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A subalgebra of the full matrix algebra Mn(K), K a field, 
satisfying the identity [x1, y1] [x2, y2] · · · [xq, yq ] = 0 is called 
a Dq subalgebra of Mn(K). In the paper we deal with the 
structure, conjugation and isomorphism problems of maximal 
Dq subalgebras of Mn(K).
We show that a maximal Dq subalgebra A of Mn(K) is 
conjugated with a block triangular subalgebra of Mn(K)
with maximal commutative diagonal blocks. By analysis of 
conjugations, the sizes of the obtained diagonal blocks are 
uniquely determined. It reduces the problem of conjugation of 
maximal Dq subalgebras of Mn(K) to the analogous problem 
in the class of commutative subalgebras of Mn(K). Further 
examining conjugations, in case A is contained in the upper 
triangular matrix algebra Un(K), we prove that A is already 
in a block triangular form.
We consider the isomorphism problem in a certain class of 
maximal Dq subalgebras of Mn(K) which contain all Dq

subalgebras of Mn(K) with maximum dimension. In case K is 
algebraically closed, we invoke Jacobson’s characterization of 
maximal commutative subalgebras of Mn(K) with maximum 
(K-)dimension to show that isomorphic subalgebras in this 
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class are already conjugated. To illustrate it, we invoke results 
from [19] and find all isomorphism (equivalently conjugation) 
classes of Dq subalgebras of Mn(K) with maximum possible 
dimension, in case K is algebraically closed.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC license (http://
creativecommons .org /licenses /by -nc /4 .0/).
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1. Motivation, background and results on Dq subalgebras of full matrix algebras

Throughout the sequel, all algebras are assumed to be associative unital and over a 
field K. By a subalgebra of the full n ×n matrix algebra Mn(K) we mean a K-subalgebra 
of Mn(K).

The main and direct motivation for the work presented here comes from [3], [19] and 
[20]. In [3], Domokos deals with the identity

[x1, y1] [x2, y2] · · · [xq, yq] = 0 (1.1)

in the context of subalgebras of Mn(K). Here, [x, y] denotes the commutator Lie product 
xy − yx (also called the Lie bracket in the literature), and q is a positive integer.

We note that Mn(K) with the commutator Lie product plays an exceptional role in the 
theory of finite-dimensional Lie algebras. The fundamental Ado-Iwasawa theorem (see 
[6]) asserts that every finite-dimensional Lie K-algebra can be embedded into Mn(K)
for some n ≥ 1.

Finite dimensional basic algebras over algebraically closed fields play an important 
role in the representation theory of Artinian algebras (see [1]). Such algebras satisfy 
(1.1) for some q. An Artinian ring R satisfies (1.1) for some q if and only if R/rad(R) is 
commutative, in which case the index of nilpotency of rad(R) is an upper bound for the 
least such q.

The identity in (1.1) has featured prominently in many other papers. See, for example, 
[2], [10], [11] and [12]. It was proved in [10] that all the polynomial identities of the upper 

triangular q×q matrix algebra Uq(K) over a field K of characteristic 0 are consequences of 
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only one identity, namely the identity in (1.1). The case of any characteristic was handled 
in [13] and [16], where it was shown that over an infinite field of any characteristic the 
identities of Uq(K) follow from (1.1). When the field K is finite, then the identities of 
Uq(K) coincide with T (K)q, where T (K) is the T-ideal of the identities of the field K. 
(It is well known that T (K) is generated by the identity xm−x, when |K| = m.) For an 
explicit form of a finite set of generators of an ideal of identities of the algebra U�

q(R)
over a commutative integral domain R, see [11]. Here U�

q(R) denotes the subalgebra of 
Uq(R) comprising all the matrices (in Uq(R)) with constant main diagonal.

The 9 × 9 matrix algebra U�
3
(
U�

3(R)
)

over any commutative ring R was exhibited in 
[12] as an example of an algebra satisfying the polynomial identity [[x1, y1], [x2, y2]] = 0
(Lie solvability index two), but none of the stronger identities [x1, y1][x2, y2] = 0 (the 
identity in (1.1), with q = 2) and [[x, y], z] = 0 (Lie nilpotency index two). A Cayley-
Hamilton trace identity was exhibited in [12] for 2 × 2 matrices with entries in a ring R
satisfying [x1, y1][x2, y2] = 0 and 1

2 ∈ R. See also [17].
The Cayley-Hamilton theorem and the corresponding trace identity play a crucial role 

(see [4] and [5]) in proving classical results about the polynomial and trace identities of 
Mn(K). In case char(K) = 0, Kemer’s pioneering work (see [8]) on the T-ideals of 
associative algebras revealed the significance of the identities satisfied by the n × n

matrices over the Grassmann (exterior) algebra generated by an infinite sequence of 
anticommutative indeterminates.

If an algebra satisfies (1.1), then we say that it is Dq, and if a subalgebra of Mn(K)
is Dq, then we say that it is a Dq subalgebra of Mn(K).

Considering D1, i.e., when q = 1, we get exactly commutativity, which in the context 
of subalgebras of Mn(K), features prominently in the cited literature (see, for example, 
[7] and [15]). In particular, a classical result by Schur (see [15]) states that the maximum 
K-dimension of a commutative subalgebra of Mn(K), with K an algebraically closed 

field, is 
⌊
n2

4

⌋
+1. Here � � denotes the integer floor function. Schur’s result was extended 

to an arbitrary field by Jacobson in [7]. We often write dimension instead of K-dimension.
If we say that an algebra A is maximal in an algebra E with respect to some conditions 

then we think about the inclusion relation. If, in the context of some class of subalgebras 
of a finite dimensional algebra E , we say that A has maximum dimension, then we mean 
that A has maximum possible dimension in the considered class.

The mentioned maximum dimension 
⌊
n2

4

⌋
+1 of a commutative subalgebra of Mn(K)

is obtained by considering the subalgebra

KIn +
(

0� M�(K)
0� 0�

)
(1.2)

of Mn(K) if n is even (with n = 2�, for some integer �), and by considering the subalgebra

KI +
(

0� M�×(�+1)(K)
)

(1.3)
n 0(�+1)×� 0�+1
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of Mn(K) if n is odd (with n = 2� + 1). Here, for example, 0� and 0(�+1)×� denote the 
� × � and (� + 1) × � zero matrices, respectively.

Henceforth, when we consider a Dq subalgebra A of Mn(K), then we always assume 
that q ≥ 2 and that A is not Dq−1 (and hence not D1).

The main result in [3] is the following:

Theorem 1.1. ([3, Theorem 1]) Let K be a field, and A a finite dimensional K-algebra 
satisfying (1.1). If M is a finitely generated faithful module over A, then

dimKM ≥
√

dimKA− q
1
2 − 1

4q
. (1.4)

In the proof of the above theorem, Domokos shows that, for the considered K-
algebra A,

dimKA ≤ 1
2(dimKM)2 + q −

q∑
i=1

(
n2
i

2 −
⌊
n2
i

4

⌋)
(1.5)

for some positive integers n1, . . . , nq such that n1 + · · · + nq = dimKM .
If one takes M = Kn, then the right hand side in (1.5) takes the form

1
2 (n1 + · · · + nq)2 + q −

q∑
i=1

(
n2
i

2 −
⌊
n2
i

4

⌋)
, (1.6)

which equals the expression in (1.13) below, implying that the inequality in (1.5) is sharp.
In [3], the ni’s are mentioned as any numbers which guarantee that

1
2(dimKM)2 + q −

q∑
i=1

(
n2
i

2 −
⌊
n2
i

4

⌋)

is a maximum. Evidently, such an q-tuple (n1, n2, . . . , nq) exists, but it is not exhibited 
in [3]. In this regard, we refer the reader to [19], where such an q-tuple is explicitly 
described and the maximum is exhibited precisely:

Theorem 1.2. ([19, Theorem 14]) Let 1 ≤ q ≤ n, and let n = q
⌊
n
q

⌋
+r, 0 ≤ r < q (with r

as in the Division Algorithm). Then the precise sharp upper bound for the dimension of 
a Dq subalgebra of Mn(K) is

1
2

(
n2 − (q − r)

⌊
n

q

⌋2

− r

(⌊
n

q

⌋
+ 1
)2
)

+ q + (q − r)

⎢⎢⎢⎢⎣
⌊
n
q

⌋2
4

⎥⎥⎥⎥⎦+ r

⎢⎢⎢⎢⎣
(⌊

n
q

⌋
+ 1
)2

4

⎥⎥⎥⎥⎦ ,

(1.7)
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which can be obtained by choosing q − r commutative subalgebras of M⌊
n
q

⌋(K) of 

dimension 

⌊⌊
n
q

⌋2
4

⌋
+ 1 and r commutative subalgebras of M⌊

n
q

⌋
+1(K) of dimension ⌊(⌊

n
q

⌋
+1
)2

4

⌋
+ 1 on the diagonal blocks for the algebra presented in (1.12) (see also [3, 

page 157]).

In this vein we also draw the reader’s attention to [18], where the maximum dimension 
of a Lie nilpotent subalgebra of Mn(K) of index m is obtained.

In general, if A is a subalgebra of Mn(K) and every matrix A ∈ A is seen in the block 
triangular form

A =

⎛
⎜⎜⎜⎜⎝

A11 A12 . . . A1q
A22 . . . A2q

. . .
...

Aqq

⎞
⎟⎟⎟⎟⎠ ,

where Aij ∈ Mni×nj
(K) for all i ≤ j, then considering the set

Aii =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
Aii ∈ Mni

(K) :

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 . . . A1i . . . A1q
. . .

...
. . .

...
Aii . . . Aiq

. . .
...

Aqq

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ A

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (1.8)

it is important to note that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n1 · · · 0n1×ni−1 0n1×ni
0n1×ni+1 · · · 0n1×nq

. . .
...

...
...

. . .
...

0ni−1 0ni−1×ni
0ni−1×ni+1 · · · 0ni−1×nq

Aii 0ni×ni+1 · · · 0ni×nq

0ni+1 · · · 0ni+1×nq

. . .
...

0nq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.9)

need not be a subset of A. If the set in (1.9) is indeed contained in A for every i, i =

1, 2, . . . , q, then we say that the algebras Aii are independent.
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For example, every matrix A in the subalgebra

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b c e f g t u v

0 a d 0 e h 0 t w

0 0 a 0 0 e 0 0 t

0 0 0 a b c p q r

0 0 0 0 a d 0 p s

0 0 0 0 0 a 0 0 p

0 0 0 0 0 0 a b c

0 0 0 0 0 0 0 a d

0 0 0 0 0 0 0 0 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: a, b, c, d, e, f, g, h, p, q, r, s, t, u, v, w ∈ K

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

of U9(K) in [12, Corollary 2.2] can be written in the block triangular form

A =

⎛
⎜⎝A11 A12 A13

A22 A23
A33

⎞
⎟⎠ ,

with Aij ∈ M3(K) for 1 ≤ i ≤ j ≤ q. In this example the three algebras A11, A22 and 
A33 are not independent.

We will consider block triangular subalgebras of Mn(K) where the sizes of the diagonal 
blocks play an important role:

Definition 1.3. For any positive integers n1, . . . , nq, with q ≥ 2, such that n1+· · ·+nq = n, 
consider a block triangular subalgebra

A =

⎛
⎜⎜⎜⎜⎝

A11 A12 . . . A1q
A22 . . . A2q

. . .
...

Aqq

⎞
⎟⎟⎟⎟⎠ (1.10)

of Mn(K) where

(1) Aii is a subalgebra of Mni
(K) for every i, i = 1, 2, . . . , q,

(2) Aij = Mni×nj
(K) for all i and j such that 1 ≤ i < j ≤ q, and

(3) all other entries are zero.

We call A a subalgebra of Mn(K) of type (n1, n2, . . . , nq). If Aii = Mni
(K) for all i, 
then we call A the full subalgebra of Mn(K) of type (n1, n2, . . . , nq).
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It is important to note that the notation in (1.10) means that for every i, i = 1, 2, . . . , q,
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n1 · · · 0n1×ni−1 0n1×ni
0n1×ni+1 · · · 0n1×nq

. . .
...

...
...

. . .
...

0ni−1 0ni−1×ni
0ni−1×ni+1 · · · 0ni−1×nq

Aii 0ni×ni+1 · · · 0ni×nq

0ni+1 · · · 0ni+1×nq

. . .
...

0nq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊆ A, (1.11)

and similarly, for all i and j such that 1 ≤ i < j ≤ q, the subset of Mn(K) having Aij

(= Mni×nj
(K)) in block (i, j), and zeroes elsewhere, is also contained in A.

Remark 1.4. In the case when all the algebras Aii, i = 1, 2, . . . , q, on the diagonal blocks 
of a subalgebra A of Mn(K) of type (n1, n2, . . . , nq) are commutative, then for any 
X, Y ∈ A, the commutator [X, Y ] is an element of

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n1 Mn1×n2(K) Mn1×n3(K) · · · Mn1×nq
(K)

0n2 Mn2×n3(K) · · · Mn2×nq
(K)

. . . . . .
...

. . . Mnq−1×nq
(K)

0nq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It follows that the product of any q such commutators is zero, and so A is Dq.

This remark enables us to define three classes of Dq subalgebras A of Mn(K) of 
type (n1, n2, . . . , nq) (for some q-tuple (n1, n2, . . . , nq)). We stress that, for each of these 
classes, all the subalgebras in the diagonal blocks are assumed to be commutative. Keep-
ing this in mind, and using “max-comm”, “max-dim” and “db’s” as abbreviations for 
“maximal commutative”, “maximum dimensional” and “diagonal blocks”, respectively, 
we now state:

Definition 1.5. Let A be a subalgebra of Mn(K) of type (n1, n2, . . . , nq) (see Defini-
tion 1.3), with every subalgebra Aii of Mni

(K) commutative, i = 1, 2, . . . , q. Then A is 

called a
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(1) Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with max-comm db’s if every Aii

is a maximal commutative subalgebra of Mni
(K), i = 1, 2, . . . , q;

(2) Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with max-dim db’s if every Aii is a 

commutative subalgebra of Mni
(K) with maximum dimension (equal to 

⌊
n2
i

4

⌋
+ 1), 

i = 1, 2, . . . , q;
(3) max-dim Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with max-dim db’s if 

every Aii is a commutative subalgebra of Mni
(K) with maximum dimension (equal 

to 
⌊
n2
i

4

⌋
+ 1), i = 1, 2, . . . , q, and A is a Dq subalgebra of Mn(K) of maximum 

dimension (as in (1.7)).

