
Linear Algebra and its Applications 698 (2024) 73–93
Contents lists available at ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

On the maximum dimensions of subalgebras of 
Mn(K) satisfying two related identities

Paweł Matraś a, Leon van Wyk b, Michał Ziembowski a,∗

a Faculty of Mathematics and Information Science, Warsaw University of 
Technology, 00-661 Warsaw, Poland
b Department of Mathematical Sciences, Stellenbosch University, Private Bag X1, 
Matieland 7602, Stellenbosch, South Africa

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 April 2024
Received in revised form 3 June 2024
Accepted 4 June 2024
Available online 7 June 2024
Submitted by M. Brešar

MSC:
primary 16S50, 16R40, 16U80

Keywords:
Lie nilpotent
Lie solvable
Polynomial identity
Commutative subalgebra
Dimension

For an arbitrary q ≥ 2, we find an upper bound for the 
dimension of a subalgebra of the full matrix algebra Mn(K)
over an arbitrary field K satisfying the identity

[
[x1, y1], z1

]
·
[
[x2, y2], z2

]
· · · · ·

[
[xq, yq ], zq

]
= 0,

and we show that this upper bound is sharp by presenting an 
example in block triangular form of a subalgebra of Mn(K)
with dimension equal to the obtained upper bound. We apply 
this result to Lie solvable algebras of index 2, i.e., algebras 
satisfying the identity

[
[x1, y1], [x2, y2]

]
= 0. To be precise, 

for n ≤ 4, we find the sharp upper bound for the dimension 
of a Lie solvable subalgebra of Mn(K) of index 2, and for 
n > 4, we obtain the relatively tight (at least for small values 
of n > 4) interval

[
2 +

⌊
3n2

8

⌋
, 2 +

⌊
5n2

12

⌋ ]
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for the maximum dimension of a Lie solvable subalgebra of 
Mn(K) of index 2, the exact value of which is not known.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC license (http://
creativecommons .org /licenses /by -nc /4 .0/).

1. Introduction

Throughout the paper, all algebras are assumed to be associative, unital, and over a 
field K. By a subalgebra of the full n ×n matrix algebra Mn(K) we mean a K-subalgebra 
of Mn(K).

The identity

[x1, y1] · [x2, y2] · · · · · [xq, yq] = 0 (1.1)

features prominently in numerous papers, e.g., [1], [2], [4–7], [11] and [12].
Mal’tsev proved in [4] that all the polynomial identities of the upper triangular q × q

matrix algebra over K, denoted by Uq(K), are consequences of the identity in (1.1). 
See [5] for an explicit form of a finite set of generators of an ideal of identities of the 
algebra U∗

q(R) over a commutative integral domain R, with U∗
q(R) denoting the R-

subalgebra of Uq(R) comprising all the matrices in Uq(R) with constant main diagonal.
If, in the context of some class of subalgebras of a finite dimensional algebra, we say 

that an algebra A has maximum dimension, then we mean that A has maximum possible 
dimension in the considered class.

The maximum dimension of a subalgebra of Mn(K) satisfying the identity in (1.1), 
found by Domokos in [2] to be

max
n1+n2+···+nq=n

{
q + n2

2 −
q∑

i=1

(
n2
i

2 −
⌊
n2
i

4

⌋)}
, (1.2)

was refined in [11], where an explicit q-tuple (n1, n2, . . . , nq), realizing the above max-
imum, was exhibited. (In (1.2), every ni, i = 1, 2, . . . , q, is a non-negative integer, and 
� � denotes the integer floor function.) In particular, the sharp upper bound (see, for 
example, [11, Theorem 14 and Proposition 16]) for the dimension of a subalgebra of 
Mn(K) satisfying the identity [x1, y1] · [x2, y2] = 0 is

2 +
⌊

3n2

8

⌋
. (1.3)

Recently, in [9], an identity similar to the one in (1.1), namely the identity

[
[x1, y1], z1

]
·
[
[x2, y2], z2

]
· · · · ·

[
[xq, yq], zq

]
= 0, (1.4)
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which is a typical identity of the upper triangular q×q matrix ring Uq(R), with R a ring 
satisfying the identity

[
[x, y], z

]
= 0 (i.e., Lie nilpotency of index 2), was studied, and 

a generalization of the Cayley-Hamilton Theorem was obtained for an n × n matrix A
over a unital ring R satisfying the identity in (1.4), namely the “power” Cayley-Hamilton 
identity

(
Inλ

(2)
0 + Aλ

(2)
1 + · · · + An2−1λ

(2)
n2−1 + An2

λ
(2)
n2

)q
= 0

with certain right coefficients

λ
(2)
i ∈ R, 0 ≤ i ≤ n2 − 1, and λ

(2)
n2 = n

{
(n− 1)!

}1+n
.

Definition 1.1. If an algebra A satisfies the identity in (1.1) (respectively, (1.4)) for some 
positive integer q, then we say that A is Dq (respectively, LDq).

In [6], the structure, conjugation and isomorphism problems of maximal Dq subalge-
bras of Mn(K) is studied, in which it is shown that a maximal Dq subalgebra A of Mn(K)
is conjugated with a block triangular subalgebra of Mn(K) with maximal commutative 
diagonal blocks. By analysis of conjugations, the sizes of the obtained diagonal blocks are 
uniquely determined. The isomorphism problem in a certain class of maximal Dq subal-
gebras of Mn(K) which contain all Dq subalgebras of Mn(K) with maximum dimension 
is also studied in [6].

