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A subalgebra of the full matrix algebra M, (K), K a field,
satisfying the identity [z1,y1][z2,y2] - [2q,Yq] = O is called
a Dy subalgebra of M, (K). In the paper we deal with the
structure, conjugation and isomorphism problems of maximal
D, subalgebras of M, (K).

We show that a maximal D; subalgebra A of M,(K) is
conjugated with a block triangular subalgebra of M, (K)
with maximal commutative diagonal blocks. By analysis of
conjugations, the sizes of the obtained diagonal blocks are
uniquely determined. It reduces the problem of conjugation of
maximal Dy subalgebras of M, (K) to the analogous problem
in the class of commutative subalgebras of M, (K). Further
examining conjugations, in case A is contained in the upper
triangular matrix algebra U, (K), we prove that A is already
in a block triangular form.

We consider the isomorphism problem in a certain class of
maximal D, subalgebras of M, (K) which contain all D4
subalgebras of M, (K) with maximum dimension. In case K is
algebraically closed, we invoke Jacobson’s characterization of
maximal commutative subalgebras of M, (K) with maximum
(K-)dimension to show that isomorphic subalgebras in this
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class are already conjugated. To illustrate it, we invoke results
from [19] and find all isomorphism (equivalently conjugation)
classes of D, subalgebras of M,,(K) with maximum possible
dimension, in case K is algebraically closed.
© 2024 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY-NC license (http://
creativecommons.org/licenses/by-nc/4.0/).
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1. Motivation, background and results on D, subalgebras of full matrix algebras

Throughout the sequel, all algebras are assumed to be associative unital and over a
field K. By a subalgebra of the full n xn matrix algebra M,,(K) we mean a K-subalgebra
of M, (K).

The main and direct motivation for the work presented here comes from [3], [19] and
[20]. In [3], Domokos deals with the identity

[z1,91] [x2,92] -+ - [24,Yg) = O (1.1)

in the context of subalgebras of M,,(K). Here, [z, y] denotes the commutator Lie product
xy — yx (also called the Lie bracket in the literature), and ¢ is a positive integer.

We note that M, (K) with the commutator Lie product plays an exceptional role in the
theory of finite-dimensional Lie algebras. The fundamental Ado-Iwasawa theorem (see
[6]) asserts that every finite-dimensional Lie K-algebra can be embedded into M, (K)
for some n > 1.

Finite dimensional basic algebras over algebraically closed fields play an important
role in the representation theory of Artinian algebras (see [1]). Such algebras satisfy
(1.1) for some g. An Artinian ring R satisfies (1.1) for some ¢ if and only if R/rad(R) is
commutative, in which case the index of nilpotency of rad(R) is an upper bound for the
least such g.

The identity in (1.1) has featured prominently in many other papers. See, for example,
[2], [10], [11] and [12]. It was proved in [10] that all the polynomial identities of the upper
triangular ¢ x ¢ matrix algebra U, (K) over a field K of characteristic 0 are consequences of



P. Matras et al. / Journal of Algebra 657 (2024) 159—-206 161

only one identity, namely the identity in (1.1). The case of any characteristic was handled
in [13] and [16], where it was shown that over an infinite field of any characteristic the
identities of Ug(K) follow from (1.1). When the field K is finite, then the identities of
U, (K) coincide with T'(K)9, where T'(K) is the T-ideal of the identities of the field K.
(It is well known that T'(K) is generated by the identity ™ — x, when |K| = m.) For an
explicit form of a finite set of generators of an ideal of identities of the algebra Uy (R)
over a commutative integral domain R, see [11]. Here U}(R) denotes the subalgebra of
U, (R) comprising all the matrices (in U, (R)) with constant main diagonal.

The 9 x 9 matrix algebra U3 (U§ (R)) over any commutative ring R was exhibited in
[12] as an example of an algebra satisfying the polynomial identity [[z1, 1], [z2, y2]] = 0
(Lie solvability index two), but none of the stronger identities [x1,y1][z2,y2] = 0 (the
identity in (1.1), with ¢ = 2) and [[z,y], 2] = 0 (Lie nilpotency index two). A Cayley-
Hamilton trace identity was exhibited in [12] for 2 x 2 matrices with entries in a ring R
satisfying [z1,y1][z2,y2]) = 0 and 3 € R. See also [17].

The Cayley-Hamilton theorem and the corresponding trace identity play a crucial role
(see [4] and [5]) in proving classical results about the polynomial and trace identities of
M,,(K). In case char(K) = 0, Kemer’s pioneering work (see [8]) on the T-ideals of
associative algebras revealed the significance of the identities satisfied by the n x n
matrices over the Grassmann (exterior) algebra generated by an infinite sequence of
anticommutative indeterminates.

If an algebra satisfies (1.1), then we say that it is Dy, and if a subalgebra of M, (K)
is Dy, then we say that it is a D, subalgebra of M,, (K).

Considering Dy, i.e., when ¢ = 1, we get exactly commutativity, which in the context
of subalgebras of M,,(K), features prominently in the cited literature (see, for example,
[7] and [15]). In particular, a classical result by Schur (see [15]) states that the maximum
K-dimension of a commutative subalgebra of M,,(K), with K an algebraically closed
field, is VTQJ +1. Here | | denotes the integer floor function. Schur’s result was extended
to an arbitrary field by Jacobson in [7]. We often write dimension instead of K-dimension.

If we say that an algebra 4 is maximal in an algebra £ with respect to some conditions
then we think about the inclusion relation. If, in the context of some class of subalgebras
of a finite dimensional algebra £, we say that .4 has maximum dimension, then we mean
that .4 has maximum possible dimension in the considered class.

The mentioned maximum dimension {%J +1 of a commutative subalgebra of M, (K)
is obtained by considering the subalgebra

KI, + <8j Mz()(f)) (1.2)

of M,,(K) if n is even (with n = 2¢, for some integer ¢), and by considering the subalgebra

KI, + O¢ My (e41) (K) (1.3)
O(e+1)xe O¢+1
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of M, (K) if n is odd (with n = 2¢ + 1). Here, for example, 0; and 0(41)x, denote the
¢ x ¢ and (£ + 1) x £ zero matrices, respectively.

Henceforth, when we consider a D, subalgebra A of M,,(K), then we always assume
that ¢ > 2 and that A is not Dy_1 (and hence not Dy).

The main result in [3] is the following:

Theorem 1.1. ([3, Theorem 1]) Let K be a field, and A a finite dimensional K -algebra
satisfying (1.1). If M is a finitely generated faithful module over A, then

. ldimK.qu
2 4q

In the proof of the above theorem, Domokos shows that, for the considered K-
algebra A,

1 ) . /n2 | n?
di < —(dimg M — < — | 1.
1mK.A72(1mK )*+q ;(2 LﬁlJ) (1.5)
for some positive integers nq,...,n, such that n; + -+ +ny = dimg M.

If one takes M = K™, then the right hand side in (1.5) takes the form

%(n1+---+nq)2+q—i<%?—VZ?D, (1.6)

=1

which equals the expression in (1.13) below, implying that the inequality in (1.5) is sharp.
In [3], the n;’s are mentioned as any numbers which guarantee that

jomunr -5 (41

=1

is a maximum. Evidently, such an g-tuple (n1,no,...,n,) exists, but it is not exhibited
in [3]. In this regard, we refer the reader to [19], where such an g¢-tuple is explicitly
described and the maximum is exhibited precisely:

Theorem 1.2. ([19, Theorem 14]) Let 1 < ¢ <n, and let n = ¢ {%J +7r,0<r<gq (withr

as in the Division Algorithm). Then the precise sharp upper bound for the dimension of
a Dy subalgebra of M,,(K) is
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which can be obtained by choosing q — r commutative subalgebras of M[ﬁj (K) of

taﬁ

dimension \‘

([3]+1)°

4

page 157]).