Note that, letting n1, . . . , nq as in Theorem 1.2, we obtain an algebra A as in Defini-
tion 1.5(3) by taking a subalgebra

A =

⎛
⎜⎜⎜⎜⎝

A11 A12 . . . A1q
A22 . . . A2q

. . .
...

Aqq

⎞
⎟⎟⎟⎟⎠ (1.12)

of Mn(K) constructed in [3] with

dimKA = q +
q∑

i=1

⌊
n2
i

4

⌋
+

∑
1≤i<j≤q

ninj . (1.13)

We draw the reader’s attention to the fact that a max-dim D2 subalgebra A of Mn(K)
of some type (n1, n2) with max-dim db’s such that A ⊆ Un(K) is called a typical D2
subalgebra of Un(K) in [20].

After preparatory results in Section 2, we prove in Section 3 and Section 4 that, up 
to conjugation, a subalgebra A of Mn(K) is a maximal Dq subalgebra of Mn(K) if and 
only if A is a Dq subalgebra of Mn(K) of (some) type (n1, n2, . . . , nq) with max-comm 
db’s (see Theorem 3.2 and Theorem 4.3). Continuing our analysis of conjugations, we 
show in Corollary 4.9 that in case A is a maximal Dq subalgebra of Mn(K) contained 
in Un(K), then A is a Dq subalgebra of Mn(K) of some type (n1, n2, . . . , nq) with max-
comm db’s. By examining in Theorem 4.10 when two Dq subalgebras of Mn(K) with 
max-comm db’s are conjugated, we prove that the uniqueness of the mentioned tuple 
(n1, n2, . . . , nq) and the pairwise uniqueness (up to conjugation) of the algebras in the 
corresponding q diagonal blocks are necessary and sufficient conditions.

Next, we will deal with the isomorphism problem of Dq subalgebras of Mn(K) with 
max-dim db’s. In Section 6, after giving an interpretation of these algebras in the light 
of results from Section 3 and Section 4, we describe necessary conditions for two Dq

subalgebras of Mn(K) with max-dim db’s to be isomorphic (see Theorem 6.2). Using 

results from Section 5, where we clarify the structure of commutative subalgebras of 
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matrix algebras over algebraically closed fields, as discussed in [7], we also provide in 
Theorem 6.6 sufficient conditions for two Dq subalgebras of Mn(K) with max-dim db’s to 
be isomorphic, in case the field K is algebraically closed. It turns out that such isomorphic 
subalgebras are already conjugated. In Section 7, we illustrate theorems obtained in the 
previous one section on Dq subalgebras of Mn(K) with maximum dimension. In order 
to do it, we recall results in [19] about the non-uniqueness of q-tuples (n1, n2, n2, . . . , nq)
which give rise to a max-dim Dq subalgebra of Mn(K).

2. Block form of subalgebras of Mn(K) with nilpotent ideal

In this section we will show (in Lemma 2.1) a block triangular form of subalgebras 
of the matrix algebra Mn(K) containing a nonzero nilpotent ideal (see also [14, The-
orem 1.5.1]). We provide a relatively detailed proof of Lemma 2.1 and illustrate it in 
Example 2.3.

Lemma 2.1 will be invoked in Section 3, where we will prove (in Theorem 3.2) that 
every maximal Dq subalgebra of Mn(K) is conjugated with a Dq subalgebra of Mn(K)
of type (n1, n2, . . . , nq) with max-comm db’s.

We conclude the section by showing (in Proposition 2.4) that every Dq algebra contains 
a nonzero nilpotent ideal in a natural way.

Lemma 2.1. Let A be a subalgebra of Mn(K), and let I be a nonzero nilpotent ideal of A
with nilpotency index q, i.e. Iq = 0 and Iq−1 �= 0. Then q ≤ n, and there exist natural 
numbers n1, n2, . . . , nq such that 

∑q
i=1 ni = n and an invertible matrix X ∈ Mn(K) such 

that X−1AX is a subalgebra of the full subalgebra of Mn(K) of type (n1, n2, . . . , nq). 
Moreover, the ideal X−1IX is contained in

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n1 Mn1×n2(K) Mn1×n3(K) · · · Mn1×nq
(K)

0n2 Mn2×n3(K) · · · Mn2×nq
(K)

. . . . . .
...

. . . Mnq−1×nq
(K)

0nq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. Denote the vector space Kn by V . For i = 1, 2, . . . , q, let ni = dimKIq−iV/

Iq−i+1V , with I0V := V .
By definition, n1 = dimKIq−1V/IqV = dimKIq−1V , since Iq = 0 (and hence 
IqV = 0). Next, Iq−1V is a K-subspace of Iq−2V , and so n1 + n2 = dimKIq−1V +
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dimKIq−2V/Iq−1V = dimKIq−2V . Inductively, assume that n1 + n2 + · · · + ni =
dimKIq−iV for some positive integer i < q. Since Iq−iV is a K-subspace of Iq−i−1V , we 
conclude that

n1 + n2 + · · · + ni+1 = dimKIq−iV + ni+1

= dimKIq−iV + dimKIq−i−1V/Iq−iV = dimKIq−i−1V.

Hence n1+n2+· · ·+ni = dimKIq−iV for i = 1, 2, . . . , q; in particular, n1+n2+· · ·+nq =
dimKV = dimKKn = n.

We have the following sequence of K-subspaces of V :

0 ⊆ Iq−1V ⊆ Iq−2V ⊆ · · · ⊆ IV ⊆ V. (2.1)

Using the assumption that Iq = 0 and Iq−1 �= 0, we will show that all the inclusions 
in (2.1) are proper. Suppose that Iq−1V = 0 or Iq−jV = Iq−j−1V for some j, 1 ≤ j ≤
q − 1. Then

0 = IqV = Ij(Iq−jV ) = Ij(Iq−j−1V ) = Iq−1V,

and so from V = Kn we conclude that Iq−1 = 0 (otherwise some matrix in Iq−1 would 
have a nonzero entry in some row, which would in turn imply that Iq−1V �= 0); a 
contradiction. This establishes the proper inclusions. Thus,

1 ≤ dimKIq−1V, 2 ≤ dimKIq−2V, · · · , q − 1 ≤ dimKIV, q ≤ dimKV = n.

Now, using the sequence of K-subspaces in (2.1), we define a basis B = (v1, v2, . . . , vn)
for the K-space V in the following way:

Start with a basis (v1, v2, . . . , vn1) for the K-space Iq−1V (keeping in mind that, by 
definition, dimKIq−1V = n1). Next, Iq−1V is a K-subspace of Iq−2V , and dimKIq−2V =
n1 + n2. So, take vectors vn1+1, vn1+2, . . . , vn1+n2 such that (v1, v2, . . . , vn1+n2) is a ba-
sis for Iq−2V . Continuing in this way, we construct a basis B = (v1, v2, . . . , vn) for 
the K-space V , where (v1, v2, . . . , vn1+n2+···+ni

) is a basis for the K-space Iq−iV, i =
1, 2, . . . , q − 1.

Now we take an arbitrary matrix Y ∈ A. Let ϕ : V → V be a linear map such that 
the (transformation) matrix of ϕ with respect to the standard basis E := (e1, e2, . . . , en)
for V is M(ϕ)EE = Y . (Note also that we have vectors v1, v2, . . . , vn written in terms of 
E). As I is an ideal of the algebra A, we have Y (Iq−1V ) ⊆ A(Iq−1V ) ⊆ Iq−1V . Since 
(v1, v2, . . . , vn1) is a basis for Iq−1V , for any i = 1, 2, . . . , n1 we can write

ϕ(vi) = Y vi = y1iv1 + y2iv2 + · · · + yn1,ivni
,

for some scalars yji ∈ K with 1 ≤ i, j ≤ n1. Similarly, Y (Iq−2V ) ⊆ A(Iq−2V ) ⊆ Iq−2V , 
and (v1, v2, . . . , vn1+n2) is a basis of the K-space Iq−2V , and so for j = n1 + 1, n1 +

2, . . . , n1 + n2 we can write



P. Matraś et al. / Journal of Algebra 657 (2024) 159–206 169
ϕ(vj) = Y vj = y1jv1 + y2jv2 + . . . + yn1+n2,jvn1+n2 ,

for some scalars ykj ∈ K with 1 ≤ k ≤ n1 +n2 (and n1 +1 ≤ j ≤ n1 +n2). Continuing in 
this way, we eventually simply have that Y V ⊆ V , and with (v1, v2, . . . , vn) being a basis 
for V , we can therefore, for l = n1 + n2 + · · ·+ nq−1 + 1, n1 + n2 + · · ·+ nq−1 + 2, . . . , n, 
write

ϕ(vl) = Y vl = y1lv1 + y2lv2 + . . . + ynlvn,

for some scalars yml, with 1 ≤ m ≤ n (and n1 + n2 + · · · + nq−1 + 1 ≤ l ≤ n). Hence, 
using the notation

N1 := n1 and Ni := n1 + · · · + ni, i = 2, . . . , q,

which implies that Nq = n, the matrix MB
B (ϕ) of the linear map ϕ with respect to the 

basis B is the following:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11 . . . y1,n1 y1,n1+1 . . . y1,N2 . . . y1,Nq−1+1 . . . y1,Nq

...
. . .

...
...

. . .
... . . .

...
. . .

...
yn1,1 . . . yn1,n1 yn1,n1+1 · · · yn1,N2 . . . yn1,Nq−1+1 . . . yn1,Nq

yn1+1,n1+1 · · · yn1+1,N2 . . . yn1+1,Nq−1+1 . . . yn1+1,Nq

...
. . .

... . . .
...

. . .
...

yN2,n1+1 . . . yN2,N2 . . . yN2,Nq−1+1 . . . yN2,Nq

. . .
...

...
...

yNq−1+1,Nq−1+1 . . . yNq−1+1,Nq

...
. . .

...
yNq ,Nq−1+1 . . . yNq ,Nq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consequently, MB
B (ϕ) is an element of the full subalgebra of Mn(K) of type 

(n1, n2, . . . , nq). From the change-of-basis formula

MB
B (ϕ) = M(id)BE ·M(ϕ)EE ·M(id)EB = M(id)BE · Y ·M(id)EB ,

where the change-of-basis matrix M(id)EB is the matrix with vector vj written in the 
j-th column, j = 1, 2, . . . , n, and M(id)BE = (M(id)EB)−1. Since Y was an arbitrary 
matrix of A, we have proved that the algebra X−1AX is in block triangular form, with 
X = M(id)EB .

In order to complete the proof, it remains to show that matrices from X−1IX have 
diagonal blocks only with zeros. Take an arbitrary matrix Z ∈ I. Let ψ : V → V be a 
linear map such that the (transformation) matrix of ψ with respect to the standard basis 
E for V is M(ψ)EE = Z. Since Iq = 0, it follows that Z(Iq−1V ) ⊆ I(Iq−1V ) = 0, and so, 
with (v1, v2, . . . , vn1) being a basis for Iq−1V , we have, for i = 1, 2, . . . , n1,

ψ(vi) = Zvi = 0.
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Next, Z(Iq−2V ) ⊆ I(Iq−2V ) = Iq−1V . Then for j = n1 + 1, n1 + 2, . . . , n1 + n2 (= N2)
we can write

ψ(vj) = Zvj = z1jv1 + z2jv2 + . . . + zn1,jvn1

for some scalars zkj ∈ K with 1 ≤ k ≤ n1 (and n1 + 1 ≤ j ≤ n1 + n2), because the ba-
sis (v1, v2, . . . , vn1) for Iq−1V was expanded to the basis (v1, . . . , vn1 , vn1+1, . . . , vn1+n2)
for Iq−2V . The pattern should now be clear from the arguments above, which leads us 
to concluding that the matrix MB

B (ψ) of the linear map ψ with respect to the basis B

is the following:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ... 0 z1,n1+1 ... z1,N2 z1,N2+1 ... z1,N3 ... z1,Nq−1+1 ... z1,Nq

...
. . .

...
...

. . .
...

...
. . .

... ...
...

. . .
...

0 ... 0 zn1,n1+1 ··· zn1,N2 zn1,N2+1 ··· zn1,N3 ... zn1,Nq−1+1 ... zn1,Nq

0 ··· 0 zn1+1,N2+1 ... zn1+1,N3 ... zn1+1,Nq−1+1 ... zn1+1,Nq

...
. . .

...
...

. . .
... ...

...
. . .

...
0 ... 0 zN2,N2+1 ... zN2,N3 ... zN2,Nq−1+1 ... zN2,Nq

. . . ···
...

...
...

. . . ···
...

...
...

. . . ···
...

...
...

zNq−2+1,Nq−1+1 ... zNq−2+1,Nq

...
. . .

...
zNq−1,Nq−1+1 ... zNq−1,Nq

0 ... 0
...

. . .
...

0 ... 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, MB
B (ψ) is in the strictly upper block triangular part of the full subalgebra of 

Mn(K) of type (n1, n2, . . . , nq). �

Remark 2.2. The numbers n1, n2, . . . , nq of Lemma 2.1, defined in the first line of the 
proof, are determined by algebra A and the dimensions of space V and subspaces IiV
for i = 1, 2, . . . , q − 1, where V = Kn.

Note that every finite dimensional K-algebra A can be identified with a subalgebra 
of Mn(K), for n ≤ dimKA. To do this we can use, for example, a regular representation. 
The Jacobson radical J(A) of a finite dimensional algebra A is nilpotent (see [9, Theorem 
4.12] for the broader class of Artinian rings), and so after such identification of A with 
a subalgebra of Mn(K) we can find an algebra in block triangular form (as in the above 
lemma) which is a conjugated of A.

In the following example we start with the finite dimensional algebra A =
M2(K[x]/(x2)). After identification with a subalgebra of matrices, the algebra A is 

conjugated with subalgebra of a block triangular matrices. We will describe the obtained 
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blocks and see some “dependence” between them in the sense of the definition below 
formula (1.9). By x we will denote the image of x ∈ K[x] in the natural homomorphism 
to the quotient algebra K[x]/(x2).