Guided by the typical algebras constructed in [2] and [8] to find the maximum di-
mension of a Dq subalgebra of Mn(K) and the maximum dimension of a Lie nilpotent 
subalgebra of Mn(K), respectively, and inspired by typical examples of LDq subalgebras 
of Mn(K) in Section 5 of the present paper, we prove in one of the main results of the 
present paper, partially using the structure results obtained in [6], that the maximum 
dimension of a subalgebra of Mn(K) satisfying the identity in (1.4) is

max
n1+n2+···+nq=n

{
q + n2

2 −
q∑

i=1

(
n2
i

2 −
⌊
n2
i

3

⌋)}
,

where the ni’s, for i = 1, 2, . . . , q, are non-negative integers. Indeed, the mentioned 
concrete examples serve to showing that the upper bound in (1.4) is sharp.

We also provide another motivation for studying LDq algebras. To this end, recall that 
the Lie central series and the Lie derived series of an algebra A are defined inductively 
as follows:

C0(A) = A, Cq+1(A) = [Cq(A),A] (Lie central series)

and

D0(A) = A, Dq+1(A) = [Dq(A),Dq(A)] (Lie derived series).
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Definition 1.2. An algebra A is called Lie nilpotent (respectively, Lie solvable) of index 
q if Cq(A) = 0 (respectively, Dq(A) = 0), or, for short, A is Lnq (respectively, Lsq).

In [8], the authors determined the maximum dimension of a Lie nilpotent subalgebra 
of Mn(K) of any (fixed) index, and they suggested a study for finding the maximum 
dimension of a Lie solvable subalgebra of Mn(K) of any (fixed) index.

Towards an answer to finding the latter maximum dimension, it was shown in [12, 
Theorem 4] that if a structural R-subalgebra A of Un(R), with R any commutative unital 
ring, is Lsq+1 (for some q ≥ 1), then A is D2q . However, the result is not true in general 
because of the construction in [7, Corollary 2.2] of an R-subalgebra of U9(R), namely the 
algebra U∗

3
(
U∗

3(R)
)
, which is Ls2, but not D2. Of course, U∗

3
(
U∗

3(R)
)

is not a structural 
R-subalgebra of U9(R). For the ease of the reader, we recall (see, for example, [12]) that 
a structural R-subalgebra of the full n × n matrix algebra Mn(R), R any commutative 
unital ring, comprises all matrices having zero in certain prescribed positions and any 
elements of R in the other positions. To be more precise, for a reflexive and transitive 
binary relation θ on the set {1, 2, ..., n}, the structural R-subalgebra Mn(θ, R) of Mn(R)
is defined as follows:

Mn(θ,R) = {A ∈ Mn(R) | Ai,j = 0 if (i, j) /∈ θ}.

We will prove that every Ls2 algebra is LD2, and that

2 +
⌊

5n2

12

⌋
(1.5)

is a sharp upper bound for the dimension of an LD2 subalgebra of Mn(K). As an ap-
plication, keeping in mind that every D2 algebra is Ls2, we conclude, in conjunction 
with the mentioned (see (1.3)) sharp upper bound for the dimension of a D2 subalgebra 
of Mn(K), that if A is an Ls2 subalgebra of Mn(K) with maximum dimension, then

2 +
⌊

3n2

8

⌋
≤ dimK A ≤ 2 +

⌊
5n2

12

⌋
. (1.6)

Since 2 +
⌊

3n2

8

⌋
= 2 +

⌊
5n2

12

⌋
for n = 2, 3, 4, it means that, for these values of n, the 

maximum dimension of an Ls2 subalgebra of Mn(K) in coincides with the maximum 
dimension of an LD2 subalgebra of Mn(K) in (1.5) and the maximum dimension of a D2
subalgebra of Mn(K) in (1.3). However, the question of whether the inequalities in (1.6)
in general (i.e., for n > 4) are strict, remains open. Nevertheless, the interval

[
2 +
⌊

3n2

8

⌋
, 2 +

⌊
5n2

12

⌋]
(1.7)

is relatively tight for small values of n > 4.
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The paper is laid out as follows. Firstly, in Section 2, we prove that every Lie solvable 
algebra of index 2 is LD2, and we show that the converse does not hold. Further analysis 
shows that every LD2q algebra is Lsq+2. In Section 3, we determine an upper bound 
for the dimension of an LDq subalgebra of Mn(K). Next, in Section 4, we present an 
equivalent formula for the upper bound obtained in Section 3, which enables us, on the 
one hand, to find the interval in (1.7) for the maximum dimension of a Lie solvable 
subalgebra of Mn(K) of index 2, and on the other hand, in Section 5, to show that 
the obtained upper bound for the dimension of an LDq subalgebra of Mn(K) is sharp 
by exhibiting an example of an LDq subalgebra of Mn(K) with dimension equal to the 
obtained upper bound.

2. Ls2 algebras are LD2

First, let us again recall the example of an Ls2 subalgebra of M9(K) in [7, Corollary 2.2]
(see also [11, Example 3] and the remarks following it) which is not D2. Therefore, it 
justifies that we look for some modification, which can possibly be satisfied by Lie solvable 
algebras of index 2.