J + 1 and r commutative subalgebras of MPJH(K)

q

q

of dimension

+ 1 on the diagonal blocks for the algebra presented in (1.12) (see also [3,

In this vein we also draw the reader’s attention to [18], where the maximum dimension
of a Lie nilpotent subalgebra of M,,(K) of index m is obtained.
In general, if A is a subalgebra of M,,(K) and every matrix A € A is seen in the block

triangular form

All

A12
A22

Ay,
Agg

Aqq

where A;; € My, xn; (K) for all ¢ < j, then considering the set

it is important to note that

On,

Aq
Aii S Mm (K) :
0’!7,1 XNi—1 0’!7,1 XNng
Oni—l O”i—l XM
-/Tlii

Aq;

Aii

0n1 XNji41

O”i—l XMj41
Oni XMNji41

0

Mi41

Aig

A, | €A

A

qaq

On1 XMNg

O'I’Li71 Xng
01’7,1' Xng
OTL/L'+1 Xng

On

aq

(1.9)

need not be a subset of A. If the set in (1.9) is indeed contained in A for every i, i =

1,2,...

,q, then we say that the algebras A;; are independent.
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For example, every matrix A in the subalgebra

:a7b7c7d)€’f?g)h’p)q’/r78’t7u7v7wEK

O O O O O O o o9
O OO oo oo a o
S O OoOoOoOR O O

O O O O 8 T OO

SO OO O OO a0
O OO OO Q OO n
O OO Q2 Qa0 00 >

O Q. T oV R O «+ g
QAL OOV » 3+ & 2

of Ug(K) in [12, Corollary 2.2] can be written in the block triangular form

Al A Ass
A= Agp  Ass |,
Ass

with A;; € M3(K) for 1 <14 < j < ¢. In this example the three algebras A1, Agy and
A3z are not independent.

We will consider block triangular subalgebras of M,,(K) where the sizes of the diagonal
blocks play an important role:

Definition 1.3. For any positive integers nq, ..., ng, with ¢ > 2, such that ny+- - -4+n4 = n,
consider a block triangular subalgebra

A11 A12 Alq
Ay .. Ag

A= . , (1.10)
Aqq

of M,,(K) where

(1) Aj; is a subalgebra of M,,, (K) for every i,i =1,2,...,q,
(2) Aij = My, xn, (K) for all i and j such that 1 <4 < j <g, and
(3) all other entries are zero.

We call A a subalgebra of M, (K) of type (n1,na,...,nq). If A;; = M, (K) for all i,
then we call A the full subalgebra of M, (K) of type (n1,n2,...,ng).
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It is important to note that the notation in (1.10) means that for every i,i =1,2,...,¢,
O, Opixcnsy Oy, Onyxniss o Onyxny
On,;_, Oni_yxni Ong_ixnigr 0 Ongyxng
Aii On;xnigr = Onyxn, C A, (1.11)
Oniys o Oniyyxny
0,

q

and similarly, for all ¢ and j such that 1 < i < j < ¢, the subset of M,,(K) having A;;
(= My, xn; (K)) in block (i, j), and zeroes elsewhere, is also contained in A.

Remark 1.4. In the case when all the algebras A;;, i = 1,2,...,¢, on the diagonal blocks
of a subalgebra A of M, (K) of type (ni,ns,...,nq) are commutative, then for any
X,Y € A, the commutator [X,Y] is an element of

0n1 Mn1 Xno (K) Mn1 Xng (K) e Mnl Xng (K)

Onz Mn2 Xng (K) e Mn2 XMg (K)

My, xn, (K)

On

q

It follows that the product of any ¢ such commutators is zero, and so A is Dy.

This remark enables us to define three classes of D, subalgebras A of M, (K) of
type (n1,na, ..., ny) (for some g-tuple (n1, na,...,ny)). We stress that, for each of these
classes, all the subalgebras in the diagonal blocks are assumed to be commutative. Keep-

b2

ing this in mind, and using “max-comm”, “max-dim” and “db’s” as abbreviations for

W

“maximal commutative”, “maximum dimensional” and “diagonal blocks”, respectively,
we now state:

Definition 1.5. Let A be a subalgebra of M, (K) of type (ni,ns,...,nq) (see Defini-
tion 1.3), with every subalgebra A;; of M,,, (K) commutative, i = 1,2,...,q. Then A is
called a
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(1) Dg subalgebra of M, (K) of type (n1,n2,...,nq) with max-comm db’s if every A;;
is a maximal commutative subalgebra of M,,, (K), i =1,2,...,¢;

(2) Dy subalgebra of M, (K) of type (n1,no,...,n,) with max-dim db’s if every A;; is a
commutative subalgebra of M, (K) with maximum dimension (equal to V;J +1),
1=1,2,...,q;

(3) max-dim D, subalgebra of M, (K) of type (ni,ns,...,n,) with max-dim db’s if
every Aj;; is a commutative subalgebra of M,,, (K) with maximum dimension (equal
to {%QJ +1),7 =1,2,...,¢, and A is a D, subalgebra of M, (K) of maximum

dimension (as in (1.7)).

Note that, letting n,...,n4 as in Theorem 1.2, we obtain an algebra A as in Defini-
tion 1.5(3) by taking a subalgebra

An A . Ay,
A oo Ay

A= . , (1.12)
‘Aqq

of M,,(K) constructed in [3] with

4q 2
dimg A =g+ Z \‘%J + Z nin;. (1.13)
i=1

1<i<j<q

We draw the reader’s attention to the fact that a max-dim Dy subalgebra A of M,,(K)
of some type (n1,n2) with max-dim db’s such that A C U, (K) is called a typical Dy
subalgebra of U, (K) in [20].

After preparatory results in Section 2, we prove in Section 3 and Section 4 that, up
to conjugation, a subalgebra A of M,,(K) is a maximal D, subalgebra of M, (K) if and
only if A is a D, subalgebra of M,,(K) of (some) type (n1,ns,...,n,) with max-comm
db’s (see Theorem 3.2 and Theorem 4.3). Continuing our analysis of conjugations, we
show in Corollary 4.9 that in case A is a maximal D, subalgebra of M, (K) contained
in Uy, (K), then A is a D, subalgebra of M,,(K') of some type (n1,ns,...,nq) with max-
comm db’s. By examining in Theorem 4.10 when two D, subalgebras of M, (K) with
max-comm db’s are conjugated, we prove that the uniqueness of the mentioned tuple
(n1,n2,...,n4) and the pairwise uniqueness (up to conjugation) of the algebras in the
corresponding ¢ diagonal blocks are necessary and sufficient conditions.

Next, we will deal with the isomorphism problem of D, subalgebras of M,,(K) with
max-dim db’s. In Section 6, after giving an interpretation of these algebras in the light
of results from Section 3 and Section 4, we describe necessary conditions for two D,
subalgebras of M,,(K) with max-dim db’s to be isomorphic (see Theorem 6.2). Using
results from Section 5, where we clarify the structure of commutative subalgebras of
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matrix algebras over algebraically closed fields, as discussed in [7], we also provide in
Theorem 6.6 sufficient conditions for two D, subalgebras of M,, (K) with max-dim db’s to
be isomorphic, in case the field K is algebraically closed. It turns out that such isomorphic
subalgebras are already conjugated. In Section 7, we illustrate theorems obtained in the
previous one section on D, subalgebras of M, (K) with maximum dimension. In order
to do it, we recall results in [19] about the non-uniqueness of g-tuples (n1, na, ng, ..., ng)
which give rise to a max-dim D, subalgebra of M,, (K).

2. Block form of subalgebras of M,, (K ) with nilpotent ideal

In this section we will show (in Lemma 2.1) a block triangular form of subalgebras
of the matrix algebra M, (K) containing a nonzero nilpotent ideal (see also [14, The-
orem 1.5.1]). We provide a relatively detailed proof of Lemma 2.1 and illustrate it in
Example 2.3.

Lemma 2.1 will be invoked in Section 3, where we will prove (in Theorem 3.2) that
every maximal D, subalgebra of M,,(K) is conjugated with a D, subalgebra of M,,(K)
of type (n1,ns,...,nq) with max-comm db’s.

We conclude the section by showing (in Proposition 2.4) that every Dy algebra contains
a nonzero nilpotent ideal in a natural way.