Example 2.3. Let A be the finite dimensional algebra M2(K[x]/(x2)). Since, for any 
natural number n, the Jacobson radical satisfies J(Mn(A)) = Mn(J(A)) (see [9, point 
(7), page 57]), we have J(A) = M2(J(K[x]/(x2)) = M2(Kx), which implies that J(A) is 
a nonzero ideal with (J(A))2 = 0. Using the identification of an arbitrary element a + bx

in K[x]/(x2) with the matrix 

(
a b

0 a

)
∈ M2(K) we will treat (the 8-dimensional) K-

algebra A as the subalgebra of M4(K) comprising all matrices of the form
⎛
⎜⎜⎜⎝

a11 b11 a12 b12
0 a11 0 a12
a21 b21 a22 b22
0 a21 0 a22

⎞
⎟⎟⎟⎠ , (2.2)

where aij , bij ∈ K for 1 ≤ i, j ≤ 2. With this identification, we have

J(A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

0 b11 0 b12
0 0 0 0
0 b21 0 b22
0 0 0 0

⎞
⎟⎟⎟⎠ : bij ∈ K

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (2.3)

Now we are ready to use Lemma 2.1. With 2 being the nilpotency index q of J(A), 
and with V = K4, we have J(A)V = span(e1, e3), and so, following the notation 
in Lemma 2.1, we have n1 = dimK J(A)V = 2 and n2 = dimK(J(A))0V/J(A)V =
dimK V/J(A)V = 2. By Lemma 2.1, there exists an invertible matrix X ∈ M4(K) such 
that X−1AX is a subalgebra of the full subalgebra of M4(K) of type (2, 2) which is (

M2(K) M2(K)
M2(K)

)
, and such that the ideal X−1J(A)X is contained in the strictly 

upper block triangular part 
(

02 M2(K)
02

)
.

In order to find such an X we follow the proof of Lemma 2.1. We start the construction 
of a basis B for V by first finding basis vectors for J(A)V . As J(A)V = span(e1, e3), 
we take (e1, e3) as a basis for J(A)V . As q = 2, the second step is the last step, and in 
it we expand the basis (e1, e3) to a basis for V , by using e2 and e4, i.e., we take B as 
(e1, e3, e2, e4). An arbitrary matrix

⎛
⎜⎜⎜⎝

a11 b11 a12 b12
0 a11 0 a12
a21 b21 a22 b22

⎞
⎟⎟⎟⎠
0 a21 0 a22
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from algebra A, treated as a linear map in the canonical basis (e1, e2, e3, e4), has

⎛
⎜⎜⎜⎝

a11 a12 b11 b12
a21 a22 b21 b22
0 0 a11 a12
0 0 a21 a22

⎞
⎟⎟⎟⎠

as transformation matrix with respect to the basis B. It is obtained by conjugation with 
the matrix

X =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎠

of vectors e1, e3, e2, e4 written in the first, second, third and fourth column, respectively. 

Consequently, every matrix A ∈ X−1AX is in the block form 

(
A11 A12

A11

)
, where A11

and A12 are any matrices from M2(K). Importantly, the two matrices in the diagonal 
blocks are equal (denoted here by A11). Since every matrix in J(A) has entries aij = 0

(see (2.2) and (2.3)), we have X−1J(A)X ⊆
(

02 M2(K)
02

)
.

Note that this example shows an interesting isomorphism, namely conjugation of the 
algebra M2(U∗

2(K)) with the algebra U∗
2(M2(K)).

For a Dq algebra A, we denote the ideal of A generated by the set {[x, y] : x, y ∈ A}
of commutators in A by CA.

Proposition 2.4. If A is a Dq algebra, then Cq
A = 0 and q is the nilpotency index of CA. 

If, in addition, A is a subalgebra of Mn(K), then q ≤ n.

Proof. In order to show that the ideal CA is nilpotent with Cq
A = 0, take an element 

x ∈ CA of the following form:

x = r1 · [x1, y1] · r2 · [x2, y2] · . . . · rq · [xq, yq] · rq+1.

Since Cq
A comprises (finite) sum of elements of this form, it suffices to show that x = 0.

For any a, b, r ∈ A we have the identity [a, rb] = [a, r]b + r[a, b], and so

r[a, b] = [a, rb] − [a, r]b.
Applying the last equality to x1, y1, r1, we have
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r1 · [x1, y1] · r2 · [x2, y2] . . . · rq · [xq, yq] · rq+1

= ([x1, r1y1] − [x1, r1]y1) · r2 · [x2, y2] · . . . · rq · [xq, yq] · rq+1

= [x1, r1y1] · r2 · [x2, y2] · . . . · rq · [xq, yq] · rq+1

− [x1, r1] · y1r2 · [x2, y2] · r3 · [x3, y3] · . . . · rq · [xq, yq] · rq+1.

Next we can write

[x1, r1y1] · r2 · [x2, y2] · r3 · [x3, y3] · r4 . . . · rq · [xq, yq] · rq+1

= [x1, r1y1] · ([x2, r2y2] − [x2, r2]y2) · r3 · [x3, y3] · r4 . . . · rq · [xq, yq] · rq+1

= [x1, r1y1][x2, r2y2] · r3 · [x3, y3] · r4 · [x4, y4] · . . . · rq · [xq, yq] · rq+1

− [x1, r1y1][x2, r2] · y2r3 · [x3, y3] · r4 · [x4, y4] · . . . · rq · [xq, yq] · rq+1

and

[x1, r1] · y1r2 · [x2, y2] · r3 · [x3, y3] · . . . · rq · [xq, yq] · rq+1

= [x1, r1]([x2, y1r2y2] − [x2, y1r2]y2) · r3 · [x3, y3] · . . . · rq · [xq, yq] · rq+1

= [x1, r1][x2, y1r2y2] · r3 · [x3, y3] · r4 · [x4, y4] · . . . · rq · [xq, yq] · rq+1

− [x1, r1][x2, y1r2] · y2r3 · [x3, y3] · r4 · [x4, y4] · . . . · rq · [xq, yq] · rq+1.

Continuing is this way, it is evident that x can be written as a sum of elements of the 
form

±([x′
1, y

′
1][x′

2, y
′
2] . . . [x′

q, y
′
q])r

for some x′
1, y

′
1, x

′
2, y

′
2, . . . , x

′
q, y

′
q, r ∈ A. Such elements are all equal to zero, because A

is a Dq algebra. Hence, Cq
A = 0.

Recall from the discussion preceding Theorem 1.1 that we always assume that q > 1
and that Dq algebra A is not a Dq−1 algebra. So q is the nilpotency index of CA.

If, in addition, A is a subalgebra of Mn(K), then it follows from Lemma 2.1 that 
q ≤ n. �

Obviously, Proposition 2.4 implies the following fact:

Corollary 2.5. For every positive integer n there are not Dq subalgebras of Mn(K) for 
every q > n.

3. Maximal Dq subalgebras of Mn(K) are conjugated with Dq subalgebras with 
max-comm db’s

In this section we will characterize, up to conjugation, maximal Dq subalgebras of 

Mn(K), in particular these with maximum dimension.
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We will show in Theorem 3.1 that every Dq subalgebra of Mn(K) is conjugated with a 
subalgebra of a full subalgebra of Mn(K) of type (n1, n2, . . . , nq), and it possesses some 
interesting additional properties.

Using this result we prove in Theorem 3.2 that every maximal Dq subalgebra of Mn(K)
is conjugated with a Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with max-comm 
db’s.

We then conclude in Corollary 3.4 that every Dq subalgebra of Mn(K) with maximum 
dimension is conjugated with max-dim Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq)
with max-dim db’s.

Theorem 3.1. Let A be a Dq subalgebra of Mn(K). Then there exist positive integers 
n1, n2, . . . , nq, such that 

∑q
i=1 ni = n and an invertible matrix X ∈ Mn(K), such that 

every matrix A′ in the algebra A′ = X−1AX is in block triangular form

⎛
⎜⎜⎜⎜⎝

A′
11 A′

12 . . . A′
1q

A′
22 . . . A′

2q
. . .

...
A′

qq

⎞
⎟⎟⎟⎟⎠ , (3.1)

where A′
ij ∈ Mni×nj

(K) for all i and j such that 1 ≤ i ≤ j ≤ q (and other entries 
are zero) and A′

ii, defined in (1.8), is a commutative subalgebra of Mni
(K) for every 

i, i = 1, 2 . . . , q.

Proof. By Proposition 2.4, Cq
A = 0, where CA is the ideal of A generated by all commu-

tators in A, and q is the nilpotency index of CA. Recall from the discussion preceding 
Theorem 1.1 that we always assume that q > 1. Thus, by Lemma 2.1, there exists an 
invertible matrix X ∈ Mn(K) such that every matrix A′ in the algebra A′ = X−1AX is 
in the block triangular form (3.1), and the ideal X−1CAX of the algebra A′ comprises 
zero matrices in the diagonal blocks.

It remains to show that, for i = 1, 2, . . . , q, the subalgebra A′
ii of Mni

(K) is com-
mutative. Firstly, we will say more about the structure of the ideal CA′ generated by 
all commutators [z, w], z, w ∈ A′. Since conjugation is an isomorphism of algebras, it 
follows readily that the ideal X−1CAX is equal to CA′ . Therefore

CA′ ⊆

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n1 Mn1×n2 (K) Mn1×n3 (K) ··· Mn1×nq (K)

0n2 Mn2×n3 (K) ··· Mn2×nq (K)

. . . . . .
...

. . . Mnq−1×nq (K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

0nq
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To complete the proof let Xii, Yii ∈ A′
ii. Then, by the definition, there are block 

triangular matrices X, Y ∈ A′ such that

X =

⎛
⎜⎜⎜⎜⎜⎝

X11 . . . X1i . . . X1q
. . .

...
. . .

...
Xii . . . Xiq

. . .
...

Xqq

⎞
⎟⎟⎟⎟⎟⎠ and Y =

⎛
⎜⎜⎜⎜⎜⎝

Y11 . . . Y1i . . . Y1q
. . .

...
. . .

...
Yii . . . Yiq

. . .
...

Yqq

⎞
⎟⎟⎟⎟⎟⎠ .

The commutator [X, Y ] has the matrix [Xii, Yii] in the i-th diagonal block. Since we 
showed in the preceding paragraph that the diagonal blocks of the ideal generated by 
all commutators of A′ are zero, we conclude that [Xii, Yii] = 0ni

, which completes the 
proof. �

Next we show that if, in addition, A is a maximal Dq subalgebra of Mn(K), then the 
obtained algebras A′

ii above are independent (see the definition below formula (1.9)). 
To be precise, we have the following characterization:

Theorem 3.2. Let A be a maximal Dq subalgebra of Mn(K). Then there exists an invert-
ible matrix X ∈ Mn(K) such that X−1AX is a Dq subalgebra of Mn(K) of some type 
(n1, n2, . . . , nq) with max-comm db’s.

Proof. By Theorem 3.1, there exists an invertible matrix X such that every matrix 
A′ ∈ A′ = X−1AX is in block triangular form

⎛
⎜⎜⎜⎜⎝

A′
11 A′

12 . . . A′
1q

A′
22 . . . A′

2q
. . .

...
A′

qq

⎞
⎟⎟⎟⎟⎠ ,

where A′
ij ∈ Mni×nj

(K) for 1 ≤ i ≤ j ≤ q and each A′
ii is a commutative subalgebra of 

Mni
(K).

Let B be the subalgebra of Mn(K) of type (n1, n2, . . . , nq) equal to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A′11 Mn1×n2 (K) Mn1×n3 (K) ··· Mn1×nq (K)

A′22 Mn2×n3 (K) ··· Mn2×nq (K)

. . . . . .
...

. . . Mnq−1×nq (K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A′
qq
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Note that by Remark 1.4 B is a Dq subalgebra of Mn(K). Since A is a maximal Dq

subalgebra of Mn(K), it follows that A′ = X−1AX is also a maximal Dq subalgebra 
of Mn(K). So from the inclusion A′ ⊆ B we obtain the equality A′ = B.

In order to complete the proof we will show that each Aii is a maximal commutative 
subalgebra of Mni

(K). Suppose, for the contrary, that, for some j ∈ {1, 2, . . . , q}, the 
diagonal block Ajj is properly contained in a commutative subalgebra Cjj of Mnj

(K). 
Then changing Ajj to Cjj produces a Dq subalgebra of Mn(K) properly containing A′, 
a contradiction. It completes the proof. �

Remark 3.3. Similar to Remark 2.2, the q-tuple (n1, n2, . . . , nq) obtained in the proof of 
Theorem 3.2 is determined by the dimensions of the vector space V and the subspaces 
Ci
AV for i = 1, 2, . . . , q, where V = Kn and CA is the ideal generated by all commutators 

of the maximal Dq subalgebra A of Mn(K).
We will show in Theorem 4.10 that two Dq subalgebras of types (n1, n2, . . . , nq) and 

(�1, �2, . . . , �q) with max-comm db’s are conjugated if and only if (n1, n2, . . . , nq) =
(�1, �2, . . . , �q) (i.e., the q-tuple is uniquely determined) and the diagonal blocks of the 
Dq algebras are pairwise conjugated.

In summary, with an arbitrary maximal Dq subalgebra A of Mn(K) we can associate 
exactly one tuple (n1, n2, . . . , nq) such that A is conjugated with a Dq subalgebra of 
Mn(K) of type (n1, n2, . . . , nq) with max-comm db’s.

If A is a Dq subalgebra of Mn(K) with maximum dimension, then by Theorem 3.2, 
A is conjugated with a Dq subalgebra A′ of Mn(K) of some type (n1, n2, . . . , nq) with 
max-comm db’s. As in the proof of Theorem 3.2, if one of the diagonal blocks A′

jj of 
A′ is not a commutative subalgebra of Mnj

(K) with maximum dimension, then we can 
change this block and obtain a Dq subalgebra with dimension greater than that of A′. 
This contradiction yields to following result:

Corollary 3.4. Let A be a Dq subalgebra of Mn(K) with maximum dimension. Then there 
exists an invertible matrix X such that X−1AX is a max-dim Dq subalgebra of Mn(K)
of some type (n1, n2, . . . , nq) with max-dim db’s.

4. Structure of Dq subalgebras with max-comm db’s

In Section 3 (see Theorem 3.2) we showed that every maximal Dq subalgebra of Mn(K)
is conjugated to a Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with max-comm db’s. 
In the present section, in Theorem 4.3, we will prove that the converse is also true.