Indeed, in the first theorem in this section we will show that every Ls2 algebra is LD2. 
We show that the converse is not true by exhibiting an example of an LD2 subalgebra 
of M6(K) which is not Ls2.

We will also prove that every LD2q algebra is Lsq+2, which implies that every LD2
algebra is Ls3, but interestingly, the mentioned subalgebra of M6(K) shows that the 
index of Lie solvability of 3 in the latter implication cannot be lowered to 2.

We found inspiration for the proof of the following theorem in the self-contained proof 
in [10, Theorem 2.2] of a classical result of Jennings (see [3]).

Theorem 2.1. If A is an Ls2 algebra, then A is LD2.

Proof. We use the identity

[x, yz] = [x, y]z + y[x, z]

several times to get

0 =
[
[x1, y1], [z2, z1r]

]
=
[
[x1, y1], [z2, z1]r + z1[z2, r]

]
=
[
[x1, y1], [z2, z1]r

]
+
[
[x1, y1], z1[z2, r]

]
=
[
[x1, y1], [z2, z1]

]
r + [z2, z1] ·

[
[x1, y1], r

]
+
[
[x1, y1], z1

]
· [z2, r] + z1

[
[x1, y1], [z2, r]

]
.

Hence, Lie solvability of index 2 implies that

[z2, z1] ·
[
[x1, y1], r

]
+
[
[x1, y1], z1

]
· [z2, r] = 0.
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Taking r = [x2, y2], and again using the Lie solvability, we get 
[
[x1, y1], z1

]
·
[
z2, [x2, y2]

]
=

0. Therefore, 
[
[x1, y1], z1

]
·
[
[x2, y2], z2

]
= 0, and so A is LD2. �

It would be interesting to know if Lsq algebras for q > 2 also satisfy some similar 
identity. However, one of the possible natural generalizations of Theorem 2.1, namely 
that an Lsq algebra is LD2q−1 for every q ≥ 2, does not even hold for q = 3:

Example 2.2. We claim that the subalgebra

A =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

a b c d e

f g h i

a b c

f g

a

⎞
⎟⎟⎟⎟⎟⎠ : a, b, c, d, e, f, g, h, i ∈ K

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

of U5(K) is Ls3, but not LD4.
To show that A is Ls3, first note that we have the inclusion

[A,A] ⊆

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

0 b c d e

0 g h i

0 b c

0 g

0

⎞
⎟⎟⎟⎟⎟⎠ : b, c, d, e, g, h, i ∈ K

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

which implies that

[
[A,A], [A,A]

]
⊆

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

0 0 c d e

0 0 h i

0 0 c

0 0
0

⎞
⎟⎟⎟⎟⎟⎠ : c, d, e, h, i ∈ K

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Now it is easy to verify that matrices from 
[
[A, A], [A, A]

]
commute, and so A is Ls3.

To verify that A is not LD4, notice that in an LD4 algebra, every linear combination 
of elements in the form

[
[a1, b1], c1

]
·
[
[a2, b2], c2

]
·
[
[a3, b3], c3

]
·
[
[a4, b4], c4

]
, (2.1)

where ai, bi, ci ∈ A, for i ∈ {1, 2, 3, 4}, is zero. Consider the following four matrices in A:

x1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 0 0

1 0 0
0 0

1

⎞
⎟⎟⎟⎟⎟⎠ , y1 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 0 0

0 1 0
0 0

0

⎞
⎟⎟⎟⎟⎟⎠ ,
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x2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0

0 0 0
1 0

0

⎞
⎟⎟⎟⎟⎟⎠ , y2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 1 0 0

0 0 0
0 1

0

⎞
⎟⎟⎟⎟⎟⎠ .

Direct calculations show that [x1, y1] = y1, and so 
[
[x1, y1], −x1

]
= [y1, −x1] = y1. 

Similarly, we find that 
[
[x2, y2], −x2

]
= y2. Therefore,

(
[
[x1, y1],−x1

]
+
[
[x2, y2],−x2

]
)4 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0
0 1 0 0

0 1 0
0 1

0

⎞
⎟⎟⎟⎟⎟⎠

4

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1
0 0 0 0

0 0 0
0 0

0

⎞
⎟⎟⎟⎟⎟⎠ �= 0.

However, by expanding (
[
[x1, y1], −x1

]
+
[
[x2, y2], −x2

]
)4, we obtain a linear combination 

of products in form (2.1). Consequently, A is not LD4.

Proposition 2.3. If A is an LD2q algebra, then A is Lsq+2.

Proof. Start with q = 1, i.e., assume that A is an LD2 algebra. If we substitute z1 =
[s1, t1] and z2 = [s2, t2] in the identity 

[
[x1, y1], z1]

]
·
[
[x2, y2], z2

]
= 0, then we get

[
[x1, y1], [s1, t1]

]
·
[
[x2, y2], [s2, t2]

]
= 0.

It implies that, in the algebra A, the product of any elements in form 
[
[x, y], [z, w]

]
is 0. 

Hence, A satisfies the identity
[[

[x1, y1], [s1, t1]
]
,
[
[x2, y2], [s2, t2]

]]
= 0,

i.e., A is Ls3.
Similarly, if q > 1 and A is LD2q , then in (1.4) we take zi = [si, ti], for i = 1, 2, . . . , 2q. 