Lemma 2.1. Let A be a subalgebra of M, (K), and let I be a nonzero nilpotent ideal of A
with nilpotency index q, i.e. I9 = 0 and 1971 # 0. Then q < n, and there exist natural
numbers ni, na, . .., ng such that Zgzl n; = n and an invertible matriz X € M,,(K) such
that X Y AX is a subalgebra of the full subalgebra of M,(K) of type (ni,na,...,ng).
Moreover, the ideal X 11X is contained in

0n1 Mn1 X1No (K) Mn1 XMns (K) e Mn1 XMgq (K)

Onz Mn2 Xng (K) U an X Mg (K)

an—l Xng (K)

an

Proof. Denote the vector space K™ by V. For i = 1,2,...,q, let n; = dimgI?'V/
1971V with IV = V.

By definition, ny = dimgl9 'V/IV = dimgI? 'V, since 19 = 0 (and hence
19V = 0). Next, 197!V is a K-subspace of I972V, and so ny + ny = dimg 971V +
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dimKIq_2V/Iq_1V = dimgJ972V. Inductively, assume that ny + no + --- + n; =
dim g I9~%V for some positive integer i < ¢. Since I97%V is a K-subspace of 1971V we
conclude that

ny+ne+--+ N1 = dimg I97V + Nit1

= dimg IV + dimg [T V/ 197 = dimg 191V

Hence nq+na+---+n; = dimg I97'V fori = 1,2, ..., ¢; in particular, ny +nao+- - -+ngy =
dimgV = dimg K™ = n.

We have the following sequence of K-subspaces of V:
0CIT'VCIT?VC...CIVCV. (2.1)

Using the assumption that 19 = 0 and 197! # 0, we will show that all the inclusions
in (2.1) are proper. Suppose that 1971V = 0 or [977V = [977=1V for some j, 1 < j <
q — 1. Then

0=11 =[FI17V)=F11777v) = 1171y,

and so from V = K™ we conclude that I9~! = 0 (otherwise some matrix in 19! would
have a nonzero entry in some row, which would in turn imply that 197!V # 0); a
contradiction. This establishes the proper inclusions. Thus,

1 <dimgl?'V, 2 <dimgI?%V, .-, ¢—1<dimglV, ¢ < dimgV = n.

Now, using the sequence of K-subspaces in (2.1), we define a basis B = (v1,va,...,vy,)
for the K-space V in the following way:

Start with a basis (v1,va,...,v,,) for the K-space I9'V (keeping in mind that, by
definition, dimg 197V = ny). Next, IV is a K-subspace of I772V  and dimx [772V =
ny + ne. So, take vectors vy, 41,Vn, 42, -+, Uny+n, such that (vi,va,...,Un, +n,) is a ba-
sis for 1972V, Continuing in this way, we construct a basis B = (v,vs,...,v,) for
the K-space V, where (v1,v2,...,Un, 4nyt-+n;) is a basis for the K-space 197V, i =
1,2,...,q—1.

Now we take an arbitrary matrix Y € A. Let ¢: V — V be a linear map such that
the (transformation) matrix of ¢ with respect to the standard basis E := (eq, ea,...,€p)
for Vis M(p)E =Y. (Note also that we have vectors vy, vg, ..., v, written in terms of
E). As I is an ideal of the algebra A, we have Y (I971V) C A(I9'V) C 197!V Since
(v1,v2,...,0p,) is a basis for 971V for any i = 1,2,...,n; we can write

©(v;) = Yv; = Y101 + y2iv2 + - + YnyiUni

for some scalars y;; € K with 1 <4, j < ny. Similarly, Y (I972V) C A(I972V) C [172V,
and (v1,va,...,Vn,4n,) is a basis of the K-space 1972V, and so for j = ny; + 1,n; +
2,...,n1 + no we can write
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P(vj) = Yvj = y1;01 + Y202 + - .. + Yni4n,jVn; 40

for some scalars yp; € K with 1 <k <ni+ng (andni+1<j <y +n32). Continuing in
this way, we eventually simply have that YV C V' and with (v, ve,...,v,) being a basis
for V, we can therefore, for [ =ny +no+---+ng_1+1,ni+no+---+ne_1+2,...,n,
write

o(v) =Y = yuvi + yave + ... + Ynin,

for some scalars y,;, with 1 < m < n (and nqy +ng +--- +ng_1 + 1 <1 < n). Hence,
using the notation

Ny :=nq and Ny:=ny+---+n;, 1 =2,...,q,

which implies that N, = n, the matrix M B(¢) of the linear map ¢ with respect to the
basis B is the following:

Yyir - Yimy Y1,ny+1 Y1,N, Y1,Ng_1+1 Y1,N,
yn'] S yn;ﬁh Yn, ,;h +1 e y"l',Nz y"la]\f.q—l‘*'l LR y’nlh,Nq
Yni+1m+1 " Yny+1,Np .- Yni1+1,Ng_1+1 Yni+1,N,
yN27;11+1 s yNQ.aNQ yNij\/.q—l+1 s yN;;.,Nq
qu,1+1',Nq,1+1 qu,1.+1,Nq
qu,N.q,1+1 qu',Nq

Consequently, ME(yp) is an element of the full subalgebra of M, (K) of type
(n1,n2,...,nq). From the change-of-basis formula

Mg () = M(id)ig - M(¢) - M(id)g = M(id)g - Y - M(id),

where the change-of-basis matrix M (id)% is the matrix with vector v; written in the
j-th column, j = 1,2,...,n, and M(id)E = (M(id)5)~!. Since Y was an arbitrary
matrix of A, we have proved that the algebra X ~'AX is in block triangular form, with
X = M(id)E.

In order to complete the proof, it remains to show that matrices from X ~'7X have
diagonal blocks only with zeros. Take an arbitrary matrix Z € I. Let ¢»: V — V be a
linear map such that the (transformation) matrix of ¢ with respect to the standard basis
E for V is M(v)E = Z. Since 17 = 0, it follows that Z(19-1V) C I(197'V) = 0, and so,
with (vi,vs,...,v,,) being a basis for 1971V, we have, for i = 1,2,...,ny,

w(vi) = Zvi =0.
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Next, Z(I1972V) C I(I?72V) = [971V. Then for j = ny + 1,n1 +2,...,n1 +na (= Na)
we can write

d)(’l)j) = Z’Uj = Z1;V1 + 225V2 + ...+ Zny,jVUn,

for some scalars z; € K with 1 <k <n; (and ny +1 < j < ny + ng), because the ba-
sis (v1,v2,...,0y,) for I971V was expanded to the basis (v1, ..., Vny, Unyt1s- -5 Unytny)
for 1972V, The pattern should now be clear from the arguments above, which leads us
to concluding that the matrix MZ (1) of the linear map 1 with respect to the basis B
is the following:

0 ... 0 21,ny41 -+ 21,Ny 21,Ng+1 -+ Z1,Ng - Z1,Ng_1+1 Z1,Ng
0 o 0 2ny,ny+1 = Zny,Ny Zny,Na+1 = Zng,Nz - Zng,Ng_j+1 Zny,Ng
0 0 Zny+1,Ng+1 - Zng+1,N3 -+ Zng+1,Ng_j+1 - Znj+1,Ng
0 0 ZNg,Na+1 -+ ZN,N3 - ZNg,Ng_1+1 ZNg,Ng
ZNg_o+1,Ng_1+1 -+ ZNg_o+1,Ng
ZNg_1,Ng_1+1 =+ ZNg_1,Ng
0 0
0 0

Hence, ME(¢) is in the strictly upper block triangular part of the full subalgebra of
M, (K) of type (n1,n2,...,nq). O

Remark 2.2. The numbers nq,ns,...,nq, of Lemma 2.1, defined in the first line of the
proof, are determined by algebra A and the dimensions of space V and subspaces 'V
fori=1,2,...,9—1, where V = K".

Note that every finite dimensional K-algebra A can be identified with a subalgebra
of M, (K), for n < dimg.A. To do this we can use, for example, a regular representation.
The Jacobson radical J(.A) of a finite dimensional algebra A is nilpotent (see [9, Theorem
4.12] for the broader class of Artinian rings), and so after such identification of A with
a subalgebra of M,,(K) we can find an algebra in block triangular form (as in the above
lemma) which is a conjugated of A.

In the following example we start with the finite dimensional algebra A =
My (K [z]/(2?)). After identification with a subalgebra of matrices, the algebra A is
conjugated with subalgebra of a block triangular matrices. We will describe the obtained
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blocks and see some “dependence” between them in the sense of the definition below
formula (1.9). By T we will denote the image of € K|[z] in the natural homomorphism
to the quotient algebra K|[z]/(z?).