Next, we will further analyze conjugations of Dq subalgebras of Mn(K). In Proposi-
tion 4.8, we will establish that conjugation, which satisfies some additional properties, 
of a Dq subalgebra of Mn(K) of any type (n1, n2, . . . , nq) with max-comm db’s is also 
a Dq subalgebra of Mn(K) of the same type with max-comm db’s. A consequence is 

Corollary 4.9, in which we will show that if A is a maximal Dq subalgebra of Mn(K)
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contained in Un(K), then A is a Dq subalgebra of Mn(K) of some type (n1, n2, . . . , nq)
with max-comm db’s. It leads us to a negative answer to Question 9 posed in [20]. 
Using Definition 1.5 and the paragraph immediately following it, we can rephrase the 
mentioned question as follows:

Question 4.1. [20, Question 9] For a field K, is there, for some n, a D2 K-subalgebra of 
the upper triangular matrix algebra Un(K) with maximum dimension 2 +

⌊
3n2

8

⌋
which 

is not a max-dim D2 subalgebra of Mn(K) of some type (n1, n2) with max-dim db’s?

In the same paper (see [20, Theorem 15]), a block triangular structure as in max-dim 
Dq subalgebras of Mn(K) with max-dim db’s was proven for D2 subalgebras of Mn(K)
with maximum dimension which are contained in Un(K) and satisfy some additional 
conditions. Corollary 4.9 generalizes this result.

Moreover, from Proposition 4.8 we obtain Theorem 4.10, which says that any Dq

subalgebras A and B of Mn(K) with max-comm db’s Aii and Bii, respectively, i =
1, 2, . . . , q, are conjugated if and only if they are of the same type and for each i, i =
1, 2, . . . , q, Aii and Bii are conjugates. It reduces the conjugation problem of maximal Dq

subalgebras of Mn(K) to the conjugation problem of commutative subalgebras of M�(K), 
for � = 1, 2, . . . , n − 1. We will discuss the obtained result in Section 5, restricting our 
attention to algebraically closed fields.

Recalling Proposition 2.4, the first result in the present section describes powers of 
the ideal CA generated by all commutators of a Dq subalgebra A of Mn(K) of type 
(n1, n2, . . . , nq) with max-comm db’s.

Proposition 4.2. If A is Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with max-comm 
db’s, then, for i = 1, 2, . . . , q − 1,

Ci
A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n1 . . . 0n1×ni
Mn1×ni+1(K) . . . Mn1×nq

(K)

. . . . . . . . . . . .
...

. . . . . . . . . Mnq−i×nq
(K)

. . . . . . 0nq−i+1×nq

. . .
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

0nq
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Proof. We start with i = 1. Keeping in mind that the diagonal blocks of a Dq subalgebra 
of Mn(K) of type (n1, n2, . . . , nq) with max-comm db’s are commutative, the inclusion

CA ⊆

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n1 Mn1×n2(K) Mn1×n3(K) · · · Mn1×nq
(K)

0n2 Mn2×n3(K) · · · Mn2×nq
(K)

. . . . . .
...

. . . Mnq−1×nq
(K)

0nq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is immediate.
In order to show the converse inclusion (for i = 1), let j be any positive inte-

ger such that j < q, and take arbitrary matrices Xj,j+1 ∈ Mnj×nj+1(K), Xj,j+2 ∈
Mnj×nj+2(K), . . . , Xjq ∈ Mnj×nq

(K). Then
⎛
⎜⎝ Inj

⎞
⎟⎠ and

⎛
⎜⎝ 0nj

Xj,j+1 . . . Xjq

⎞
⎟⎠

are elements of every Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with max-comm 
db’s and so, since

⎛
⎜⎝ Inj

⎞
⎟⎠
⎛
⎜⎝ 0nj

Xj,j+1 . . . Xjq

⎞
⎟⎠ =

⎛
⎜⎝ 0nj

Xj,j+1 . . . Xjq

⎞
⎟⎠ ,

⎛
⎜⎝ 0nj

Xj,j+1 . . . Xjq

⎞
⎟⎠
⎛
⎜⎝ Inj

⎞
⎟⎠ = 0n,

it follows that⎛
⎜⎝ 0nj

Xj,j+1 . . . Xjq

⎞
⎟⎠ =

⎡
⎢⎣
⎛
⎜⎝ Inj

⎞
⎟⎠ ,

⎛
⎜⎝ 0nj

Xj,j+1 . . . Xjq

⎞
⎟⎠
⎤
⎥⎦ ∈ CA.

As j and the matrices Xj,j+1, Xj,j+2, . . . , Xjq were arbitrary, the mentioned inclusion 
has been established.

The form of the ideal Ci
A, for i = 2, . . . , q − 1, is now evident. �
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With the help of Proposition 4.2 we are ready to prove the first of the main results 
of this section. Henceforth, eij denotes the matrix unit which has 1 in position (i, j) and 
zeroes elsewhere.

Theorem 4.3. Let A be a Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with max-comm 
db’s. Then A is a maximal Dq subalgebra of Mn(K).

Proof. Suppose, for the contrary, that a Dq subalgebra A of type (n1, n2, . . . , nq) with 
max-comm db’s Aii, i = 1, 2, . . . , q (using the notation (1.10)), is not a maximal Dq

subalgebras of Mn(K). The block structure (1.10) of the algebra A will be essential to 
the proof.

Let B be a maximal Dq subalgebra of Mn(K) properly containing A. So we can find 
a matrix X ∈ B \ A. Write it in the block form

⎛
⎜⎝

X11 . . . X1q
...

. . .
...

Xq1 . . . Xqq

⎞
⎟⎠ , (4.1)

where Xij ∈ Mni×nj
(K), 1 ≤ i, j ≤ q. Note that the numbers ni are the same as 

those in the definition of the type of subalgebra A. Subalgebra A contains idempotents 
E1 =

∑n1
i=1 eii and Ej =

∑Nj

i=Nj−1+1 eii for j = 2, 3, . . . , q, where Nj = n1 +n2 + · · ·+nj . 
So they also belong to B. It follows that for all indices 1 ≤ i, j ≤ q, the matrices EiXEj

are in B. These matrices in the form (4.1) have Xij in their i-th row and j-th column, and 
0 everywhere else. We conclude that there exists a matrix Z in the ideal CB generated 
by all the commutators of B, such that, written in the block form analogous to (4.1), 
has exactly one nonzero block Zrs, where r and s satisfy 1 ≤ s ≤ r ≤ q.

From the definition of A follows that X �∈ A if and only if either there exists i > j

such that Xij is a nonzero matrix or there exists k ∈ {1, 2, . . . , q} such that Xkk �∈ Akk.
In the first case, for matrix Z we can take EiiXEjj . This matrix belongs to CB, 

because EiiXEjj = [Eii, EiiXEjj ]. In the other case, Xkk �∈ Akk. Since Akk is a maximal 
commutative subalgebra, there exists a matrix Ykk ∈ Akk such that the commutator 
[Xkk, Ykk] is nonzero. Let Z be defined as follows:

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
0nk−1

Xkk

0nk+1

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
0nk−1

Ykk

0nk+1

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Then Z ∈ CB, with the only nonzero Zrs ∈ Mnr×ns
(K), 1 ≤ s ≤ r ≤ q, in the form 
analogous to (4.1), exists. Let zij , 1 ≤ i ≤ nr, 1 ≤ j ≤ ns, be a nonzero entry of 
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the matrix Zrs. Note that in matrix Z it is entry (Nr−1 + i, Ns−1 + j), where Nr−1 =
n1 + n2 + . . . + nr−1 and Ns−1 = n1 + n2 + . . . + ns−1 (with N0 := 0). Assume firstly 
that r �∈ {1, q}. Then

e1,Nr−1+i · Z · eNs−1+j,n = zije1n �= 0.

By Proposition 4.2, e1,Nr−1+i ∈ (CA)r−1 and eNs−1+j,n ∈ (CA)q−s, where CA is the ideal 
generated by all commutators [x, y], x, y ∈ A. Since B contains A, we have that CB also 
contains CA, and so

zijeij ∈ (CB)r−1 · CB · (CB)q−s = (CB)q+(r−s) = {0}.

The above equality holds because r − s ≥ 0 and by Proposition 2.4, Cq
B = {0}. It is a 

contradiction, since zij �= 0.
When r = 1, then Z11 is the nonzero block of matrix Z. By Proposition 4.2, ejn ∈

Cq−1
A ⊆ Cq−1

B , and so the product Z · ejn in CB · Cq−1
B = Cq

B is zero. However, Z · ejn has 
as its n-th column the j-th column of Z, the latter column being nonzero, which is a 
contradiction.

Finally, if r = q, then Zqs is the nonzero block of the matrix Z. In this case the first 
row of the matrix e1,Nq−1+i ·Z, where Nq−1 = n1 +n2 + · · ·+nq−1, is nonzero. Similarly, 
it leads to a contradiction, which completes the proof. �

Note that conjugation of a maximal Dq subalgebra of Mn(K) is still a maximal Dq

subalgebra of Mn(K), and so, by Theorem 4.3 and Theorem 3.2, we have the following:

Corollary 4.4. An algebra A is a maximal Dq subalgebra of Mn(K) if and only if it is 
conjugated with a Dq subalgebra of Mn(K) of some type (n1, n2, . . . , nq) with max-comm 
db’s.

In the rest of this section we will examine conjugations, which satisfy some additional 
properties, of a Dq subalgebra of Mn(K) of some type with max-comm db’s. We need 
the following result involving some matrix equations:

Lemma 4.5. Let r, s and t be positive integers, and let Y ∈ Mr×t(K), W ∈ Ms×t(K), 
with W �= 0s×t. If Y ZW = 0r×t for all Z ∈ Mt×s(K), then Y = 0r×t.

Proof. Write Y =

⎛
⎜⎝

y11 . . . y1t
...

. . .
...

yr1 . . . yrt

⎞
⎟⎠ , W =

⎛
⎜⎝

w11 . . . w1t
...

. . .
...

ws1 . . . wst

⎞
⎟⎠, with (say) wij �= 0 (for 

some indices i, j, with 1 ≤ i ≤ s, 1 ≤ j ≤ t). Consider the matrix unit eki ∈ Mt×s(K)

for any fixed k, 1 ≤ k ≤ t.
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By assumption and direct calculation, we have

0r×t = Y ekiW =

⎛
⎜⎜⎜⎜⎝

y1kwi1 . . . y1kwij . . . y1kwit

y2kwi1 . . . y2kwij . . . y2kwit

...
. . .

...
. . .

...
yrkwi1 . . . yrkwij . . . yrkwit

⎞
⎟⎟⎟⎟⎠ , (4.2)

and so, since wij �= 0, we conclude that

y1k = y2k = . . . = yrk = 0,

i.e., the k-th column of Y is zero. As k was arbitrary, we conclude that Y = 0r×t. �

Since det(X) = det(X11) ·det(X22) if X is a block triangular matrix 

(
X11 X12

0n2×n1 X22

)
, 

where X11 ∈ Mn1(K), X22 ∈ Mn2(K), X12 ∈ Mn1×n2(K), with n1 and n2 positive 
integers, it is evident that X11 and X22 are invertible if X is invertible, and direct 
matrix multiplication yields

X−1 =
(

X−1
11 −X−1

11 X12X
−1
22

0n2×n1 X−1
22

)
. (4.3)

Lemma 4.6. Let q, n1, n2, . . . , nq and n be positive integers such that n1+n2+· · ·+nq = n, 
and let A be a subalgebra of Mn(K). If

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n1 Mn1×n2(K) Mn1×n3(K) · · · Mn1×nq
(K)

0n2 Mn2×n3(K) · · · Mn2×nq
(K)

. . . . . .
...

. . . Mnq−1×nq
(K)

0nq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊆ A

and X ∈ Mn(K) is an invertible matrix such that X−1AX is contained in the full 
subalgebra of Mn(K) of type (n1, n2, . . . , nq) (see Definition 1.3), then matrix X also 
belongs to the full subalgebra of Mn(K) of type (n1, n2, . . . , nq).

Proof. The result that we want to prove is obvious if q = 1. Thus, building a proof using 

mathematical induction, we start with q = 2, and positive integers n1, n2 and n such 
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that n1+n2 = n. Write matrix X in block form 

(
X11 X12
X21 X22

)
, where Xij ∈ Mni×nj

(K), 

1 ≤ i, j ≤ 2, and suppose, for the contrary, that block X21 �= 0n2×n1 . Write also the 

inverse matrix X−1 in block form 

(
X ′

11 X ′
12

X ′
21 X ′

22

)
, where X ′

ij ∈ Mni×nj
(K). Then, by 

assumption, the matrix 

(
0n1 Y

0n2

)
belongs to A for every Y ∈ Mn1×n2(K). Therefore,

X−1

(
0n1 Y

0n2

)
X =

(
X ′

11 X ′
12

X ′
21 X ′

22

)(
0n1 Y

0n2

)(
X11 X12
X21 X22

)

=
(
X ′

11Y X21 X ′
11Y X22

X ′
21Y X21 X ′

21Y X22

)
∈
(

Mn1(K) Mn1×n2(K)
0n2×n1 Mn2(K)

)
.

Hence, X ′
21Y X21 = 0n2×n1 for every Y ∈ Mn1×n2(K), and so Lemma 4.5 implies that 

X ′
21 = 0n2×n1 . We conclude from formula (4.3) that X21 = 0n2×n1 . This is a contradic-

tion, which completes the desired result for q = 2.
Assume now inductively that the result holds for some q ≥ 2, and let n and 

n1, n2, . . . , nq+1 be positive integers such that n1 +n2 + · · ·+nq+1 = n. Write matrix X
and its inverse in block form

X =

⎛
⎜⎝

X11 . . . X1,q+1
...

. . .
...

Xq+1,1 . . . Xq+1,q+1

⎞
⎟⎠ , X−1 =

⎛
⎜⎝

X ′
11 . . . X ′

1,q+1
...

. . .
...

X ′
q+1,1 . . . X ′

q+1,q+1

⎞
⎟⎠ ,

with Xij , X ′
ij ∈ Mni×nj

(K) for all 1 ≤ i, j ≤ q + 1. Firstly, we will show that Xj1 =
0nj×n1 for j = 2, 3, . . . , q + 1. Then we will use the inductive assumption. Suppose, for 
the contrary, that Xj1 �= 0nj×n1 for some j, 2 ≤ j ≤ q + 1. Let Y1j ∈ Mn1×nj

(K) be an 
arbitrary matrix. Then

⎛
⎜⎝

. . . 0n1×nj−1 Y1j 0n1×nj+1 . . .

. . . 0n2×nj−1 0n2×nj
0n2×nj+1 . . .

...
...

...

⎞
⎟⎠ ∈ A,

and direct calculation gives

X−1

⎛
⎜⎝

. . . 0n1×nj−1 Y1j 0n1×nj+1 . . .

. . . 0n2×nj−1 0n2×nj
0n2×nj+1 . . .