It follows that A satisfies the identity

[
[x1, y1], [s1, t1]

]
·
[
[x2, y2], [s2, t2]

]
· · · · ·

[
[x2q , y2q ], [s2q , t2q ]

]
= 0. (2.2)

Define B =
[
[A, A], [A, A]

]
:=
{[

[x, y], [z, w]
]

: x, y, z, w ∈ A
}
. By (2.2),

B2q

:= {b1 · b2 · · · · · b2q : bi ∈ B for i = 1, 2, . . . , 2q} = 0,

and so Dq(B) = 0, since every element of Dq(B) is a linear combination of elements of 
B2q . We get Dq+2(A) = 0, because B = D2(A). This completes the proof. �
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We conclude the section with an example of an LD2 subalgebra of M6(K) which is 
not Ls2.

Henceforth, we denote the n × n zero matrix by 0n, the n × n identity matrix by In
and the matrix unit of Mn(K) with 1 in position (i, j) and zeroes elsewhere by Eij .

Example 2.4. Consider the following subalgebra of M6(K) in block form:

A =
(

U∗
3(K) M3(K)
03 U∗

3(K)

)
.

By the construction from Section 5, A is an LD2 subalgebra of M6(K) with maximum 
dimension (equal to 17).

To show that A is not Ls2, consider the commutators

(
E13 03
03 03

)
=
[(

E12 03
03 03

)
,

(
E23 03
03 03

)]

and
(

03 E31
03 03

)
=
[(

I3 03
03 03

)
,

(
03 E31
03 03

)]
.

Then
[(

E13 03
03 03

)
,

(
03 E31
03 03

)]
=
(

03 E11
03 03

)
�= 06,

and so A is not Ls2.

3. The maximum dimension of an LDq subalgebra of Mn(K)

In this section, we find (in Theorem 3.3) an upper bound for the dimension of 
an LDq subalgebra of Mn(K). In Section 5, we will show that this upper bound is 
sharp.

We begin by proving LDq counterparts of two results in [6] about Dq subalge-
bras of Mn(K), namely [6, Proposition 2.4] and [6, Theorem 3.1].

Lemma 3.1. Let A be an LDq algebra. Then the ideal I of A generated by the set {[
[x, y], z

]
: x, y, z ∈ A

}
is nilpotent with Iq = 0. Moreover, if � is the nilpotency in-

dex of I, i.e., I� = 0 and I�−1 �= 0, and if, additionally, A is a subalgebra of Mn(K), 
then � ≤ n.
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Proof. To show that Iq = 0, it suffices to replace all instances of xi appearing in the 
commutator [xi, yi] in the proof of [6, Proposition 2.4] with [ui, vi], i = 1, 2, . . . , q, since 
it then follows from the equality

[
[u1, v1], y1

]
·
[
[u2, v2], y2

]
· · · · ·

[
[uq, vq], yq

]
= 0,

for all ui, vi, yi, i = 1, 2, . . . , q, that Iq = 0.
The second part of the lemma can also be proved by a slight modification of the 

arguments given in the last two paragraphs of the proof of [6, Proposition 2.4]. Since it 
is, in the present paper, convenient not to assume that an LDq algebra is not necessarily 
LDq−1, the index of nilpotency � of the ideal I might possibly be strictly lower than q. 
Replacing q with � in the mentioned arguments completes the proof. �

It follows from Lemma 3.1 that if q > n, then an LDq subalgebra of Mn(K) is 
already LDn. Note also that when q = 1, then we get an Ln2 subalgebra of Mn(K), 
the maximum dimension of which was already determined in [8]. So, if it is not stated 
otherwise, if we refer to an LDq subalgebra of Mn(K), then we assume that 1 < q ≤ n.

Proposition 3.2. Let A be an LDq subalgebra of Mn(K), and let � be the nilpotency index 
of the (nilpotent) ideal I generated by the set 

{[
[x, y], z

]
: x, y, z ∈ A

}
. Then there are 

positive integers n1, n2, . . . , n� satisfying 
∑�

i=1 ni = n, an invertible matrix X ∈ Mn(K)
and an LD� subalgebra B of Mn(K) in block triangular form

⎛
⎜⎜⎜⎜⎝

B11 B12 . . . B1�
B22 . . . B2�

. . .
...

B��

⎞
⎟⎟⎟⎟⎠ , (3.1)

such that X−1AX ⊆ B, where Bij = Mni×nj
(K) for all 1 ≤ i < j ≤ � and every Bii is 

an Ln2 subalgebra of Mni
(K).

Proof. We will point how to adjust the proof of [6, Theorem 3.1]. In the mentioned proof 
we deal with the (nilpotent of index q) ideal CA, generated by all the commutators of A. 
Instead, now take the ideal I in the statement of Proposition 3.2, which by Lemma 3.1 is 
nilpotent with nilpotency index � for some � ≤ q. The argument in the first paragraph of 
[6, Theorem 3.1] ensures that there exist an invertible matrix X ∈ Mn(K) and positive 
integers n1, n2, . . . , n� satisfying 

∑�
i=1 ni = n such that every matrix A′ in the algebra 

A′ = X−1AX can be written in the block triangular form⎛
⎜⎜⎜⎜⎝

A′
11 A′

12 . . . A′
1�

A′
22 . . . A′

2�
. . .