Example 2.3. Let A be the finite dimensional algebra My (K[z]/(2?)). Since, for any
natural number n, the Jacobson radical satisfies J(M,,(A)) = M,,(J(A)) (see [9, point
(7), page 57]), we have J(A) = Ma(J(K[x]/(2?)) = Ma(KZ), which implies that J(A) is
a nonzero ideal with (J(A))? = 0. Using the identification of an arbitrary element a + bz

in K[x]/(z?) with the matrix g b € My (K) we will treat (the 8-dimensional) K-
a

algebra A as the subalgebra of My (K) comprising all matrices of the form

air bir a2z biz
0 ail 0 ai12

, 9.2
az1  bar a2 (2:2)
0 a1 0 ao

where a;;,b;; € K for 1 <+4,7 < 2. With this identification, we have
0 b1 0 b2
0O 0 0 O
J(A) = b e K . 2.3
( ) O b21 O b22 J ( )
0O 0 0 O

Now we are ready to use Lemma 2.1. With 2 being the nilpotency index g of J(A),
and with V = K* we have J(A)V = span(ey,es), and so, following the notation
in Lemma 2.1, we have n; = dimg J(A)V = 2 and ny = dimg(J(A))°V/J(A)V =
dimg V/J(A)V = 2. By Lemma 2.1, there exists an invertible matrix X € My(K) such
that X1 AX is a subalgebra of the full subalgebra of My(K) of type (2,2) which is
<M2<K> My(K)

, and such that the ideal X~ 1J(A)X is contained in the strictly
M (K)

02 Mz(K)
02
In order to find such an X we follow the proof of Lemma 2.1. We start the construction

of a basis B for V by first finding basis vectors for J(A)V. As J(A)V = span(eq,e3),
we take (e1,e3) as a basis for J(A)V. As ¢ = 2, the second step is the last step, and in

upper block triangular part

it we expand the basis (e1,e3) to a basis for V| by using e; and ey, i.e., we take B as
(e1,€3,€2,e4). An arbitrary matrix

a1 bin aiz big
0 ail 0 a12
az1  bor  aze  bao
0 ag1 0 ao9
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from algebra A, treated as a linear map in the canonical basis (eq, es, e3,€4), has

ai; a2 by bio
a1 aze bay by
0 0 ail ai2
0 0 as1 as2

as transformation matrix with respect to the basis B. It is obtained by conjugation with
the matrix

S O O
o = O O
o O = O
_ o O O

of vectors eq, e3, ea, e4 written in the first, second, third and fourth column, respectively.
Ann A

A
and Ajs are any matrices from My (K). Importantly, the two matrices in the diagonal

Consequently, every matrix A € X ' AX is in the block form , where Aqq

blocks are equal (denoted here by Aq1). Since every matrix in J(.A) has entries a;; = 0
0y Ma(K)
02
Note that this example shows an interesting isomorphism, namely conjugation of the
algebra My (U3 (K)) with the algebra Us(Ms(K)).

(see (2.2) and (2.3)), we have X 1J(A)X C

For a D, algebra A, we denote the ideal of A generated by the set {[z,y]: =,y € A}
of commutators in A by C4.

Proposition 2.4. If A is a Dy algebra, then C% = 0 and q is the nilpotency index of C4.
If, in addition, A is a subalgebra of M, (K), then q¢ < n.

Proof. In order to show that the ideal C4 is nilpotent with C% = 0, take an element
x € Cy4 of the following form:

Tr=ry- [331791]'7”2'[$2,y2]'~-~'7"q'[$qayq] “Tg+1-

Since C% comprises (finite) sum of elements of this form, it suffices to show that z = 0.
For any a,b,r € A we have the identity [a, rb] = [a,7]b + r[a, b], and so

rla,b] = [a, rb] — [a, r]b.

Applying the last equality to x1,y1,71, we have
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e[z y] o re s (w2, 2] g [, Yl T

= ([zr, ] = [w1,m1]yn) -r2 - [22,92] oo g - [2g, Yg] - T
= [z, ran] - re - [w2,0] g - [yl e

— w1, ]y - [xo,y2] - rs - [w3, 3] T [T, Ygl T

Next we can write

(1, 7191 -2 - [w2, 9] T3 - [23,y3] T g [T, Y] Tt
= [z, ] - ([w2,r2p2] — (@2, 72]y2) - 73 - (w3, y3] - ra o rg - (g, Yl - Tgn
= [z1, ry1][z2, roye] - T3 - (T3, ys] - Ta - [Ta,ya] T (g Ygl - T
= [z1,myl[ze, ro] - yors - [w3,y3] - Ta [Tasya] g [T, Yg) g
and
[z1,71] - yar2 - [2,92] 73 - [T, 98] g [Ty Ygl Tt
= [z1,71)([x2, yaraye] — [w2, yaralye) 13- (w5, ys3] - g [Tgs Ygl - Taa
= @1, m][22, y1r2ye] - v - (23, ys] v [wasya] oo rg [T, yg) g
— [z1,m1][w2, y17a] - yars - [x3,y3] - T4 [Ta,ya] g [T, Yg) - Tt

Continuing is this way, it is evident that x can be written as a sum of elements of the
form

([, villw, vs] - - [, vy

for some x7, 9,75, Y5, . .., Ty, Yy, 7 € A. Such elements are all equal to zero, because A
is a D, algebra. Hence, C% = 0.

Recall from the discussion preceding Theorem 1.1 that we always assume that ¢ > 1
and that D, algebra A is not a D,_; algebra. So ¢ is the nilpotency index of C 4.

If, in addition, A is a subalgebra of M, (K), then it follows from Lemma 2.1 that
qg<n. O

Obviously, Proposition 2.4 implies the following fact:

Corollary 2.5. For every positive integer n there are not Dy subalgebras of M, (K) for
every q¢ > n.

3. Maximal D, subalgebras of M,,(K) are conjugated with D, subalgebras with
max-comm db’s

In this section we will characterize, up to conjugation, maximal D, subalgebras of
M,,(K), in particular these with maximum dimension.
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We will show in Theorem 3.1 that every D, subalgebra of M,,(K) is conjugated with a
subalgebra of a full subalgebra of M,,(K) of type (n1,n2,...,nq), and it possesses some
interesting additional properties.

Using this result we prove in Theorem 3.2 that every maximal D4 subalgebra of M,, (K)
is conjugated with a D, subalgebra of M,,(K) of type (n1,ns,...,ny) with max-comm
db’s.

We then conclude in Corollary 3.4 that every D, subalgebra of M,, (K) with maximum
dimension is conjugated with max-dim D, subalgebra of M,,(K) of type (n1,n2,...,nq)
with max-dim db’s.

Theorem 3.1. Let A be a D, subalgebra of M, (K). Then there exist positive integers
n1,N2, ..., Ng, such that Y7, n; = n and an invertible matriz X € M, (K), such that
every matriz A’ in the algebra A' = X1 AX is in block triangular form

A Al LAl
Al o Al
o M) 3.1
Alq

where Aj; € My, xn;(K) for all i and j such that 1 < i < j < q (and other entries
are zero) and A'y;, defined in (1.8), is a commutative subalgebra of M,,(K) for every
i i=1,2....q.

Proof. By Proposition 2.4, Cz‘ =0, where C4 is the ideal of A generated by all commu-
tators in A, and ¢ is the nilpotency index of C4. Recall from the discussion preceding
Theorem 1.1 that we always assume that ¢ > 1. Thus, by Lemma 2.1, there exists an
invertible matrix X € M,,(K) such that every matrix A’ in the algebra A’ = X "1 AX is
in the block triangular form (3.1), and the ideal X "'C4X of the algebra A’ comprises
zero matrices in the diagonal blocks.