...
...

...

⎞
⎟⎠

X =

⎛
⎜⎝

X ′
11Y1jXj1 X ′

11Yj1Xj2 . . .

X ′
21Y1jXj1 X ′

21Yj1Xj2 . . .

⎞
⎟⎠ .
...
...
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Since the algebra X−1AX is contained in the full subalgebra of Mn(K) of type 
(n1, n2, . . . , nq), we obtain the equalities

X ′
21Y1jXj1 = 0n2×n1 , X ′

31Y1jXj1 = 0n3×n1 , . . . , X ′
q+1,1Y1jXj1 = 0nq+1×n1 .

We now apply Lemma 4.5 to each of these equations and obtain that X ′
21, X

′
31, . . . , X

′
q+1,1

are zero matrices. Therefore we can write X−1 =
(

X ′
11 X ′12

0N2×n1 X ′22

)
, where N2 = n2 +

n3 + · · · + nq+1 and

X ′12 =
(
X ′

12 X ′
13 . . . X ′

1,q+1

)
, X ′22 =

⎛
⎜⎝

X ′
22 . . . X ′

2,q+1
...

. . .
...

X ′
q+1,2 . . . X ′

q+1,q+1

⎞
⎟⎠ .

From formula (4.3) on the inverse of a block triangular matrix it follows that

X21 = 0n2×n1 , X31 = 0n3×n1 , . . . , Xq+1,1 = 0nq+1×n1 .

This is a contradiction, since Xj1 �= 0nj×n1 for some 2 ≤ j ≤ q + 1. Hence, indeed 
X21, X31, . . . , Xq+1,1 are zero matrices. Now we can use the inductive assumption to 
the subalgebra of MN2(K) obtained from the entries of A starting from row n1 + 1 and 
column n1 +1. It implies that matrix X belongs to the full subalgebra of Mn(K) of type 
(n1, n2, . . . , nq). �

Although conjugation of a block triangular Dq subalgebra A of Mn(K) of some type 
(n1, n2, . . . , nq) with an invertible matrix X ∈ Mn(K) can result in the subalgebra 
X−1AX of Mn(K) not being a block triangular subalgebra of Mn(K), as shown in the 
example below, we will prove in Proposition 4.8 that this does not happen if X is such 
X−1AX is contained in the full subalgebra of Mn(K) of type (n1, n2, . . . , nq).

Example 4.7. Let A be a D4 subalgebra of Mn(K) of type (n1, n2, n3, n4), possibly with 
max-comm db’s, and consider the invertible block matrix

X =

⎛
⎜⎜⎜⎝

0n1×n4 0n1×n2 0n1×n3 In1

0n2×n4 In2 0n2×n3 0n2×n1

0n3×n4 0n3×n2 In3 0n3×n1

In4 0n4×n2 0n4×n3 0n4×n1

⎞
⎟⎟⎟⎠ ∈ Mn(K),

which clearly is a “block” version of the permutation matrix⎛
⎜⎜⎜⎝

0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟⎠ .
1 0 0 0
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Then

X−1 =

⎛
⎜⎜⎜⎝

0n4×n1 0n4×n2 0n4×n3 In4

0n2×n1 In2 0n2×n3 0n2×n4

0n3×n1 0n3×n2 In3 0n3×n4

In1 0n1×n2 0n1×n3 0n1×n4

⎞
⎟⎟⎟⎠ .

Writing the algebra A in block triangular form
⎛
⎜⎜⎜⎝

A11 A12 A13 A14
A22 A23 A24

A33 A34
A44

⎞
⎟⎟⎟⎠ ,

as in (1.10), direct verification yields

X−1AX =

⎛
⎜⎜⎜⎝

A44 0n4×n2 0n4×n3 0n4×n1

A24 A22 A23 0n2×n1

A34 0n3×n2 A33 0n3×n1

A14 A12 A13 A11

⎞
⎟⎟⎟⎠ ,

implying that, by Definition 1.3, X−1AX is not a subalgebra of Mn(K) of any type 
(�1, �2, �3, �4).

Proposition 4.8. Let A be a Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with max-
comm db’s, and let X ∈ Mn(K) be an invertible matrix such that X−1AX is contained 
in the full subalgebra of Mn(K) of type (n1, n2, . . . , nq). Then X−1AX is also a Dq

subalgebra of Mn(K) of type (n1, n2, . . . , nq) with max-comm db’s. Moreover, if we write 
Aii and A′

ii, i = 1, 2, . . . , q, for the diagonal blocks of the subalgebras A and X−1AX

(see (1.10)), respectively, then Aii and A′
ii are conjugates.

Proof. By Lemma 4.6, X is in the full subalgebra of Mn(K) of type (n1, n2, . . . , nq), and 
so

X =

⎛
⎜⎝

X11 . . . X1q
. . .

...
Xqq

⎞
⎟⎠ ,

for some Xij ∈ Mni×nj
(K), 1 ≤ i ≤ j ≤ q. Write the inverse X−1 in block form

⎛
⎜⎝

X ′
11 . . . X ′

1q
...

. . .
...

⎞
⎟⎠ ,
X ′
q1 . . . X ′

qq
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for X ′
ij ∈ Mni×nj

(K), 1 ≤ i, j ≤ q. We will show that X−1 is also block triangular.
Divide X into four blocks of sizes n1×n1, n1× (n2 + · · ·+nq), (n2 + · · ·+nq) ×n1 and 

(n2 + · · ·+nq) × (n2 + · · ·+nq), respectively. Formula (4.3) implies that X ′
11 = X−1

11 and 
that the matrices X ′

21, X
′
31, . . . , X

′
q1 are all zero matrices. These facts lead us to finding 

the inverse of the block triangular matrix
⎛
⎜⎝

X22 . . . X2q
. . .

...
Xqq

⎞
⎟⎠ .

Continuing in the above way, we finally get that X−1 is block triangular with X ′
ii = X−1

ii

for every i, i = 1, 2, . . . , q.
Now write the Dq subalgebra A of Mn(K) with max-comm db’s in the form

⎛
⎜⎝

A11 . . . A1q
. . .

...
Aqq

⎞
⎟⎠ ,

as in (1.10). Since the matrices X and X−1 are block triangular, it follows that X−1AX

is contained in the Dq subalgebra
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X−1
11 A11X11 Mn1×n2(K) Mn1×n3(K) · · · Mn1×nq

(K)

X−1
22 A22X22 Mn2×n3(K) · · · Mn2×nq

(K)

. . . . . .
...

. . . Mnq−1×nq
(K)

X−1
qq AqqXqq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.4)

of Mn(K) of type (n1, n2, . . . , nq) with max-comm db’s. We will prove that the reverse 
inclusion also holds.

We first show that⎛
⎜⎝

. . . 0nn1×q−1 Mn1×nq
(K)

. . . 0n2×nq−1 0n2×nq

...
...

⎞
⎟⎠ ⊆ X−1AX. (4.5)

To this end, keep in mind that every Xii, i = 1, 2, . . . , q, is invertible, and note that for 

an arbitrary matrix Y1q ∈ Mn1×nq

(K),
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⎛
⎜⎝

. . . 0n1×nq−1 Y1q

. . . 0n2×nq−1 0n2×nq

...
...

⎞
⎟⎠ = X−1

⎛
⎜⎝

. . . 0n1×nq−1 X11Y1qX
−1
qq

. . . 0n2×nq−1 0n2×nq

...
...

⎞
⎟⎠X ∈ X−1AX,

which establishes (4.5). Next take an arbitrary matrix Y1,q−1 ∈ Mn1×nq−1(K). Then

X−1

⎛
⎜⎝

. . . 0n1×nq−2 X11Y1,q−1X
−1
q−1,q−1 0n1×nq

. . . 0n2×nq−2 0n2×nq−1 0n2×nq

...
...

...

⎞
⎟⎠X =

=

⎛
⎜⎝

. . . 0n1×nq−2 Y1,q−1 Z1,q

. . . 0n2×nq−2 0n2×nq−1 0n2×nq

...
...

...

⎞
⎟⎠ ∈ X−1AX

for some Z1,q−1 ∈ Mn1×nq
(K). Because of the inclusion in (4.5), we deduce that

⎛
⎜⎝

. . . 0n1×nq−2 Y1,q−1 0n1×nq

. . . 0n2×nq−2 0n2×nq−1 0n2×nq

...
...

...

⎞
⎟⎠ ∈ X−1AX.

Therefore, X−1AX contains

⎛
⎜⎝

. . . 0nn1×q−2 Mn1×nq−1(K) 0n1×nq

. . . 0n2×nq−2 0n2×nq−1 0n2×nq

...
...

...

⎞
⎟⎠ ,

Continuing in this way we obtain the inclusion

⎛
⎜⎜⎜⎜⎜⎜⎝

X−1
11 A11X11 Mn1×n2(K) Mn1×n3(K) . . . Mn1×nq

(K)
0n2 0n2×n3 . . . 0n1×nq

0n3 . . . 0n3×nq

. . .
...

0nq

⎞
⎟⎟⎟⎟⎟⎟⎠

⊆ X−1AX

Proceeding in the same manner we obtain that

⎛
⎜⎜⎜⎜⎜⎜⎝

0n1 0n1×n2 0n1×n3 . . . 0n1×nq

X−1
22 A22X22 Mn2×n3(K) . . . Mn2×nq

(K)
0n3 . . . 0n3×nq

. . .
...

⎞
⎟⎟⎟⎟⎟⎟⎠

⊆ X−1AX.
0nq
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The pattern is now clear, and so finally we conclude that X−1AX contains the entire 
subalgebra of Mn(K) in (4.4), which completes the proof. �

Corollary 4.9. Let A be a subalgebra of Un(K).

(1) If A is a maximal Dq subalgebra of Mn(K), then A is a Dq subalgebra of Mn(K)
of some type (n1, n2, . . . , nq) with max-comm db’s.

(2) If A is a Dq subalgebra of Mn(K) with maximum dimension, then A is a max-dim 
Dq subalgebra of Mn(K) of some type (n1, n2, . . . , nq) with max-dim db’s.

Proof. (1) By Theorem 3.2, there is an invertible matrix X such that X−1AX is a Dq

subalgebra of Mn(K) of some type (n1, n2, . . . , nq) with max-comm db’s. The desired 
result now follows immediately from Proposition 4.8, since A = X(X−1AX)X−1.

(2) By (1), A is a Dq subalgebra of Mn(K) of some type (n1, n2, . . . , nq) with max-
comm db’s. Had any of the commutative algebras in the diagonal blocks of A not been 
of maximum dimension, we would have been able to replace it by a commutative algebra 
with larger dimension, thereby obtaining a Dq subalgebra of Mn(K) with dimension 
larger than that of A; a contradiction. �

The construction of a Dq subalgebra of Mn(K) with maximum dimension described 
in Theorem 1.2, combined with the examples in (1.2) and in (1.3) of commutative sub-
algebras of Mn(K) with maximum dimension, gives an example of a Dq subalgebra of 
Mn(K) with maximum dimension contained in Un(K). So if A is a Dq subalgebra of 
Un(K) with maximum dimension, then A is a Dq subalgebra of Mn(K) with maximum 
dimension. Consequently, Corollary 4.9(2) confirms the “underlying conjecture” embod-
ied in Question 4.1 by answering the question in the negative.

We conclude the section with a characterization of when Dq subalgebras of Mn(K)
with max-comm db’s are conjugated.

Theorem 4.10. Let A and B be Dq subalgebras of Mn(K) of types (n1, n2, . . . , nq) and 
(�1, �2, . . . , �q), respectively, with max-comm db’s. Write Aii and Bii, i = 1, 2, . . . , q, for 
the diagonal blocks of the subalgebras A and B, respectively (see (1.10)). Then A and 
B are conjugates if and only if the q-tuples (n1, n2, . . . , nq) and (�1, �2, . . . , �q) are equal 
and, for every i, i = 1, 2, . . . , q, Aii and Bii are conjugates.

Proof. Firstly, assume that A and B are Dq subalgebras of Mn(K) of the same type 
(n1, n2, . . . , nq) with max-comm db’s such that for every j, j = 1, 2, . . . , q, the diagonal 
blocks Ajj and Bjj are conjugates. Then there are invertible matrices Xjj ∈ Mnj

(K)

such that X−1

jj AjjXjj = Bjj . We will show that
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⎛
⎜⎜⎜⎜⎝

X−1
11

X−1
22

. . .
X−1

qq

⎞
⎟⎟⎟⎟⎠A

⎛
⎜⎜⎜⎜⎝

X11
X22

. . .
Xqq

⎞
⎟⎟⎟⎟⎠ = B. (4.6)

Note that, by Proposition 4.8, the subalgebra on the left hand side in (4.6) is a Dq sub-
algebra of Mn(K) of type (n1, n2, . . . , nq) with max-comm db’s. It is easy to check that 
this subalgebra has X−1

jj AjjXjj as its diagonal blocks, which establishes the equality in 
(4.6).

Conversely, assume that the algebras A and B are conjugated. If we can show that 
tuples the q-tuples (n1, n2, . . . , nq) and (�1, �2, . . . , �q) are equal, then the result follows 
directly from Proposition 4.8. To this end, first note that, by Proposition 4.2,

n1 + n2 + · · · + ni = dimKCq−i
A V

for i = 1, 2, . . . , q−1, where V = Kn and CA is the ideal of A generated by all [x, y], x, y ∈
A. Since 

∑q
j=1 nj = n, we can write

ni =
{

dimKCq−i
A V − dimKCq−i+1

A V, if i = 1, 2, . . . , q − 1
n− dimKCAV, if i = q.

Hence the type of the subalgebra A of Mn(K) is determined by dimK Ci
AV for i =

1, 2, . . . , q−1. Similarly, the type of the subalgebra B is determined by dimK Ci
BV , where 

CB is the ideal of B generated by all [x, y], x, y ∈ B.
By assumption, there exists an invertible matrix X ∈ Mn(K) such that X−1AX = B, 

which implies that Ci
B = (X−1CAX)i = X−1Ci

AX for all i = 1, 2 . . . , q − 1. To complete 
the proof we will show that dimKCi

AV = dimKCi
BV .