...
A′

⎞
⎟⎟⎟⎟⎠ , (3.2)
��
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where A′
ij ∈ Mni×nj

(K) for all i and j such that 1 ≤ i ≤ j ≤ � (and all other entries 
are zero). Moreover, in the case when A′ ∈ X−1IX, then every A′

ii in (3.2) above is the 
zero ni ×ni matrix, i = 1, 2, . . . , �. If we additionally notice that the ideal X−1IX of A′

is equal to the ideal I ′ generated by the set 
{[

[x′, y′], z
]
: x′, y′, z′ ∈ A′}, then

A′
ii =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
A′

ii ∈ Mni
(K) :

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A′
11 . . . A′

1i . . . A′
1�

. . .
...

. . .
...

A′
ii . . . A′

i�

. . .
...

A′
��

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ A′

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

is an Ln2 subalgebra of Mni
(K) for every i, i = 1, 2, . . . �.

Now, by defining B to be the block triangular subalgebra
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝
X ′

11 X ′
12 . . . X ′

1�
X ′

22 . . . X ′
2�

. . .
...

X ′
��

⎞
⎟⎟⎟⎟⎠ : X ′

ii ∈ A′
ii for i = 1, 2, . . . , � and X ′

ij ∈ Mni×nj
(K) if i < j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

of Mn(K), it follows that B is in the form in (3.1) and A′ = X−1AX ⊆ B. Moreover, it 
is straightforward to verify that B is LD�. �

Before we state and prove the main result of this section, we first recall results from 
[8] about the maximum dimension of a Lie nilpotent subalgebra of Mn(K) of a (fixed) 
index, say q.

For positive integers q and n, define the function

M(q, n) = max
{

1 + 1
2(n2 −

q∑
i=1

ki
2)
}
, (3.3)

where the maximum is taken over non-negative integers k1, k2, . . . , kq such that ∑q
i=1 ki = n.
The main result in [8] is the following: if A is a Lie nilpotent subalgebra of Mn(K) of 

index q, then dimK A ≤ M(q + 1, n), and the inequality is sharp.
For 1 ≤ q ≤ 7, there is a simplified formula for the function M(q, n) (see [8, Theo-

rem 32, page 4578]):

M(q, n) =
⌊
n2(q − 1)

2q

⌋
+ 1. (3.4)

It follows from the main result in [8] and from (3.4) that the maximum dimensions of 
Lie nilpotent subalgebras of Mn(K) of indexes 2 and 5 are
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M(3, n) =
⌊
n2

3

⌋
+ 1 and M(6, n) =

⌊
5n2

12

⌋
+ 1, (3.5)

respectively.
We are now in a position to state and prove the main result in this section, and we 

wish to highlight the fact that the construction in Section 5 shows that the inequality 
in (3.6) is sharp.

Theorem 3.3. Let A be an LDq subalgebra of Mn(K). Then

dimK A ≤ max
n1+n2+···+nq=n

{
q + n2

2 −
q∑

i=1

(
n2
i

2 −
⌊
n2
i

3

⌋)}
, (3.6)

where the ni’s are non-negative integers, i = 1, 2, . . . , q.

Proof. Since the dimensions of the algebra A and the conjugation X−1AX (for any 
invertible matrix X ∈ Mn(K)) are equal, it follows from Proposition 3.2 that dimK A ≤
dimK B, where B is an LD� subalgebra of Mn(K) as in (3.1). Recall from the definition 
of � in the statement of Lemma 3.1 that � ≤ q. We will show that

dimK B ≤ � + n2

2 −
�∑

i=1

(
n2
i

2 −
⌊
n2
i

3

⌋)
. (3.7)

As dimK A ≤ dimK B, it will provide the inequality in (3.6), since we can extend (if 
necessary) the �-tuple (n1, n2, . . . , n�) to the q-tuple (n1, n2, . . . , n�, 0, . . . , 0).

Remember that B is a block triangular subalgebra of Mn(K) such that the di-
agonal block Bii is an Ln2 subalgebra of Mni

(K) for every i, i = 1, 2, . . . , �, and 
Bij = Mni×nj

(K) if 1 ≤ i < j ≤ q. So, using the first part of (3.5), we obtain the 
inequality

dimK B =
∑

1≤i≤j≤�

dimK Bij =
�∑

i=1
dimK Bii +

∑
1≤i<j≤�

dimK Bij ≤

≤
�∑

i=1

(
1 +
⌊
n2
i

3

⌋)
+

∑
1≤i<j≤�

ninj . (3.8)

Since 
∑�

i=1 ni = n, it follows immediately that

∑
1≤i<j≤�

ninj = n2

2 −
�∑

i=1

n2
i

2 ,

and so we conclude from (3.8) that
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dimK B ≤
�∑

i=1

(
1 +
⌊
n2
i

3

⌋)
+ n2

2 −
�∑

i=1

n2
i

2 = � + n2

2 −
�∑

i=1

(
n2
i

2 −
⌊
n2
i

3

⌋)
,

which, by the remark immediately following (3.7), completes the proof. �
4. An equivalent formula for the maximum dimension of an LDq subalgebra of Mn(K)

Invoking the function M(q, n) in equation (3.3), we derive in this section a formula 
for the maximum dimension of an LDq subalgebra of Mn(K) which is equivalent to the 
formula proven in Theorem 3.3. From the proven result, we obtain an upper bound on 
the dimension of a Lie solvable subalgebra of Mn(K) of index 2.