It remains to show that, for i = 1,2,...,q, the subalgebra A’";; of M, (K) is com-
mutative. Firstly, we will say more about the structure of the ideal C 4 generated by
all commutators [z,w], z,w € A’. Since conjugation is an isomorphism of algebras, it
follows readily that the ideal X ~'C4X is equal to C 4. Therefore

0n1 Mnlxng(K) Mn1><n3(K) Mnlan(K)

Ony  Mugung(K) = Mugsny (K)
Ca C

"My g (K

0]

g
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To complete the proof let X;;, Y;; € A;;. Then, by the definition, there are block
triangular matrices X,Y € A’ such that

X11 Xh‘ X1q Yil Yh‘ Yiq
X = X“ ce Xiq and Y = szz .. }/iq
qu }/qq

The commutator [X,Y] has the matrix [X;;,Y;;] in the i-th diagonal block. Since we
showed in the preceding paragraph that the diagonal blocks of the ideal generated by
all commutators of A’ are zero, we conclude that [X;;, Y;;] = 0,,,, which completes the
proof. O

Next we show that if, in addition, A is a maximal D, subalgebra of M,,(K), then the
obtained algebras A’;; above are independent (see the definition below formula (1.9)).
To be precise, we have the following characterization:

Theorem 3.2. Let A be a mazimal Dy subalgebra of M, (K). Then there exists an invert-
ible matriz X € M,,(K) such that X' AX is a D, subalgebra of M, (K) of some type
(n1,m2,...,nq) with maz-comm db’s.

Proof. By Theorem 3.1, there exists an invertible matrix X such that every matrix
A'e A/ = X1 AX is in block triangular form

/ li /
Ay Al L A,
i /
Ay oAb,

. bl
/
Aqq

where Agj € My, xn, (K) for 1 <i < j < g and each A’ is a commutative subalgebra of
Let B be the subalgebra of M, (K) of type (n1,n2,...,nq) equal to

Wll Mnl XnQ(K) Mnl Xng (K) Mnl X?Lq(K)

W22 M'n,2><n3 (K) Mn2><nq (K)

. an—l an(K)

7
‘A‘Z’I
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Note that by Remark 1.4 B is a D, subalgebra of M, (K). Since A is a maximal D,
subalgebra of M, (K), it follows that A" = X' AX is also a maximal D, subalgebra
of M,,(K). So from the inclusion A’ C B we obtain the equality A’ = B

In order to complete the proof we will show that each A;; is a maximal commutative
subalgebra of M, (K). Suppose, for the contrary, that, for some j € {1,2,...,q}, the
diagonal block ij is properly contained in a commutative subalgebra C}; of M, (K).
Then changing .71]-]- to Cj; produces a Dy subalgebra of M, (K') properly containing A’,
a contradiction. It completes the proof. O

Remark 3.3. Similar to Remark 2.2, the g-tuple (n1,n9,...,nq) obtained in the proof of
Theorem 3.2 is determined by the dimensions of the vector space V and the subspaces
CQV fori=1,2,...,q, where V = K™ and C4 is the ideal generated by all commutators
of the maximal D, subalgebra A of M,,(K).

We will show in Theorem 4.10 that two D, subalgebras of types (n1, ng,...,nq) and
(01, 0o, ..., q) with max-comm db’s are conjugated if and only if (n1,n2,...,n4) =
(01,4s,...,44) (ie., the g-tuple is uniquely determined) and the diagonal blocks of the
D, algebras are pairwise conjugated.

In summary, with an arbitrary maximal D, subalgebra A of M, (K) we can associate
exactly one tuple (ni,ns,...,ny) such that A is conjugated with a D, subalgebra of
M,,(K) of type (n1,n2,...,n,) with max-comm db’s.

If Ais a D, subalgebra of M,,(K) with maximum dimension, then by Theorem 3.2,
A is conjugated with a D, subalgebra A" of M,,(K) of some type (ni1,ns,...,n,) with
max-comm db’s. As in the proof of Theorem 3.2, if one of the diagonal blocks A;»j of
A’ is not a commutative subalgebra of M,,, (K) with maximum dimension, then we can
change this block and obtain a D, subalgebra with dimension greater than that of A’.
This contradiction yields to following result:

Corollary 3.4. Let A be a D, subalgebra of M, (K) with mazimum dimension. Then there
exists an invertible matriz X such that X ' AX is a maz-dim D, subalgebra of M, (K)
of some type (n1,ne,...,nq) with maz-dim db’s.

4. Structure of D, subalgebras with max-comm db’s

In Section 3 (see Theorem 3.2) we showed that every maximal D, subalgebra of M,, (K)
is conjugated to a D, subalgebra of M,,(K) of type (n1,n2,...,nq) with max-comm db’s.
In the present section, in Theorem 4.3, we will prove that the converse is also true.

Next, we will further analyze conjugations of D, subalgebras of M,,(K). In Proposi-
tion 4.8, we will establish that conjugation, which satisfies some additional properties,
of a D, subalgebra of M, (K) of any type (n1,no,...,ny) with max-comm db’s is also
a D, subalgebra of M, (K) of the same type with max-comm db’s. A consequence is
Corollary 4.9, in which we will show that if A is a maximal D, subalgebra of M,,(K)
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contained in U, (K), then A is a D, subalgebra of M, (K) of some type (n1,ns,...,nq)
with max-comm db’s. It leads us to a negative answer to Question 9 posed in [20].
Using Definition 1.5 and the paragraph immediately following it, we can rephrase the
mentioned question as follows:

Question 4.1. [20, Question 9] For a field K, is there, for some n, a Dy K-subalgebra of
the upper triangular matrix algebra U, (K) with maximum dimension 2 + {%J which

is not a max-dim Dy subalgebra of M,,(K) of some type (n1,n2) with max-dim db’s?

In the same paper (see [20, Theorem 15]), a block triangular structure as in max-dim
D, subalgebras of M,,(K) with max-dim db’s was proven for Dy subalgebras of M, (K)
with maximum dimension which are contained in U, (K) and satisfy some additional
conditions. Corollary 4.9 generalizes this result.

Moreover, from Proposition 4.8 we obtain Theorem 4.10, which says that any D,
subalgebras A and B of M, (K) with max-comm db’s A;; and B;;, respectively, i =
1,2,...,q, are conjugated if and only if they are of the same type and for each i, ¢ =
1,2,...,q, Ai; and B;; are conjugates. It reduces the conjugation problem of maximal D,
subalgebras of M,,(K) to the conjugation problem of commutative subalgebras of M,(K),
for ¢ =1,2,...,n — 1. We will discuss the obtained result in Section 5, restricting our
attention to algebraically closed fields.

Recalling Proposition 2.4, the first result in the present section describes powers of
the ideal C4 generated by all commutators of a D, subalgebra A of M, (K) of type
(n1,n2,...,nq) with max-comm db’s.

Proposition 4.2. If A is D, subalgebra of M, (K) of type (n1,n2,...,nq) with maz-comm
db’s, then, fori=1,2,...,q—1,

O7L1 e 0n1 XNy M7L1 XNt (K) e M?’Ll Xng (K)

Cf4 an,ian(K)

0

Ng—it+1XNgq

aq
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Proof. We start with i = 1. Keeping in mind that the diagonal blocks of a D, subalgebra
of M,,(K) of type (n1,n2,...,n,) with max-comm db’s are commutative, the inclusion

0n1 Mnlxnz(K) Mnlxns(K) Mnlan(K>

0712 anxna(K) e Mngan(K)

Ca C
an71 XMNg (K)
On,
is immediate.
= 1), let j be any positive inte-

In order to show the converse inclusion (for i
ger such that j < ¢, and take arbitrary matrices X i1 € My, xn,,, (K), Xj 42 €

(K), ..., Xjq € My, xn, (K). Then

Mnj XMj42

I, and On; | Xjjs1 Xijq

J

are elements of every D, subalgebra of M,,(K) of type (n1,ns,...,n,) with max-comm

db’s and so, since

In, Ony | Xjge1 oo Xjg | = | Oy | Xjjr - Xjg |
On, | Xjit1 - Xjg L, | | =0n,
it follows that
On; | Xjj+1 Xjq | = Ing | || [ Oy | X1 Xjq || €Ca

As j and the matrices X j11, Xj j+o, ..., X;q were arbitrary, the mentioned inclusion

has been established.

The form of the ideal Cf4, fori=2,...,q — 1, is now evident. [J
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With the help of Proposition 4.2 we are ready to prove the first of the main results
of this section. Henceforth, e;; denotes the matrix unit which has 1 in position (¢, j) and
zeroes elsewhere.