If vectors C1v1, C2v2, . . . , Ckvk constitute a basis of Ci
AV for some matrices Cj ∈ Ci

A
and some vectors vj ∈ V , then it can be shown directly that the vectors X−1Cjvj =
(X−1CjX)X−1vj , j = 1, 2, . . . , k, of the vector space (X−1Ci

AX)V are linearly indepen-
dent. Therefore, dimKCi

AV ≤ dimK(X−1Ci
AX)V = dimK Ci

BV . Similarly, we can show 
that dimK Ci

BV = dimK(X−1Ci
AX)V ≤ dimKCi

AV by taking basis vectors of the vec-
tor space (X−1Ci

AX)V and producing linearly independent vectors in the vector space 
Ci
AV . �

5. Remarks on a result by Jacobson

In this section, we clarify the structure of commutative subalgebras of Mn(K), with 
K an algebraically closed field, as discussed in [7].

Throughout this section K is an algebraically closed field, and A is a commutative 
subalgebra of Mn(K) with maximum dimension. We focus in particular on the structure 

of A for n ∈ {2, 3}, which, in the light of the footnote in [7, page 436], does not seem 
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to be so readily obtained after all. These considerations will be used in the subsequent 
sections.

By [7], for n > 3 we have the following:

• If n is an even integer (n = 2�), then A is conjugated to

C1
2�(K) := KIn +

(
0� M�(K)

0�

)
. (5.1)

• If n is an odd integer (n = 2� + 1), then A is conjugated to

C1
2�+1(K) := KIn +

(
0� M�×(�+1)(K)

0�+1

)
(5.2)

or

C2
2�+1(K) := KIn +

(
0�+1 M(�+1)×�(K)

0�

)
. (5.3)

It is possible to show (see Corollary 5.3) that the algebras C1
2�+1(K) and C2

2�+1(K) are 
not conjugated. However, they are isomorphic. Indeed, it is easily verified that the map 
from C1

2�+1(K) to C2
2�+1(K) which rotates the rectangular block M�×(�+1)(K) counter-

clockwise through 90◦ is an isomorphism.
Next, let n ≤ 3. Obviously, for n = 1 we have

A = K =: C1
1 (K). (5.4)

We now carefully study the two remaining cases, i.e., when n ∈ {2, 3}. Either A is 
isomorphic to a nontrivial product A1 ×A2 of algebras, or it is not isomorphic to such a 
product. Suppose that we have the latter situation. Since K is algebraically closed and A
is a finite dimensional commutative algebra, it follows from [9, (3.5) Wedderburn-Artin 
Theorem] that

A/J(A) ∼= K1 ×K2 × . . .×Kt

for some t ≥ 1, with Ki = K for every i. Since J(A) is nilpotent (see, for example, 
[9, (4.12) Theorem]), it follows from [9, (21.28) Theorem] that if t > 1, then, lifting 
the idempotent (1, 0, . . . , 0) of A/J(A), we get a nontrivial (i.e., e /∈ {0, 1}) idempotent 
e ∈ A. Therefore,
A ∼= eAe× (1 − e)A(1 − e),
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which contradicts our assumption. Consequently, A is local, and so by [18, Proposition 
10], A is conjugated to some subalgebra C of U∗

n(K). For C we have the following 
candidates:

• For n = 2 and the (commutative) algebra U∗
2(K) we have only one possibility, namely

C1
2 (K) = U∗

2(K) = KI2 +
(

0 K

0

)
. (5.5)

• For n = 3 and the algebra U∗
3(K), taking an arbitrary x ∈ K, the matrix ⎛

⎜⎝ 0 0 x

0 0
0

⎞
⎟⎠ commutes with every X ∈ U∗

3(K). So we can see that 

⎛
⎜⎝ 0 0 x

0 0
0

⎞
⎟⎠ ∈

C, and consequently, 

⎛
⎜⎝ 0 0 K

0 0
0

⎞
⎟⎠ ⊆ C. Since the maximal possible dimension for 

a commutative subalgebra of M3(K) is 1 +
⌊

32

4

⌋
= 3, we deduce that there exist 

α, β ∈ K, not both equal to zero, such that C =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ a αb c

a βb

a

⎞
⎟⎠ : a, b, c ∈ K

⎫⎪⎬
⎪⎭.

For α �= 0 and β = 0 we get

C1
3 (K) = KI3 +

⎛
⎜⎝ 0 K K

0 0
0

⎞
⎟⎠ . (5.6)

For α = 0 and β �= 0 we get

C2
3 (K) = KI3 +

⎛
⎜⎝ 0 0 K

0 K

0

⎞
⎟⎠ . (5.7)

Finally, for α �= 0 and β �= 0, conjugation by 

⎛
⎜⎝ α 0 0

1 0
β−1

⎞
⎟⎠ gives

⎛
⎜⎝ α−1 0 0

1 0
β

⎞
⎟⎠
⎛
⎜⎝ a αb c

a βb

a

⎞
⎟⎠
⎛
⎜⎝ α 0 0

1 0
β−1

⎞
⎟⎠ =

⎛
⎜⎝ a b α−1β−1c

a b

a

⎞
⎟⎠ ,
and so
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C3
3 (K) = KI3 + K

⎛
⎜⎝ 0 1 0

0 1
0

⎞
⎟⎠+

⎛
⎜⎝ 0 0 K

0 0
0

⎞
⎟⎠ . (5.8)

Now we consider the case where A is isomorphic to a proper product of algebras 
A ∼= A1 ×A2. In this situation, 1 = e1 + e2 for some nontrivial idempotents e1, e2. Let 
ε1 : Kn → Kn be the linear map such that e1 is its matrix in the standard basis. Then 
as ε21 = ε1 we get Kn = im(ε1) ⊕ ker(ε1). If v1, v2, . . . , vk form a basis for im(ε1), and 
vk+1, vk+2, . . . , vn form a basis for ker(ε1) then in the basis B = (v1, v2, . . . , vn) for Kn

we have M(ε1)BB =
(
Ik 0k×(n−k)

0n−k

)
. In the same basis B, for the map ε2 related to 

e2 = 1 − e1, we have M(ε2)BB = In −M(ε1)BB =
(

0k 0k×(n−k)

In−k

)
.

Since the idempotents e1 and e2 are orthogonal and the algebra A is commutative, 
we have a = 1 ·a ·1 = (e1 +e2)a(e1 +e2) = e1ae1 +e2ae2 for every a ∈ A. Therefore, as a 
vector space, A = e1Ae1⊕e2Ae2. Considering conjugation of A with the change-of-basis 
matrix from the standard basis for Kn to B, we get

A′ =
(
Ik 0k×(n−k)

0n−k

)
A′

(
Ik 0k×(n−k)

0n−k

)

⊕
(

0k 0k×(n−k)

In−k

)
A′

(
0k 0k×(n−k)

In−k

)
=

=
(
A′

1 0k×(n−k)

A′
2

)
,

where A′ is the conjugation of A, and A′
1 ⊆ Mk(K) and A′

2 ⊆ Mn−k(K) are commutative 
subalgebras of Mn(K) with maximum dimensions isomorphic to A1 and A2, respectively.

• For n = 2 we have only one possibility, namely, A is conjugated with

C2
2 (K) =

(
K 0

K

)
. (5.9)

• For n = 3, either both algebras A1 and A2 are indecomposable or exactly one 
is indecomposable (recall that the maximal possible dimension of a commutative 
subalgebra of M3(K) is 3). In the first case, at first glance, A is conjugated either 
with

Λ1 =
{⎛⎜⎝ a b 0

a 0
c

⎞
⎟⎠ : a, b, c ∈ K

}
or Λ2 =

{⎛⎜⎝ a 0 0
b c

b

⎞
⎟⎠ : a, b, c ∈ K

}
.



192 P. Matraś et al. / Journal of Algebra 657 (2024) 159–206
Note, however, that considering the invertible matrix Z =

⎛
⎜⎝ 0 1 0

0 0 1
1 0 0

⎞
⎟⎠ we have

Z−1Λ1Z = Λ2.

Thus A in this case is conjugated with

C4
3 (K) = Λ1 =

{⎛⎜⎝ a b 0
a 0

c

⎞
⎟⎠ : a, b, c ∈ K

}
. (5.10)

In the case where exactly one of A1 and A2 is indecomposable, we get that A is 
conjugated with

C5
3 (K) =

⎛
⎜⎝K 0 0

K 0
K

⎞
⎟⎠ . (5.11)

Amongst the algebras C1
1 (K), C1

2 (K), C2
2 (K), C1

3 (K), C2
3 (K), C3

3 (K), C4
3 (K) and

C5
3 (K), only C1

3 (K) and C2
3 (K) are isomorphic. However, by Corollary 5.3 these iso-

morphic subalgebras are not conjugated.
We summarize the above considerations (in this section) as follows:

Remark 5.1. Every commutative subalgebra of Mn(K) with maximum dimension is con-
jugated with precisely one of these presented in (5.1) − (5.11). Amongst these algebras, 
C1

2�+1(K) and C2
2�+1(K) are isomorphic for every � ≥ 1.

By [7] and the presentation above for algebraically closed fields K, we have determined, 
up to conjugation, all commutative subalgebras of Mn(K) with maximum dimension. In 
fact, in [7] for n > 3, there is even a weaker assumption on the field K (not imperfect of 
characteristic 2), but in the above characterization of commutative subalgebras of M2(K)
and M3(K) with maximum dimension, the assumption that K is algebraically closed is 

used. For example, in the case of the field R of real numbers, 
{(

a −b

b a

)
: a, b ∈ R

}

is a 2-dimensional subalgebra of M2(R) (isomorphic to the field of complex numbers) 
which is not conjugated with C1

2 (K) nor C2
2 (K).

We conclude the section by showing that, for some of the commutative subalgebras 
A of Mn(K) with maximum dimension, namely those A’s presented in (5.1)− (5.7), the 
only possible conjugation of A which is contained in Un(K) is equal to A itself. We will 
use this result to give an exact description of Dq subalgebras of Un(K) with maximum 

dimension in Corollary 6.8.
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Proposition 5.2. Let A be a commutative subalgebra of Mn(K) with maximum dimension 
presented in one of (5.1) − (5.7). If X ∈ Mn(K) is invertible and X−1AX ⊆ Un(K), 
then X−1AX = A.

Proof. If n = 1, then A = K and there is nothing to prove. Assume now that n ≥ 2, 
with A equal to one of the algebras in (5.1) − (5.3) or (5.5) − (5.7). Then there exist 
positive integers r and s such that r + s = n and

A = KIn +
(

0r Mr×s(K)
0s×r 0s

)
,

and so we have the inclusions
(

0r Mr×s(K)
0s×r 0s

)
⊆ A and X−1AX ⊆ Un(K) ⊆

(
Mr(K) Mr×s(K)
0s×r Ms(K)

)
.

Invoking Lemma 4.6, with q = 2, we deduce that there exist matrices X11 ∈ Mr(K), 
X12 ∈ Mr×s(K), and X22 ∈ Ms(K) such that

X =
(

X11 X12
0s×r X22

)
.

Therefore, by (4.3),

X−1 =
(
X−1

11 X ′
12

0s×r X−1
22

)
,

where X ′
12 = −X−1

11 X12X
−1
22 . Let 

(
aIr A12

aIs

)
be an arbitrary element of A, with 

a ∈ K, A12 ∈ Mr×s(K). Then

X−1

(
aIr A12

aIs

)
X =

(
X−1

11 X ′
12

0s×r X−1
22

)(
aIn +

(
0r A12

0s

))(
X11 X12
0s×r X22

)
=

= aIn +
(

0r X−1
11 A12X22

0s

)
,

and so X−1AX ⊆ A. Since we can take any matrix of Mr×s(K) for A12, it is not hard 
to show that the opposite inclusion also holds. This completes the proof. �

For an odd integer n ≥ 3, the algebras C1
n(K) and C2

n(K) are distinct subalgebras of 

Un(K). Moreover, we have the following:



194 P. Matraś et al. / Journal of Algebra 657 (2024) 159–206
Corollary 5.3. Let n be an odd integer greater than or equal to 3. Then the commutative 
subalgebras C1

n(K) and C2
n(K) of Mn(K) are not conjugated.

Note that Proposition 5.2 cannot be extended to the subalgebras presented in (5.8)−
(5.11):

Example 5.4. Conjugation of the subalgebra C2
2(K) =

{(
a 0
0 b

)
: a, b ∈ K

}
of M2(K)

with the invertible matrix X =
(

1 1
0 1

)
gives

X−1C2
2 (K)X =

(
1 −1
0 1

)
C2

2 (K)
(

1 1
0 1

)
=
{(

a a− b

0 b

)
: a, b ∈ K

}
,

which is a subalgebra of U2(K) different from C2
2 (K).

Similar examples can also be found in case of the subalgebras C3
3(K), C4

3 (K) and 
C5

3 (K) of M3(K). Two of them can be already constructed from the previous analysis, 
while defining C3

3 (K) by formula (5.8) and C4
3 (K) by formula (5.10).

In the following sections we will use the algebras presented in (5.1)−(5.11) for arbitrary 
fields. If we need the assumption that K is an algebraically closed field, then we will stress 
this assumption explicitly.

6. Isomorphic Dq subalgebras of Mn(K) with max-dim db’s are of the same type

In this section, we will treat the isomorphism problem of Dq subalgebras of Mn(K)
with max-dim db’s. Before we state the main results we will give a characterization of 
the subalgebras we are dealing with.

Note that by Remark 3.3, for any maximal Dq subalgebra of Mn(K) there exists 
exactly one q-tuple (n1, n2, . . . , nq), which indicates the type of conjugated Dq subalgebra 
of Mn(K) with max-comm db’s. So we can look at the class of all maximal Dq subalgebras 
of Mn(K) associated with the fixed tuple (n1, n2, . . . , nq). In general, we are not able 
to say much about this class, even if we treat algebras up to conjugation. However, if 
we restrict it to these algebras with maximum possible dimension for the considered 
class, then it consists of subalgebras conjugated with a Dq subalgebra of Mn(K) of 
type (n1, n2, . . . , nq) with max-dim db’s, which is more accessible. We want to stress 
that only for specific tuples, which will be described in Section 7, the restricted class 
consists of Dq subalgebras of Mn(K) with maximum dimension.

In Theorem 6.2 we prove that if two Dq subalgebras of Mn(K) with max-dim db’s 
are isomorphic, then they are of the same type and the algebras in their diagonal blocks 
are pairwise isomorphic. Next, we will show that this theorem cannot be inverted, which 

indicates what should be modified to completely solve the isomorphism problem. Finally, 
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for an algebraically closed field K, we will prove that two Dq subalgebras of Mn(K) with 
max-dim db’s are isomorphic if and only if they are of the same type and their diagonal 
blocks are pairwise conjugated. In contrast with the examples of isomorphic but not 
conjugated commutative subalgebras of Mn(K) with maximum dimension, it implies 
that isomorphic Dq subalgebras of Mn(K) with maximum dimension are conjugated.