The mentioned equivalent formula (derived in this section) for the maximum dimen-
sion of an LDq subalgebra of Mn(K) will be used in Section 5 in the construction of an 
LDq subalgebra of Mn(K) with this maximum dimension.

Proposition 4.1. Let q and n be positive integers such that q ≤ n. Then

max
n1+n2+···+nq=n

{
q + n2

2 −
q∑

i=1

(
n2
i

2 −
⌊
n2
i

3

⌋)}
= q − 1 + M(3q, n),

where the sum is taken over non-negative integers n1, n2, . . . , nq.

Proof. Firstly, choose a 3q-tuple of non-negative integers (�1, �2, . . . , �3q) such that

3q∑
i=1

�i = n and M(3q, n) = 1 + 1
2

(
n2 −

3q∑
i=1

�2i

)
.

Now define the q-tuple (n′
1, n

′
2, . . . , n

′
q), where n′

i = �3i−2 + �3i−1 + �3i for i = 1, 2, . . . , q. 
Applying the relevant part of formula (3.5), we have that

M(3, n′
i) = 1 +

⌊
n′
i
2

3

⌋
,

and so

1
2(n′

i
2 − �23i−2 − �23i−1 − �23i) ≤

⌊
n′
i
2

3

⌋
,

for each i, i = 1, 2, . . . , q. Therefore,

q − 1 + M(3q, n) = q + 1
2(n2 −

3q∑
�2i ) = q + n2

2 +
q∑ 1

2(−�23i−2 − �23i−1 − �23i)

i=1 i=1
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= q + n2

2 +
q∑

i=1

1
2(−n′

i
2 + n′

i
2 − �23i−2 − �23i−1 − �23i) ≤ q + n2

2 −
q∑

i=1

(
n′
i
2

2 −
⌊
n′
i
2

3

⌋)
.

Since

q∑
i=1

n′
i =

q∑
i=1

(�3i−2 + �3i−1 + �3i) =
3q∑
i=1

�i = n,

we conclude from the latter inequality that

q − 1 + M(3q, n) ≤ max
n1+n2+···+nq=n

{
q + n2

2 −
q∑

i=1

(
n2
i

2 −
⌊
n2
i

3

⌋)}
.

To complete the proof, we have to prove the opposite inequality. To this end, choose 
a q-tuple of non-negative integers (n′

1, n
′
2, . . . , n

′
q) such that 

∑q
i=1 n

′
i = n and

max
n1+n2+···+nq=n

{
q + n2

2 −
q∑

i=1

(
n2
i

2 −
⌊
n2
i

3

⌋)}
= q + n2

2 −
q∑

i=1

(
n′ 2
i

2 −
⌊
n′ 2
i

3

⌋)
. (4.1)

Again, form the relevant part of formula (3.5),

M(3, n′
i) = 1 +

⌊
n′ 2
i

3

⌋
,

for i = 1, 2, . . . , q. Hence, for each i, there exist non-negative integers �3i−2, �3i−1 and �3i
such that

�3i−2 + �3i−1 + �3i = n′
i and 1 + 1

2
(
n′ 2
i − �23i−2 − �23i−1 − �23i

)
= 1 +

⌊
n′ 2
i

3

⌋
,

which implies that

q + n2

2 −
q∑

i=1

(
n′ 2
i

2 −
⌊
n′ 2
i

3

⌋)
= q + n2

2 −
q∑

i=1

(
n′ 2
i

2 − 1
2(n′ 2

i − �23i−2 − �23i−1 − �23i)
)

= q + n2

2 −
3q∑
i=1

�2i
2 . (4.2)

It follows from the definition of numbers n′
i and �i that 

∑3q
i=1 �i = n. Finally, from equa-

tions (4.1) and (4.2), and by the definition of the function M(3q, n),

max
n1+n2+...nq=n

{
q + n2

2 −
q∑(

n2
i

2 −
⌊
n2
i

3

⌋)}
= q + n2

2 −
q∑(

n′ 2
i

2 −
⌊
n′ 2
i

3

⌋)
=

i=1 i=1
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= q + n2

2 −
3q∑
i=1

�2i
2 ≤ q − 1 + M(3q, n),

which completes the proof. �
Invoking the upper bound from Theorem 3.3, which by the construction given in 

Section 5 is sharp, we therefore immediately have the following result:

Corollary 4.2. Let A be an LDq subalgebra of Mn(K). Then

dimK A ≤ q − 1 + M(3q, n),

and the inequality is sharp.

In the case q = 2 in Corollary 4.2, we get the inequality dimK A ≤ 1 + M(6, n). 
Using Theorem 2.1 and the formula M(6, n) =

⌊
5n2

12

⌋
+1 in (3.5), we obtain the following 

upper bound for the dimension of a Lie solvable subalgebra of Mn(K) of index 2:

Corollary 4.3. Let A be an Ls2 subalgebra of Mn(K). Then

dimK A ≤ 2 +
⌊

5n2

12

⌋
.

In contrast to Corollary 4.2, we do not know if the upper bound in Corollary 4.3
is sharp. Since every D2 algebra is Ls2, we conclude, invoking the sharp upper bound 
2 +
⌊

3n2

8

⌋
(see, for example, [11, Proposition 16]) for the dimension of a D2 subalgebra 

of Mn(K), that:

Proposition 4.4. Let A be an Ls2 subalgebra of Mn(K) with maximum dimension. Then

2 +
⌊

3n2

8

⌋
≤ dimK A ≤ 2 +

⌊
5n2

12

⌋
.