Theorem 4.3. Let A be a D, subalgebra of M,,(K) of type (n1,ng, ... ,ng) with maz-comm
db’s. Then A is a mazimal D, subalgebra of M, (K).

Proof. Suppose, for the contrary, that a D, subalgebra A of type (n1,na,...,n,) with
max-comm db’s A;;, ¢ = 1,2,...,¢q (using the notation (1.10)), is not a maximal D,
subalgebras of M,,(K). The block structure (1.10) of the algebra A will be essential to
the proof.

Let B be a maximal D, subalgebra of M,,(K) properly containing A. So we can find
a matrix X € B\ A. Write it in the block form

X ... Xy
: A (4.1)
Xg .. Xy
where X;; € My, xn; (K), 1 < 4,5 < g. Note that the numbers n; are the same as
those in the definition of the type of subalgebra A. Subalgebra A contains idempotents
By =% " ¢€;and Ej = ZEV;Nj_1+1 e;; for j =2,3,...,q, where N; = nq+no+---+n;.
So they also belong to B. It follows that for all indices 1 < i, j < g, the matrices E; X E;
are in B. These matrices in the form (4.1) have X;; in their ¢-th row and j-th column, and
0 everywhere else. We conclude that there exists a matrix Z in the ideal Cz generated
by all the commutators of B, such that, written in the block form analogous to (4.1),

has exactly one nonzero block Z,.,, where r and s satisfy 1 < s <r <g.
From the definition of A follows that X ¢ A if and only if either there exists ¢ > j
such that X;; is a nonzero matrix or there exists k € {1,2,...,q} such that Xpp & Axk.
In the first case, for matrix Z we can take E; XFE;;. This matrix belongs to Cgz,
because Ey; X Ej; = [Ey;, E;; X Ejj]. In the other case, Xii & Agk. Since Ay, is a maximal
commutative subalgebra, there exists a matrix Yir € Agr such that the commutator
[Xkk, Yir] is nonzero. Let Z be defined as follows:

Nk—1

7 = ka; 5 Ykk

Nk41

Then Z € Cg, with the only nonzero Z,s € My, xn, (K),1 < s <1 < g, in the form
analogous to (4.1), exists. Let z;, 1 < i < n,, 1 < j < ng, be a nonzero entry of
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the matrix Z,.;. Note that in matrix Z it is entry (N,_1 + ¢, Ns_1 + j), where N,_; =
ny+mng+...+n.—1and Ng_y =n3 +ng+ ... +ns_1 (with Ny := 0). Assume firstly
that r € {1, ¢}. Then

e1,N,_1+i L €N, _1+jn = Zijein 7 0.

By Proposition 4.2, €1 v, ,+i € (C4)" ! and en, ,4jn € (Ca)7%, where C4 is the ideal
generated by all commutators [z,y], x,y € A. Since B contains A, we have that Cz also
contains C 4, and so

zijeij € (Cp)" - Cp - (Cp)T % = (Cp)"T ") = {0}.

The above equality holds because » — s > 0 and by Proposition 2.4, C = {0}. It is a
contradiction, since z;; 7# 0.

When r = 1, then Z;; is the nonzero block of matrix Z. By Proposition 4.2, e;, €
Cj_l C C%_l, and so the product Z - e;, in Cp ~Cg,_1 = Cf is zero. However, Z - ej,, has
as its n-th column the j-th column of Z, the latter column being nonzero, which is a
contradiction.

Finally, if r = ¢, then Z,, is the nonzero block of the matrix Z. In this case the first
row of the matrix €1,Ny_1+i" &> where Ny_1 = n1 +ng+---+n4-1, is nonzero. Similarly,
it leads to a contradiction, which completes the proof. [

Note that conjugation of a maximal D, subalgebra of M, (K) is still a maximal D,
subalgebra of M,,(K), and so, by Theorem 4.3 and Theorem 3.2, we have the following;:

Corollary 4.4. An algebra A is a mazimal D, subalgebra of M, (K) if and only if it is
conjugated with a Dy, subalgebra of M, (K) of some type (n1,na, ..., ny) with maz-comm
db’s.

In the rest of this section we will examine conjugations, which satisfy some additional
properties, of a D, subalgebra of M, (K) of some type with max-comm db’s. We need
the following result involving some matrix equations:

Lemma 4.5. Let r, s and t be positive integers, and let Y € M,y (K), W € M;y:(K),
with W # Osxt. If YZW = 0,1t for all Z € Myxs(K), then Y = 0.

Yir oo Yt w1 ... Wit
Proof. Write Y = N 7 G .|, with (say) wy; # 0 (for
Yr1 oo Yrt Ws1 - Wst
some indices ,7, with 1 <7 < s, 1 < j < ). Consider the matrix unit ex; € Myxs(K)
for any fixed k, 1 < k <.
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By assumption and direct calculation, we have

Y1ewil ... Y1kWi; ... Y1eWit
YorwWil ... Y2rWi5 ... Y2RWit

Orxt = Yep W = ) , ) . . ) (4.2)
YreWil - .- YrkWis ... YrpWit

and so, since w;; # 0, we conclude that

Yik =Yok = ... = Yrk =0,

i.e., the k-th column of Y is zero. As k was arbitrary, we conclude that Y = 0,.»;. 0O

Since det(X) = det(X11)-det(Xa2) if X is a block triangular matrix X X ) ,

Mo XNy X22
where X117 € M, (K), Xao € M,,,(K), X12 € My, xn,(K), with n; and ny positive
integers, it is evident that X;; and Xso are invertible if X is invertible, and direct
matrix multiplication yields

-1 —1 -1
x-1— X1 — X7 X12Xy ) (4.3)
0”2><TL1 X2_21
Lemma 4.6. Let ¢,n1,n2,...,n, and n be positive integers such that ni+no+---+ny = n,

and let A be a subalgebra of M, (K). If
0n1 Mnl X1Ng (K) Mn1 Xn3 (K) o Mn1 Xng (K)

OTL2 MTL2 Xng (K) e an X Mg (K)

My, i xn, (K)

On

q

and X € M, (K) is an invertible matriz such that X ' AX is contained in the full
subalgebra of M, (K) of type (n1,na,...,ng) (see Definition 1.3), then matriz X also
belongs to the full subalgebra of M, (K) of type (n1,n2,...,ng).

Proof. The result that we want to prove is obvious if ¢ = 1. Thus, building a proof using
mathematical induction, we start with ¢ = 2, and positive integers ni,ns and n such
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X1 X

that ny +ns = n. Write matrix X in block form 1 2] where Xij € My, xn, (K),
Xo1 X2

1 < 4,5 < 2, and suppose, for the contrary, that block Xo; # Op,xn,. Write also the

! /
Xll X12

inverse matrix X ! in block form (X’ I% ), where X{j € My, xn, (K). Then, by
21 22

O0p, Y

n2

y-1 0,, Y Y X{l X{Q 0, Y X111 Xia
On, X351 X3 On, Xo1 Xoo

_ (XY Xa X5 YXop ) My (K) Mayxa, (K)
X5 YXo XY Xoo 01y x4 M,, (K)

assumption, the matrix ( ) belongs to A for every Y € My, wn, (K). Therefore,

Hence, X5, Y X21 = Op,xn, for every Y € My, xn, (K), and so Lemma 4.5 implies that
X% = Onyxn, - We conclude from formula (4.3) that Xo; = 0y, xp,. This is a contradic-
tion, which completes the desired result for ¢ = 2.

Assume now inductively that the result holds for some ¢ > 2, and let n and
ni,nNg,...,Ng+1 be positive integers such that ny +no +- - - +ng41 = n. Write matrix X

and its inverse in block form

/ A
X1 ... Xign Xy e Xlgn

X_lz . . .