Recall that if we consider a Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with 
max-dim db’s, then we always use the notation related to (1.10). In other words, for Dq

subalgebras A and B of Mn(K) of types (n1, n2, . . . , nq) and (�1, �2, . . . , �q), respectively, 
with max-dim db’s, we will write

A =

⎛
⎜⎜⎜⎜⎝

A11 A12 . . . A1q
A22 . . . A2q

. . .
...

Aqq

⎞
⎟⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎜⎝

B11 B12 . . . B1q
B22 . . . B2q

. . .
...

Bqq

⎞
⎟⎟⎟⎟⎠ , (6.1)

where Aii (respectively, Bii) is a commutative subalgebra of Mni
(K) (respectively, 

M�i(K)) with maximum dimension for every i, i = 1, 2 . . . , q, and Aij = Mni×nj
(K)

and Bij = M�i×�j (K) for all i and j such that 1 ≤ i < j ≤ q. Following the notation in 
Proposition 4.2, we henceforth denote the ideal of A (respectively, B) generated by all 
commutators [x, y], with x, y ∈ A (respectively, x, y ∈ B) by CA (respectively, CB).

In order to build a proof of Theorem 6.2, we will need a technical lemma based 
on Proposition 4.2.

Lemma 6.1. Let ϕ : A → B be an isomorphism of Dq subalgebras A and B of Mn(K) of 
types (n1, n2, . . . , nq) and (�1, �2, . . . �q), respectively, with max-dim db’s. Then, using the 
notation in (6.1),

ϕ

⎛
⎜⎝
⎛
⎜⎝ Aii

⎞
⎟⎠
⎞
⎟⎠ ⊆

⎛
⎜⎜⎜⎜⎝

B1i . . . B1q
...

. . .
...

Bii . . . Biq

⎞
⎟⎟⎟⎟⎠

for every i, i = 1, 2, . . . , q.

Proof. It follows from ϕ(CA) = CB that ϕ(Ci
A) = Ci

B for every i, i = 1, 2, . . . , q, and so, 
by Proposition 4.2,

Ci
A ·

⎛
⎜⎝ Aii

⎞
⎟⎠ = {0n},
implying that
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Ci
B · ϕ

⎛
⎜⎝
⎛
⎜⎝ Aii

⎞
⎟⎠
⎞
⎟⎠ = {0n}. (6.2)

Let 1 < i < q. We first show that the equality in (6.2) implies that

ϕ

⎛
⎜⎝
⎛
⎜⎝ Aii

⎞
⎟⎠
⎞
⎟⎠ ⊆

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B11 . . . B1i B1,i+1 . . . B1q
. . .

...
...

. . .
...

Bii Bi,i+1 . . . Biq

0ni+1 . . . 0ni+1,nq

. . .
...

0nq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.3)

To this end, let Y = (yij) be an arbitrary matrix in ϕ 

⎛
⎜⎝
⎛
⎜⎝ Aii

⎞
⎟⎠
⎞
⎟⎠, and let j be any 

integer such that �1 + �2 + · · · + �i < j ≤ n (recall that �1 + �2 + · · · + �q = n). Then it 
follows again from Proposition 4.2 that e1j ∈ Ci

B, and so by (6.2),

0n = e1jY =

⎛
⎜⎜⎜⎜⎝

yj1 yj2 . . . yjn
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞
⎟⎟⎟⎟⎠ .

Hence, rows �1+�2+· · ·+�i+1, �1+�2+· · ·+�i+2, . . . , n of Y are zero, which establishes 
(6.3).

Similar arguments, starting from the equality

⎛
⎜⎝ Aii

⎞
⎟⎠ · Cq−i+1

A = {0n},

can be used to show that columns 1, 2, . . . , �1 + �2 + · · ·+ �i−1 columns of an arbitrary 

matrix in the image ϕ 

⎛
⎜⎝
⎛
⎜⎝ Aii

⎞
⎟⎠
⎞
⎟⎠ are zero.

As far as the cases i = 1 and i = q are concerned, it is evident that the gist 

of the above arguments also shows that rows �1 + 1, �1 + 2, . . . , n of every matrix in 
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ϕ 

⎛
⎜⎝
⎛
⎜⎝A11

⎞
⎟⎠
⎞
⎟⎠ are zero, and that columns 1,2,. . . , �1 + �2 + · · · + �q−1 of every 

matrix in ϕ 

⎛
⎜⎝
⎛
⎜⎝

Aqq

⎞
⎟⎠
⎞
⎟⎠ are zero, which completes the proof. �

Theorem 6.2. Let A and B be Dq subalgebras of Mn(K) of types (n1, n2, . . . , nq) and 
(�1, �2, . . . , �q), respectively, with max-dim db’s. If A and B are isomorphic, then the q-
tuples (n1, n2, . . . , nq) and (�1, �2, . . . , �q) are equal and, using the notation in (6.1), the 
algebras Aii and Bii are isomorphic for every i, i = 1, 2, . . . , q.

Proof. We will use the notation in (6.1). Let ϕ : A → B be an isomorphism of the 
algebras A and B. As in Lemma 6.1, we have ϕ(CA) = CB, which implies the induced 
isomorphism ϕ : A/CA → B/CB. By Proposition 4.2, we identify the quotient algebras 
A/CA and B/CB with the direct products A11×A22×· · ·×Aqq and B11×B22×· · ·×Bqq

of the algebras Aii and Bii, i = 1, 2, . . . , q, respectively. As CB comprises all matrices 
with zero entries in the diagonal blocks, the inclusion

ϕ(0n1 × . . .× 0ni−1 ×Aii × 0ni+1 × . . .× 0nq
)

⊆ 0�1 × . . .× 0�i−1 × Bii × 0�i+1 × . . .× 0�q ,

follows from Lemma 6.1. Similarly, Lemma 6.1 applied to the inverse ϕ−1 yields

(ϕ)−1(0�1 × . . .× 0�i−1 × Bii × 0�i+1 × . . .× 0�q )

⊆ 0n1 × . . .× 0ni−1 ×Aii × 0ni+1 × . . .× 0nq
.

These two inclusions imply the equality

ϕ(0n1 × . . .× 0ni−1 ×Aii × 0ni+1 × . . .× 0nq ) = 0�1 × . . .× 0�i−1 × Bii × 0�i+1 × . . .× 0�q ,

and so the algebras Aii and Bii are isomorphic.
Next, since Aii and Bii are commutative subalgebras of Mni

(K) and M�i(K) (respec-
tively) with maximum dimension, it follows from Schur’s Theorem that

dimKAii = 1 +
⌊
n2
i

4

⌋
= 1 +

⌊
�2i
4

⌋
= dimKBii, (6.4)

which implies the equality ni = �i for any i = 1, 2, . . . , q. �

Note that in the equality (6.4) the assumption that Aii and Bii are commutative 
subalgebras of matrices with maximum dimension is essential. By Theorem 4.10 a con-

clusion related to that presented in Theorem 6.2 holds for Dq subalgebras A and B of 
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Mn(K) of types (n1, n2, . . . , nq) and (�1, �2, . . . , �q), respectively with max-comm db’s, 
if we assume that A and B are conjugated. In this regard, we pose the following two 
questions:

Question 6.3. Do there exist isomorphic Dq subalgebras A and B of Mn(K) of types 
(n1, n2, . . . , nq) and (�1, �2, . . . , �q), respectively, with max-comm db’s, which are not 
conjugated?

Question 6.4. Do there exist isomorphic Dq subalgebras A and B of Mn(K) of types 
(n1, n2, . . . , nq) and (�1, �2, . . . , �q), respectively, with max-comm db’s, such that ni �= �i
for at least one i?

Note that the paragraph preceding the two questions above implies that a positive 
answer to Question 6.4 would also answer Question 6.3 in the positive.

The next part of this section will lead us to a full characterization of isomorphisms be-
tween Dq subalgebras of Mn(K) with max-dim db’s if the field K is algebraically closed. 
Firstly, without this assumption on K, we will show that there exist non-isomorphic
Dq subalgebras of Mn(K) of the same type with max-dim db’s, and so the converse of 
Theorem 6.2 does not hold.

Lemma 6.5. Let A and B be Dq subalgebras of Mn(K) of type (n1, n2, . . . , nq) with max-
dim db’s, such that, for some j, nj is odd, nj ≥ 3 and the j-th diagonal blocks of algebras 
A and B are C1

nj
(K) and C2

nj
(K), respectively. Then A and B are not isomorphic.

Proof. Let nj1 =
⌊nj

2
⌋
, nj2 =

⌊nj

2
⌋

+ 1. Then nj1 �= nj2 and by (5.2), (5.3), (5.6) and
(5.7),

C1
nj

(K) = KInj
+
(

0nj1 Mnj1×nj2(K)
0nj2×nj1 0nj2

)

and

C2
nj

(K) = KInj
+
(

0nj2 Mnj2×nj1(K)
0nj1×nj2 0nj1

)
.

We first consider the case q = 2 and j = 1. Then the Jacobson radical J(A) of A
satisfies

⎛
⎝ 0n11 Mn11×n12(K) Mn1×n2(K)

0n12
0n2

⎞
⎠ ⊆ J(A) ⊆

⎛
⎝ 0n11 Mn11×n12 (K) Mn1×n2(K)

0n12
Mn2(K)

⎞
⎠ ,
and by Proposition 4.2,
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CA =
(

0n1 Mn1×n2(K)
0n2

)
,

implying that

dimK(J(A)CA) = dimK

(
0n11×n1 Mn11×n2(K)

0(n12+n2)×n2

)
= n11n2.

Similarly, dimK(J(B)CB) = n12n2. If the algebras A and B were isomorphic, then the 
images of the ideals J(A) and CA of A under any algebra isomorphism from A to B
would be the ideals J(B) and CB of B, respectively, and since the respective dimensions 
would be equal, we would have that

n11n2 = dimK(J(A)CA) = dimK(J(B)CB) = n12n2,

i.e., n11 = n12; a contradiction. Therefore, A and B are not isomorphic.
The case q = 2 and j = 2 is very similar to the above one. Instead of the dimensions 

of J(A)CA and J(B)CB we have to compare the dimensions of CAJ(A) and CBJ(B).
Now we assume that q > 2. Suppose (for the contrary) that ϕ : B → A is an isomor-

phism, and let ϕ : B/C2
B → A/C2

A be the induced isomorphism. (A similar strategy was 
followed in the proof of Theorem 6.2.) By x and y we denote the images of elements 
x ∈ A and y ∈ B in the quotient algebras A/C2

A and B/C2
B, respectively. Consider the 

subspace

Vj =

⎛
⎜⎝ J(Bjj)

⎞
⎟⎠CB

of the quotient algebra B/C2
B. Since, by assumption, Bjj = C2

nj
(K), we have that

J(Bjj) =
(

0nj2 Mnj2×nj1(K)
0nj1×nj2 0nj1

)
, (6.5)

and so by Proposition 4.2,

Vj =

⎛
⎜⎝ J(Bjj)

⎞
⎟⎠CB =

⎛
⎜⎝ J(Bjj)

⎞
⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n1 B12 0n1×n3 . . . 0n1×nq

. . . . . . . . .
...

. . . . . . 0nq−2×nq

. . . Bq−1,q
0nq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(6.6)
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We consider two possibilities, namely j < q or j = q, as we did above with the case 
q = 2.

Firstly, let j < q. Then, by (6.6),

dimKVj = dimK(J(Bjj)Bj,j+1)

= dimK

((
0nj2 Mnj2×nj1(K)

0nj1×nj2 0nj1

)
· Mnj×nj+1(K)

)
= nj2nj+1. (6.7)

Under an isomorphism of algebras, nilpotent elements are mapped to nilpotent elements, 
and so, invoking Lemma 6.1, we have the inclusion

ϕ(Vj) = ϕ

⎛
⎜⎝
⎛
⎜⎝ J(Bjj)

⎞
⎟⎠
⎞
⎟⎠CA ⊆

⎛
⎜⎜⎜⎜⎜⎜⎝

A1j A1,j+1 . . . A1q
...

...
. . .

...
Aj−1,j Aj−1,j+1 . . . Aj−1,q
J(Ajj) Aj,j+1 . . . Ajq

⎞
⎟⎟⎟⎟⎟⎟⎠
CA, (6.8)

where

J(Ajj) = J(C1
nj

(K)) =
(

0nj1 Mnj1×nj2(K)
0nj2×nj1 0nj2

)
. (6.9)

Since the diagonal blocks of CA are zero and the product of such elements in the quotient 
algebra A/C2

A is zero, it follows from (6.9) that

dimK

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

A1j A1,j+1 . . . A1q
...

...
. . .

...
Aj−1,j Aj−1,j+1 . . . Aj−1,q
J(Ajj) Aj,j+1 . . . Ajq

⎞
⎟⎟⎟⎟⎟⎟⎠
CA

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= dimK(J(Ajj)Aj,j+1)

= dimK

((
0nj1 Mnj1×nj2(K)

0nj2×nj1 0nj2

)
· Mnj×nj+1(K)

)
= nj1nj+1. (6.10)

We have thus found (see (6.7)) that dimKVj = nj2nj+1, and by (6.8) and (6.10), 
dimKϕ(Vj) ≤ nj1nj+1. However, these dimensions are equal, implying that nj2 ≤ nj1. 
This is a contradiction, since nj2 = nj1 + 1.

Lastly, let j = q. Now we need another argument, because in this case, by (6.6), Vj

is the zero space (and so dimK Vj = 0 = dimK ϕ(Vj)). Instead, we will compare the 

dimensions of the spaces Cq−1

A J(A) and Cq−1
B J(B). Note that
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⎛
⎜⎜⎜⎜⎝

0n1 A12 . . . A1q
. . . . . .

...
0q−1 Aq−1,q

J(Aqq)

⎞
⎟⎟⎟⎟⎠ ⊆ J(A) ⊆

⎛
⎜⎜⎜⎜⎝

A11 . . . A1,q−1 A1q
. . .

...
...

Aq−1,q−1 Aq−1,q
J(Aqq)

⎞
⎟⎟⎟⎟⎠

and ⎛
⎜⎜⎜⎜⎝

0n1 B12 . . . B1q
. . . . . .

...
0q−1 Bq−1,q

J(Bqq)

⎞
⎟⎟⎟⎟⎠ ⊆ J(B) ⊆

⎛
⎜⎜⎜⎜⎝

B11 . . . B1,q−1 B1q
. . .