Corollary 4.5. Let A be an Ls2 subalgebra of Mn(K) with maximum dimension. Then

dimK A =

⎧⎪⎨
⎪⎩

3 if n = 2,
5 if n = 3,
8 if n = 4.

5. Construction of an LDq subalgebra of Mn(K) with maximum dimension

In this section we will construct an example of an LDq subalgebra of Mn(K) with 
maximum dimension. The construction will be based on the example of a Lie nilpotent 
subalgebra of Mn(K) of (some fixed) index q (say) with maximum dimension presented 
in [8], which we recall here for the ease of the reader:
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Definition 5.1 (see [8], pages 4554-4556 and pages 4575-4577). Let k1, k2, . . . , kq+1 be a 
sequence of positive integers such that k1+k2+ · · ·+kq+1 = n. For each p ∈ {1, 2, . . . , q}, 
define the rectangular array

Bp :={
{(i, j) ∈ N ×N : 1 ≤ i ≤ k1 < j ≤ n} if p = 1,
{(i, j) ∈ N ×N : k1 + k2 + · · · + kp−1 < i ≤ k1 + k2 + · · · + kp < j ≤ n} if p > 1.

Put B :=
⋃q

p=1 Bp, and consider the subset

J :=

⎧⎨
⎩
∑

(i,j)∈B

bijEij : bij ∈ K for all (i, j) ∈ B

⎫⎬
⎭

of Mn(K). We define A = KIn + J and call it the algebra of n × n matrices over K of 
type (k1, k2, . . . , kq+1). As Jq+1 = 0, the algebra A is Lie nilpotent of index q (i.e., Lnq

(see Definition 1.2)).

Note that q+ 1 ≤ n in the above definition. Let r < q+ 1 be the non-negative integer 
such that r ≡ n mod (q + 1), and consider the positive integers

ki :=

⎧⎪⎪⎨
⎪⎪⎩

⌊
n

q+1

⌋
if 1 ≤ i ≤ q + 1 − r,

⌊
n

q+1

⌋
+ 1 if q + 2 − r ≤ i ≤ q + 1.

Then the algebra of n × n matrices of type (k1, k2, . . . , kq+1) is an Lnq subalgebra of 
Mn(K) with maximum dimension.

Example 5.2. The algebra

KI4 +

⎛
⎜⎜⎜⎝

0 K K K

0 K K

0 0
0

⎞
⎟⎟⎟⎠

of 4 ×4 matrices of type (1, 1, 2) is an Ln2 subalgebra of M4(K) with maximum dimension, 
and the algebra
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KI6 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 K K K K K

0 K K K K

0 0 K K

0 K K

0 0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

of 6 × 6 matrices of type (1, 1, 2, 2) is an Ln3 subalgebra of M6(K) with maximum 
dimension.

We will now construct an LDq subalgebra A of Mn(K) with maximum dimension 
(recall that we assume that q ≤ n (see the paragraph immediately following the proof 
of Lemma 3.1)) in the form

A = K

(
n1∑
i=1

Eii

)
+ K

(
n1+n2∑
i=n1+1

Eii

)
+ · · · + K

⎛
⎝ n∑

i=n1+···+nq−1+1
Eii

⎞
⎠+ J, (5.1)

where we will define positive integers ni such that 
∑q

i=1 ni = n and a subset J of the 
strictly upper triangular n ×n matrices with different formulas depending on two cases. 
In both these cases we will show that A is in block triangular form

⎛
⎜⎜⎜⎜⎝

A11 A12 . . . A1q
A22 . . . A2q

. . .
...

Aqq

⎞
⎟⎟⎟⎟⎠ , (5.2)

where Aii, i = 1, 2, . . . , q, is an Ln2 or a commutative subalgebra of Mni
(K), and 

Aij = Mni×nj
(K) for every i < j.

It is evident that such a block triangular subalgebra is LDq, and so, after showing 
that A is in form (5.2), we will only have to verify the dimension of A.

It follows from Theorem 3.3 and Proposition 4.1 that every LDq subalgebra of Mn(K)
has dimension less than or equal to q−1 +M(3q, n) (see formula (3.3)). The constructed 
subalgebra A of Mn(K) will have dimension precisely equal to q − 1 +M(3q, n), and so 
A is an LDq subalgebra of Mn(K) with maximum dimension.

Case 1. q ≤ n/3: Consider the 3q-tuple (�1, �2, . . . , �3q) defined by the formula

�i =

⎧⎪⎪⎨
⎪⎪⎩

⌊
n
3q

⌋
if 1 ≤ i ≤ 3q − r,

⌊
n
3q

⌋
+ 1 if 3q − r + 1 ≤ i ≤ 3q,
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where r < 3q is the non-negative integer such that n ≡ r (mod 3q). Let J be the subset 
of Mn(K) such that KIn + J is the algebra of n × n matrices of type (�1, �2, . . . , �3q)
(see Definition 5.1), and set

ni = �3i−2 + �3i−1 + �3i

for i = 1, 2, . . . , q. Note that

dimK A = q + dimK J = q − 1 + M(3q, n),

since KIn + J is an Ln3q−1 subalgebra of Mn(K) with maximum dimension equal 
to M(3q, n).

