left R-module RM . Then the following are equivalent:

(i) Cen0(ϕ) ⊆ Cen0(σ);

(ii) ker(ϕ) ⊆ ker(σ) and Im(σ) ⊆ Im(ϕ).

Proof. In view of lemma 4.4, it is sufficient to prove (i) =⇒ (ii). For an endomor-
phism τ ∈ Cen0(ϕ), we have τ ◦ ϕ = ϕ ◦ τ = 0, whence

Im(σ) ⊆ Im(ϕ) ⊆ ker(τ) and Im(τ) ⊆ ker(ϕ) ⊆ ker(σ)

follow. Thus, we obtain that τ ◦ σ = σ ◦ τ = 0. In consequence, we have τ ∈ Cen0(σ),
and Cen0(ϕ) ⊆ Cen0(σ) follows.

For a matrix A ∈ Mn(F ), let AT denote the transpose of A.

Theorem 4.6. If A, B ∈ Mn(F ) are n × n matrices over a field F , then the fol-
lowing are equivalent:

(i) Cen0(A) ⊆ Cen0(B);

(ii) ker(A) ⊆ ker(B) and ker(AT) ⊆ ker(BT);

(iii) Im(B) ⊆ Im(A) and Im(BT) ⊆ Im(AT).

Proof. (i) =⇒ (ii) and (iii). For a matrix C ∈ Cen0(AT), we have CAT = ATC = 0
and CT ∈ Cen0(A) is a consequence of

ACT = (AT)TCT = (CAT)T = 0 = (ATC)T = CT(AT)T = CTA.

Thus, CT ∈ Cen0(B), and a similar argument gives that C = (CT)T ∈ Cen0(BT). It
follows that Cen0(AT) ⊆ Cen0(BT). The application of lemma 4.4 for the matrices
A, B, AT, BT ∈ EndF (Fn) gives

ker(A) ⊆ ker(B), Im(B) ⊆ Im(A), ker(AT) ⊆ ker(BT), Im(BT) ⊆ Im(AT).

(ii) =⇒ (i). For a matrix C ∈ Cen0(A), the containment Im(C) ⊆ ker(A) is a conse-
quence of AC = 0 and Im(CT) ⊆ ker(AT) is a consequence of ATCT = (CA)T = 0.
Now Im(C) ⊆ ker(B) implies that BC = 0 and Im(CT) ⊆ ker(BT) implies that
CB = (BTCT)T = 0. Thus, C ∈ Cen0(B) and Cen0(A) ⊆ Cen0(B) follows.

(iii) =⇒ (i). For a matrix C ∈ Cen0(A), the containment Im(A) ⊆ ker(C) is a conse-
quence of CA = 0, and Im(AT) ⊆ ker(CT) is a consequence of CTAT = (AC)T = 0.
Now Im(B) ⊆ ker(C) implies that CB = 0 and Im(BT) ⊆ ker(CT) implies that
BC = (CTBT)T = 0. Thus, C ∈ Cen0(B) and Cen0(A) ⊆ Cen0(B) follows.
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