)

/ /
Xogt11 o Xgri,g41 Xor1n - Xgyign

with Xij,Xz(j € My, xn, (K) for all 1 < 4,5 < g+ 1. Firstly, we will show that X;; =
On,xn, for j =2,3,...,q+ 1. Then we will use the inductive assumption. Suppose, for
the contrary, that Xj; # 0y, xn, for some j, 2 < j < g+ 1. Let Yi; € My, xpn; (K) be an
arbitrary matrix. Then

On1 X’I’L]‘_l Yl] On1 X’I’LJ‘+1
Onz Xmj—1 Ong Xn; Onzxnj+1 cee e A,
and direct calculation gives
0’!7,1 an—l Ylj 0’!7,1 an+1
X_l e OTLQXTLj_l OngX’I’LJ‘ 0’!7.2an+1

XY X0 X{3YjXo
X = | XY, X0 X5V X50
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Since the algebra X 'AX is contained in the full subalgebra of M,(K) of type
(n1,n2,...,n4), we obtain the equalities

/ _ ! X O ! 3 O
X21Y1ij1 = Onyxny s X31Y1JXJ1 = Ongxnys  --- an+1,1Y11X11 = an+1Xn1~

We now apply Lemma 4.5 to each of these equations and obtain that X%5,, X4, ..., X</1+1,1

/ /
X1 X'i2

0 < ),whereNg_nng
NQX’I‘Ll 22

are zero matrices. Therefore we can write X1 = (

ng 4 -+ ng41 and

!/ /
Xgo oo X
X'z = (X{2 Xiz - Xi,q+1)a X929 = : : :

! !/
Xq+172 Xq+1,q+1

From formula (4.3) on the inverse of a block triangular matrix it follows that

X21 = Ongxnlv X31 = 0n3><n17 ey Xqul,l = an+1 XMy

This is a contradiction, since X;1 # 0, xn, for some 2 < j < ¢ + 1. Hence, indeed
Xo1, X31, ..., Xq41,1 are zero matrices. Now we can use the inductive assumption to
the subalgebra of My, (K) obtained from the entries of A starting from row n; + 1 and
column nj + 1. It implies that matrix X belongs to the full subalgebra of M,,(K) of type
(nl,ng, cee ,nq). ([l

Although conjugation of a block triangular D, subalgebra A of M, (K) of some type
(n1,mn2,...,ny) with an invertible matrix X € M, (K) can result in the subalgebra
X1AX of M,,(K) not being a block triangular subalgebra of M,,(K), as shown in the
example below, we will prove in Proposition 4.8 that this does not happen if X is such
X1 AX is contained in the full subalgebra of M,,(K) of type (n1,n2,...,n,).

Example 4.7. Let A be a Dy subalgebra of M,,(K) of type (n1,n2,n3,n4), possibly with
max-comm db’s, and consider the invertible block matrix

0n1 XNy On1 Xn2 On1 Xng Inl
O'I'L Xn I?'l On Xnag O'I'L Xn

X — 2 4 L2 L2 L3 2 1 c Mn(K)7
Ong XNy Ong Xno In?, 0%5 Xn1

In4 On4><n2 On4><n3 On4><n1

which clearly is a “block” version of the permutation matrix

= o O O
o O = O
o = O O
O O O =
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Then
OTL4><7L1 0714 Xno On4><n3 In4
X—l _ Onzxm Ing 07L2 Xns3 OTLQXTL4
O”SX'M Ons Xn2 Ing On3><n4
In1 0"1 XMng Om Xng 0n1 XMy

Writing the algebra A in block triangular form

A A Az Au

A22 -A23 -A24
-A33 A34 '
A44

as in (1.10), direct verification yields

'A44 0”4 Xn2 0”4 Xn3 On4 Xny
A24 A22 A23 Onz Xny
A34 O’I’Lg X Mo A33 Ong X1y ’
Aig A Ais A1

XTAX =

implying that, by Definition 1.3, X ' AX is not a subalgebra of M, (K) of any type
(1,02, 03,04).

Proposition 4.8. Let A be o Dy subalgebra of M, (K) of type (n1,n2,...,nq) with maz-
comm db’s, and let X € M,,(K) be an invertible matriz such that X 1 AX is contained
in the full subalgebra of M,(K) of type (ni,na,...,ng). Then X1 AX is also a D,
subalgebra of M, (K) of type (n1,na, ..., ng) with maz-comm db’s. Moreover, if we write
Aii and AL, i = 1,2,...,q, for the diagonal blocks of the subalgebras A and X ' AX
(see (1.10)), respectively, then A;; and Aj; are conjugates.

Proof. By Lemma 4.6, X is in the full subalgebra of M,,(K) of type (n1,ns,...,n,), and
S0

X1 ... qu

Xqq

for some Xy; € My, xn, (K), 1 <i < j <q. Write the inverse X1 in block form
X . X1,

/ !
Xl X,
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for Xi; € My, xn, (K), 1 <4,j <q. We will show that X! is also block triangular.
Divide X into four blocks of sizes nq xni, n1 X (ng+---+nyq), (ne+---+ny) xnq and
(ng+---+ng) X (ng +---+n,), respectively. Formula (4.3) implies that X, = X;;' and
that the matrices X3, X3,,..., X;; are all zero matrices. These facts lead us to finding
the inverse of the block triangular matrix
Xoo ... ng
Xoqq
Continuing in the above way, we finally get that X ~! is block triangular with X/, = X 2;1

for every i, i =1,2,...,q.
Now write the D, subalgebra A of M, (K) with max-comm db’s in the form

A o Ay
Aqq

as in (1.10). Since the matrices X and X ~! are block triangular, it follows that X ~1AX
is contained in the D, subalgebra

X' A X1 Maysng(K) Mayxng (K) o+ My, s, (K)

X53' A2 X0 Mu,sng(K) o+ Mpyxn, (K)
(4.4)

an,l Xng (K)

Xy AgaX g

of M, (K) of type (n1,n2,...,nq) with max-comm db’s. We will prove that the reverse
inclusion also holds.
We first show that

Onnl Xq—1 Mnl Xng (K)
Onzan,1 Ongan - XﬁlAX. (45)

To this end, keep in mind that every X;;, i1 =1,2,...,q, is invertible, and note that for
an arbitrary matrix Y1, € My, xn, (K),
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Onl XMNg—1 qu oo Onl XMg—1 X11Y1qX(;ql
0n2><nq_1 OTLzan =Xt - 0n2><nq—1 On, XNg X e X_lAX,

which establishes (4.5). Next take an arbitrary matrix Y1 41 € My, xp,_, (K). Then

—1
0n1 XMNg—2 Xllyl,qlequqfl 0n1 X1g
X_l Ongan_g 0n2><nq_1 Ongan X =
Onlan,z le,qfl Zl,q

= Ongan,z Ongan,l 0n2><nq c X_l_AX

for some Z1 41 € My, xn, (K). Because of the inclusion in (4.5), we deduce that
0n1 XNg_2 Yl,qfl 0n1 Xng
0n2><7lq72 0n2><’ﬂq71 0n2><’ﬂq S X_l.AX.

Therefore, X ' AX contains

Onn1><q—2 M’nl an_l(K) 0n1 XMNg

On2><nq_2 0n2 XNg—1 OTLQXTL,I 5

Continuing in this way we obtain the inclusion

XﬁlAllel Mn1 X 1Mo (K) Mn1 Xng (K) .o Mn1 XMNg (K)
0’!12 OT’LQX’!Lg o 0n1 ><7Lq
Oy . Ongxn, C X AX
On,

q

Proceeding in the same manner we obtain that

0%1 0n1 Xno 0%1 Xnsg e On1 XMNg
X35 A22Xoo My,sng (K) ... Mpyxn, (K)

Oy e On3><nq - X TAX.

On

q
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The pattern is now clear, and so finally we conclude that X ' AX contains the entire
subalgebra of M,,(K) in (4.4), which completes the proof. O

Corollary 4.9. Let A be a subalgebra of U, (K).

(1) If A is a mazimal D, subalgebra of M, (K), then A is a D, subalgebra of M, (K)
of some type (n1,ne,...,ng) with maz-comm db’s.

(2) If A is a Dy subalgebra of M, (K) with mazimum dimension, then A is a maz-dim
D, subalgebra of M, (K) of some type (n1,na,...,ng) with maz-dim db’s.

Proof. (1) By Theorem 3.2, there is an invertible matrix X such that X ' AX is a D,
subalgebra of M, (K) of some type (ni,ns,...,ny) with max-comm db’s. The desired
result now follows immediately from Proposition 4.8, since A = X (X ' AX)X L.