As already mentioned, the last equality and the block triangular form in (5.2) show 
that A is an LDq subalgebra of Mn(K) with maximum dimension.
Case 2. n/3 < q ≤ n: Then 

⌊
n
3q

⌋
= 0, and so we cannot directly adopt the construction 

from the previous case, since the algebra of n × n matrices of type
(⌊

n

3q

⌋
, . . . ,

⌊
n

3q

⌋
,

⌊
n

3q

⌋
+ 1, . . . ,

⌊
n

3q

⌋
+ 1
)

(5.3)

with at least one appearance of 
⌊

n
3q

⌋
in the 3q-tuple in (5.3) does not make sense. Instead, 

define

ni =

⎧⎪⎪⎨
⎪⎪⎩

⌊
n
q

⌋
if 1 ≤ i ≤ q − r,

⌊
n
q

⌋
+ 1 if q − r + 1 ≤ i ≤ q,

where r < q is the non-negative integer such that n ≡ r (mod q), and let J be the set of 
all the strictly upper triangular n × n matrices.

Note that 1 ≤
⌊
n
q

⌋
< 3, and so every ni satisfies the inequality 1 ≤ ni ≤ 3. Moreover

q∑
i=1

ni = (q − r)
⌊
n

q

⌋
+ r

(⌊
n

q

⌋
+ 1
)

= q

⌊
n

q

⌋
+ r = n.

It follows that A defined by formula (5.1) can be written in block form (5.2), with

Aii =

⎧⎪⎨
⎪⎩

K if ni = 1,
U∗

2(K) if ni = 2,
U∗

3(K) if ni = 3.

The algebras K and U∗
2(K) are commutative, and the algebra U∗

3(K) is Ln2. Next, we 
verify the dimension of A. The construction of A shows that
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dimK A = q + n2 − n

2 = q − 1 +
(

1 + n2 − n

2

)
.

Keeping in mind that n < 3q in the case we are dealing with now, we invoke [8, Corollary 
27]:

M(3q, n) = 1 + n2 − n

2 .

Therefore, dimK A = q − 1 + M(3q, n).
As in the previous case, the obtained dimension and the block triangular form ensure 

that A is an LDq subalgebra of Mn(K) with maximum dimension.
Note that if q = n, then A is the entire upper triangular matrix algebra Un(K).

Example 5.3. (i) The LD2 subalgebra A of M7(K) with maximum dimension described 
in Case 1 above is the following:

K ·
(

I3 03×4
04×3 04

)
+ K ·

(
03 03×4

04×3 I4

)
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 K K K K K K

0 K K K K K

0 K K K K

0 K K K

0 K K

0 0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that dimA = 22, which agrees with the formula 2 +
⌊

5·72

12

⌋
obtained right af-

ter Corollary 4.2.
We observe that the algebra A above is related to some Ln2 and Ln5 subalgebras of 

the relevant full matrix algebras. Firstly, notice that

KI7 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 K K K K K K

0 K K K K K

0 K K K K

0 K K K

0 K K

0 0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.4)

is the algebra of 7 × 7 matrices of type (1, 1, 1, 1, 1, 2), which is an Ln5 subalgebra of 
M7(K) with maximum dimension. The only difference between A and the algebra in 
(5.4) is the entries of matrices in the respective algebras on the main diagonal. Secondly, 
let
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A11 = KI3 +

⎛
⎜⎝ 0 K K

0 K

0

⎞
⎟⎠ = U∗

3(K) and A22 = KI4 +

⎛
⎜⎜⎜⎝

0 K K K

0 K K

0 0
0

⎞
⎟⎟⎟⎠ .

Then A11 is an Ln2 subalgebra of M3(K) with maximum dimension, and A22 is an 
Ln2 subalgebra of M4(K) with maximum dimension (see Example 5.2). These algebras 
appear in the following representation of A in block triangular form:

(
A11 M3×4(K)

A22

)
.

Note also that the LD2 subalgebra of M6(K) with maximum dimension constructed 
in Case 1 above is the algebra

A = K ·
(

I3 03
03 03

)
+ K ·

(
03 03
03 I3

)
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 K K K K K

0 K K K K

0 K K K

0 K K

0 K

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

which is precisely the block triangular subalgebra 

(
U∗

3(K) M3(K)
03 U∗

3(K)

)
of M6(K) in 

Example 2.4.

(ii) The LD3 subalgebra A of M7(K) with maximum dimension constructed in Case 2 
above (note that 7

3 < 3 < 7) yields the following:

A = K ·
(

I2 02×5
05×2 05

)
+ K ·

⎛
⎜⎝ 02 02 02×3

02 I2 02×3
03×2 03×2 03

⎞
⎟⎠+ K ·

(
04 04×3

03×4 I3

)
+

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 K K K K K K

0 K K K K K

0 K K K K

0 K K K

0 K K

0 K

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In this case we can write A in the block triangular form
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⎛
⎜⎝A11 M2(K) M2×3(K)

A22 M2×3(K)
A33

⎞
⎟⎠ ,

where

A11 = KI2 +
(

0 K

0

)
, A22 = KI2 +

(
0 K

0

)
, A33 = KI3 +

⎛
⎜⎝ 0 K K

0 K

0

⎞
⎟⎠ .

Note that A11 and A22 are commutative algebras.
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