...
...

Bq−1,q−1 Bq−1,q
J(Bqq)

⎞
⎟⎟⎟⎟⎠ ,

where J(Aqq) and J(Bqq) are as in (6.9) and (6.5), respectively, with j = q. Then, 
by Proposition 4.2, it is not hard to show that dimK(Cq−1

A J(A)) = n1nq2 and 
dimK(Cq−1

B J(B)) = n1nq1. We conclude, as before, that nq2 = nq1. This contradiction 
completes the proof. �

Theorem 6.6. Let K be an algebraically closed field, and let A and B be Dq subalge-
bras of Mn(K) of types (n1, n2, . . . , nq) and (�1, �2, . . . , �q), respectively, with max-dim 
db’s. Then A and B are isomorphic if and only if the q-tuples (n1, n2, . . . , nq) and 
(�1, �2, . . . , �q) are equal and the diagonal blocks Ajj and Bjj are pairwise conjugated 
for j = 1, 2, . . . , q. Moreover, for every j, j = 1, 2, . . . , q, there is exactly one kj such 
that Ajj and Bjj are conjugated with Ckj

nj (K).

Proof. Firstly, assume that the q-tuples (n1, n2, . . . , nq) and (�1, �2, . . . , �q) are equal and 
that the diagonal blocks Ajj and Bjj are pairwise conjugated for j = 1, 2, . . . , q. It follows 
from Theorem 4.10 that A and B are conjugated, and hence isomorphic.

Conversely, assume that A and B are isomorphic. By Remark 5.1, each diagonal 
block Ajj (respectively, Bjj) is conjugated by a matrix Xjj ∈ Mnj

(K) (respectively, 
Yjj ∈ M�j (K)) with some subalgebra Csj

nj (K) (respectively, Ctj
�j

(K)). We stress that, 
for the algebra Csj

nj (K), the number nj is exactly the number appearing in the se-
quence (n1, n2, . . . , nq) which is the type of A; similarly for the algebra Ctj

�j
(K). So, 

X−1
jj AjjXjj = C

sj
nj (K) and Y −1

jj BjjYjj = C
tj
�j

(K). Define the following block diagonal 
matrices:

X =

⎛
⎜⎜⎜⎜⎝

X11
X22

. . .
Xqq

⎞
⎟⎟⎟⎟⎠ , Y =

⎛
⎜⎜⎜⎜⎝

Y11
Y22

. . .
Yqq

⎞
⎟⎟⎟⎟⎠ .

It follows from Proposition 4.8 that A′ = X−1AX and B′ = Y −1BY are Dq subalgebras 

of Mn(K) of types (n1, n2, . . . , nq) and (�1, �2, . . . , �q), respectively, with max-dim db’s. 
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It is straightforward to check that the diagonal blocks of the algebras A′ and B′ are equal 
to Csj

nj (K) and Ctj
�j

(K), respectively. Since A and B are isomorphic, so are A′ and B′. 
Therefore, by Theorem 6.2, the q-tuples (n1, n2, . . . , nq) and (�1, �2, . . . , �q) are equal and 
the diagonal blocks Csj

nj (K) and Ctj
�j

(K) are isomorphic for j = 1, 2, . . . , q. By Remark 5.1
and the arguments preceding it, an isomorphism is possible only for equal blocks, or for 
pairs C1

nj
(K) and C2

�j
(K), or for pairs C2

nj
(K) and C1

�j
(K), with odd integer nj = �j ≥ 3. 

However, in the case of at least one pair of distinct blocks, Lemma 6.5 can be applied, 
and so A′ and B′ are not isomorphic; a contradiction. Consequently, Csj

nj (K) = C
tj
�j

(K)
for j = 1, 2, . . . , q, and so

X−1
jj AjjXjj = Y −1

jj BjjYjj ,

from which we get (XjjY
−1
jj )−1AjjXjjY

−1
jj = Bjj . Hence the diagonal blocks Ajj and Bjj

are conjugated for j = 1, 2, . . . , q, which completes the proof. �

Note that from Theorem 6.6 and Theorem 4.10 it follows that Dq subalgebras of 
Mn(K) of some types with max-dim db’s over an algebraically closed field K are isomor-
phic if and only if these subalgebras are conjugated.

Remark 6.7. For algebraically closed fields, we have another tool which can help to even 
better describe a Dq subalgebra A of Mn(K) of type (n1, n2, . . . , nq) with max-dim db’s, 
namely we can say that A is of type 

(
(n1, k1), (n2, k2), . . . , (nq, kq)

)
where for every 

j, j = 1, 2, . . . , q, the number kj appears as the superscript in Ckj
nj (K). It should be clear 

that kj depends on nj , as follows:

kj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if nj = 1;
1 or 2, if nj = 2;
1 or 2 or 3 or 4 or 5, if nj = 3;
1, if nj ≥ 4 and nj is even;
1 or 2, if nj ≥ 5 and nj is odd.

Moreover, the q-tuples of ordered pairs 
(
(n1, k1), (n2, k2), . . . , (nq, kq)

)
determine all Dq

subalgebras of Mn(K) of type (n1, n2, . . . , nq) with max-dim db’s up to conjugation (and 
isomorphism).

We have already shown that every Dq subalgebra of Un(K) with maximum dimension 
is a max-dim Dq subalgebra of Mn(K) of some type (n1, n2, . . . , nq) with max-dim db’s 
(see Corollary 4.9). With the help of Remark 6.7 we can almost precisely say what the 
diagonal blocks of this subalgebra look like when the field K is algebraically closed.

Corollary 6.8. Let K be an algebraically closed field, and let A be a Dq subalgebra of 

Un(K) with maximum dimension. Then A is a max-dim Dq subalgebra of Mn(K) of 
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some type (n1, n2, . . . , nq) with max-dim db’s, such that in form (1.10) each diagonal 
block Aii, i = 1, 2, . . . , q, satisfies one of the following conditions:

(1) Aii is equal to C1
ni

(K), with integer ni greater than or equal to 1,
(2) Aii is equal to C2

ni
(K), with odd integer ni greater than or equal to 3,

(3) Aii is conjugated with C2
2 (K), C3

3 (K), C4
3 (K) or C5

3 (K).

Proof. By Corollary 3.4 and Remark 6.7, there exists an invertible matrix Y ∈ Mn(K)
such that Y −1AY is a max-dim Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with 
the Cti

ni
(K)’s as max-dim db’s. By hypothesis, A is contained in Un(K), and we have 

that A = Y (Y −1AY )Y −1. By Proposition 4.8, A is a max-dim Dq subalgebra of Mn(K)
of type (n1, n2, . . . , nq) with max-dim db’s conjugated with the Cti

ni
(K)’s. A conjugation 

of Cti
ni

(K) is contained in Uni
(K), because A ⊆ Un(K), and so the conditions in the 

statement of the corollary follow from Proposition 5.2. �

7. max-dim Dq subalgebras of Mn(K) with max-dim db’s

In this section, we will describe the q-tuples (n1, n2, . . . , nq) such that A is a max-dim
Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with max-dim db’s, and we will provide 
examples illustrating our study.

All the results in this section are based on the description in [19, pages 251-253], 
including [19, Lemma 12 and Lemma 13], where it was shown that if n1, n2, . . . , nq are 
positive integers such that n1 + n2 + · · · + nq = n, then a Dq subalgebra of Mn(K) of 
type (n1, n2, . . . , nq) with max-dim db’s has maximum dimension if and only if, for all i
and j,

|ni − nj | =
{

0 or 2, if both ni and nj are even;
0 or 1, otherwise.

(7.1)

We recall and reformulate slightly the mentioned results in [19] by starting in Proposi-
tion 7.1 with a description of max-dim D2 subalgebras of Mn(K) with max-dim db’s, 
which follows directly from (7.1).

Proposition 7.1. Let n1 and n2 be positive integers such that n1 +n2 = n, and consider a 
D2 subalgebra of Mn(K) of type (n1, n2) with max-dim db’s. Then A is a D2 subalgebra 
of Mn(K) of maximum dimension if and only if one of the following possibilities occurs:

a) n is odd, and (n1, n2) = (�n
2 �, �

n
2 � + 1) or (�n

2 � + 1, �n
2 �).

b) 4|n and (n1, n2) = (n2 , 
n
2 ).

c) n = 2 and (n1, n2) = (1, 1).

d) n ≥ 6, n ≡ 2 ( mod 4) and (n1, n2) = (n2 , 

n
2 ) or (n2 − 1, n2 + 1) or (n2 + 1, n2 − 1).
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Invoking Proposition 7.1 and the examples of commutative subalgebras of Mn(K)
with maximum dimensions given in Section 5 (see (5.1)−(5.11)), we obtain the following 
examples of D2 subalgebras of M5(K) and M6(K) with maximum dimension.

Example 7.2. The max-dim D2 subalgebras of M5(K) with max-dim db’s are of types 
(2, 3) or (3, 2), for example,

K(e11 + e22) + K(e33 + e44 + e55) +

⎛
⎜⎜⎜⎜⎜⎝

0 K K K K

0 K K K

0 K K

0 0
0

⎞
⎟⎟⎟⎟⎟⎠ ,

K(e11 + e22 + e33) + K(e44 + e55) +

⎛
⎜⎜⎜⎜⎜⎝

0 K K K K

0 0 K K

0 K K

0 K

0

⎞
⎟⎟⎟⎟⎟⎠ .

In such a way we can construct 20 different max-dim D2 subalgebras of M5(K) of 
types (2, 3) or (3, 2) with max-dim db’s equal to Ci

2(K) or Cj
3(K), with i ∈ {1, 2}

and j ∈ {1, 2, 3, 4, 5}. By Theorem 6.2 and Lemma 6.5, these 20 different max-dim 
D2 subalgebras of M5(K) of types (2, 3) or (3, 2) with max-dim db’s are pairwise non-
isomorphic. If K is algebraically closed, then by Corollary 3.4 and Theorem 6.6, any D2

subalgebra of M5(K) with maximum dimension is conjugated with exactly one of them.
Similarly, the max-dim D2 subalgebras of M6(K) with max-dim db’s are of types (2, 4), 

(3, 3) or (4, 2). There are 29 such pairwise non-isomorphic subalgebras with diagonal 
blocks equal to Ci

2(K) or Cj
3(K), with i ∈ {1, 2} and j ∈ {1, 2, 3, 4, 5}, or C1

4 (K).

The procedure of determining q-tuples (n1, n2, . . . , nq), such that ni ≤ nj for all i < j

and such that a Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with max-dim db’s is a 
Dq subalgebra of Mn(K) with maximum dimension was discussed in Remark 15 of [19]. 
It starts with determining numbers satisfying |ni − nj | ≤ 1 (for s = 0 and t = 0 in the 
theorem below). Next, in some situations we can add 1 to some of the numbers in the 
q-tuple (n1, n2, . . . , nq) and simultaneously subtract 1 from some of the others numbers 
in such a way that condition (7.1) is satisfied.

The introductory paragraphs in Section 1 show that a max-dim Dq subalgebra of 
Mn(K) of some type (n1, n2, . . . , nq) with max-dim db’s has dimension equal to the 
expression in (1.6). It follows that a permutation which changes the (ordered) q-tuple 
(n1, n2, . . . , nq) give rise to a max-dim Dq subalgebra of Mn(K) of another type with 

max-dim db’s. Combining this observation with [19, Remark 15] we get the following:
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Theorem 7.3. Let A be a Dq subalgebra of Mn(K) of type (n1, n2, . . . , nq) with max-dim 

db’s. Write n = q
⌊
n
q

⌋
+ r, where r is the non-negative integer less than q in the Division 

Algorithm. Then A is a Dq subalgebra of Mn(K) with maximum dimension if and only 
if there exists a permutation σ ∈ Sq such that nσ(i) ≤ nσ(j) for all i < j and one of two 
possibilities occurs:

a)
⌊
n
q

⌋
is even and there exists a non-negative integer s, with s ≤

⌊
r
2
⌋
, such that

nσ(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⌊
n
q

⌋
, if 1 ≤ i ≤ q − r + s;⌊

n
q

⌋
+ 1, if q − r + s < i ≤ q − s;⌊

n
q

⌋
+ 2, if q − s < i ≤ q.

b)
⌊
n
q

⌋
is odd and there exists a non-negative integer t, with t ≤

⌊
q−r
2
⌋
, such that

nσ(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⌊
n
q

⌋
− 1, if 1 ≤ i ≤ t;⌊

n
q

⌋
, if t < i ≤ q − r − t;⌊

n
q

⌋
+ 1, if q − r − t < i ≤ q.

We conclude with two examples illustration the two parts of Theorem 7.3.

Example 7.4. We will find all 5-tuples (n1, n2, n3, n4, n5) with n1 ≤ n2 ≤ n3 ≤ n4 ≤ n5

resulting in a max-dim D5 subalgebra of M14(K) of type (n1, n2, n3, n4, n5) with max-dim 
db’s.

Using the notation in Theorem 7.3, we have n = 14, q = 5, 
⌊
n
q

⌋
= 2 and r = 4. Then, 

for s = 0, 1, 2, the 5-tuples (n1, n2, n3, n4, n5) are respectively equal to

(2, 3, 3, 3, 3), (2, 2, 3, 3, 4) and (2, 2, 2, 4, 4).

If we do not assume that the ni’s appear in increasing order, then we can permute them, 
which leads to 4, 5!

2!·2! − 1 = 29 and 5!
3!·2! − 1 = 9 more possibilities, respectively.

Similarly, we will find all the 7-tuples (n1, n2, . . . , n7) with n1 ≤ n2 ≤ . . . ≤ n7

resulting in a max-dim D7 subalgebra of M22(K) of type (n1, n2, . . . , n7) with max-dim 

db’s. Again, using the notation from in Theorem 7.3, we have n = 22, q = 7, 
⌊
n
q

⌋
= 3, 

r = 1. So, for t = 0, 1, 2, 3, the 7-tuples (n1, n2, n3, n4, n5, n6, n7) are respectively equal 
to
(3, 3, 3, 3, 3, 3, 4), (2, 3, 3, 3, 3, 4, 4), (2, 2, 3, 3, 4, 4, 4) and (2, 2, 2, 4, 4, 4, 4).
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In this case we have 6, 7!
4!·2! − 1 = 104, 7!

2!·2!·3! − 1 = 209 and 7!
3!·4! − 1 = 34, respectively, 

more sequences if we don’t assume that the ni’s appear in increasing order.
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