(2) By (1), A is a D, subalgebra of M, (K) of some type (ni,ns,...,ny) with max-
comm db’s. Had any of the commutative algebras in the diagonal blocks of A not been
of maximum dimension, we would have been able to replace it by a commutative algebra
with larger dimension, thereby obtaining a D, subalgebra of M, (K) with dimension
larger than that of A; a contradiction. O

The construction of a D, subalgebra of M, (X) with maximum dimension described
in Theorem 1.2, combined with the examples in (1.2) and in (1.3) of commutative sub-
algebras of M,,(K) with maximum dimension, gives an example of a D, subalgebra of
M, (K) with maximum dimension contained in U, (K). So if A is a D, subalgebra of
U, (K) with maximum dimension, then A is a Dy subalgebra of M, (K) with maximum
dimension. Consequently, Corollary 4.9(2) confirms the “underlying conjecture” embod-
ied in Question 4.1 by answering the question in the negative.

We conclude the section with a characterization of when D, subalgebras of M, (K)
with max-comm db’s are conjugated.

Theorem 4.10. Let A and B be D, subalgebras of M, (K) of types (ni,na,...,ng) and
(b1, 4o, ..., Ly), respectively, with maz-comm db’s. Write Ay and B;;, i = 1,2,...,q, for
the diagonal blocks of the subalgebras A and B, respectively (see (1.10)). Then A and
B are conjugates if and only if the g-tuples (n1,ng,...,ng) and (l1,%2,...,4,) are equal
and, for every i, i =1,2,...,q, Ay and By are conjugates.

Proof. Firstly, assume that A and B are D, subalgebras of M, (K) of the same type
(n1,n2,...,nq) with max-comm db’s such that for every j, j =1,2,...,¢, the diagonal
blocks A;; and Bj; are conjugates. Then there are invertible matrices X;; € M, (K)
such that Xj_jl.Aijjj = B;;. We will show that
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Xt X1
X5 X9
A ) =B. (4.6)
X! Xog
Note that, by Proposition 4.8, the subalgebra on the left hand side in (4.6) is a D, sub-
algebra of M, (K) of type (n1,n2,...,nq) with max-comm db’s. It is easy to check that
this subalgebra has X j_lej ;X ; as its diagonal blocks, which establishes the equality in
(4.6).
Conversely, assume that the algebras A and B are conjugated. If we can show that
tuples the g-tuples (n1,n2,...,nq) and (€1, 02, ..., ;) are equal, then the result follows
directly from Proposition 4.8. To this end, first note that, by Proposition 4.2,

ni+ng+ oo+ n = dimgCy 'V

fori =1,2,...,9—1, where V = K™ and C 4 is the ideal of A generated by all [x,y], x,y €
A. Since 337_, nj = n, we can write

. dimgCYy 'V — dimgCy 'V, ifi=1,2,...,q—1
") n—dimgCAV, if i =gq.

Hence the type of the subalgebra A of M, (K) is determined by dimg Cf4V for i =
1,2,...,q—1. Similarly, the type of the subalgebra B is determined by dimg C%V, where
Cp is the ideal of B generated by all [z,y], =,y € B.

By assumption, there exists an invertible matrix X € M,,(K) such that X ' AX = B,
which implies that Ci = (X 'C4X)" = X 'Cy X for all i =1,2...,¢ — 1. To complete
the proof we will show that dimgC4%V = dimxCxV .

If vectors Cvy, Cova, . .., Cyuy constitute a basis of C4V for some matrices C; € Cy
and some vectors v; € V, then it can be shown directly that the vectors X ~'Cjv; =
(X7'C; X)X v, j=1,2,...,k, of the vector space (X ~'C’ X)V are linearly indepen-
dent. Therefore, dimpxC4V < dimg (X 'C4X)V = dimg C5V. Similarly, we can show
that dimg C5V = dimg (X ~!1C4X)V < dimgC4V by taking basis vectors of the vec-
tor space (X ~'C% X)V and producing linearly independent vectors in the vector space
cyv. O

5. Remarks on a result by Jacobson

In this section, we clarify the structure of commutative subalgebras of M,,(K), with
K an algebraically closed field, as discussed in [7].

Throughout this section K is an algebraically closed field, and A is a commutative
subalgebra of M, (K) with maximum dimension. We focus in particular on the structure
of A for n € {2,3}, which, in the light of the footnote in [7, page 436], does not seem
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to be so readily obtained after all. These considerations will be used in the subsequent
sections.
By [7], for n > 3 we have the following:

o If n is an even integer (n = 2¢), then A is conjugated to

CH(K):= KI, + <04 Mz()f“) . (5.1)

o If nis an odd integer (n = 2¢ 4 1), then A is conjugated to

Chyr(K) = KT, + (06 M“é‘“)(m) (5.2)
41
or
Coe1(K) == KI, + (O“l M(”BZ‘(K)> : (5.3)

It is possible to show (see Corollary 5.3) that the algebras C3,, | (K) and C3,, | (K) are
not conjugated. However, they are isomorphic. Indeed, it is easily verified that the map
from C3,,,(K) to C3,,,(K) which rotates the rectangular block My, (s11)(K) counter-
clockwise through 90° is an isomorphism.

Next, let n < 3. Obviously, for n = 1 we have

A=K =: C}(K). (5.4)

We now carefully study the two remaining cases, i.e., when n € {2,3}. Either A is
isomorphic to a nontrivial product A; x Az of algebras, or it is not isomorphic to such a
product. Suppose that we have the latter situation. Since K is algebraically closed and A
is a finite dimensional commutative algebra, it follows from [9, (3.5) Wedderburn-Artin
Theorem)] that

A/JA) =2 Ky x Ky x ... x Ky
for some t > 1, with K; = K for every i. Since J(A) is nilpotent (see, for example,
[9, (4.12) Theorem]), it follows from [9, (21.28) Theorem] that if ¢ > 1, then, lifting
the idempotent (1,0,...,0) of A/J(A), we get a nontrivial (i.e., e ¢ {0,1}) idempotent
e € A. Therefore,

A= ede x (1—e)A(l —e),
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which contradicts our assumption. Consequently, A is local, and so by [18, Proposition
10], A is conjugated to some subalgebra C of U (K). For C we have the following
candidates:

¢ Forn = 2 and the (commutative) algebra U%(K) we have only one possibility, namely

0 K
Cy(K) =Us(K) = KIy + ( 0 ) : (5.5)
e For n = 3 and the algebra Uj(K), taking an arbitrary z € K, the matrix
0 0 =z 0 0 =z
0 0 | commutes with every X € U%(K). So we can see that 0 0] ¢
0 0

C, and consequently, C (. Since the maximal possible dimension for

o
o o
o o X

a commutative subalgebra of M3(K) is 1 + L%J = 3, we deduce that there exist

a ab c
a, f € K, not both equal to zero, such that C = a pBb|:abceK
a
For a # 0 and 5 = 0 we get
0 K K
CH(K)=KI3 + 0 0 |. (5.6)
0
For a =0 and 8 # 0 we get
0 0 K
C3K)=KI3 + 0 K |. (5.7)
0
a 0 0
Finally, for a # 0 and 8 # 0, conjugation by 1 0 gives
ﬁfl
a0 0 a ab ¢ a 0 0 a b o lp7lc
1 0 a (b 1 0 = a b ,
B a gt a

and so
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o o
o o X

1
C3K)=KI3+ K 0 (5.8)

Now we consider the case where A is isomorphic to a proper product of algebras
A= Ay X As. In this situation, 1 = e; + e for some nontrivial idempotents e, es. Let
€1: K™ — K™ be the linear map such that e; is its matrix in the standard basis. Then
as €2 = ¢ we get K" = im(e;) @ ker(ey). If v1,va,...,v; form a basis for im(e;), and
Vk41, Ukt2, - - - , U, form a basis for ker(eq) then in the basis B = (v1,ve,...,v,) for K™

On—k

0 | O _
ea =1 —eq, we have M(e2)B =1,, — M(e1)8 = <—k’w>
n—k

Since the idempotents e; and es are orthogonal and the algebra A is commutative,

I | Ops(n— .
we have M(e;)B = < k | Pkx(n—k) ) In the same basis B, for the map ey related to

we have a = 1-a-1 = (e; +e2)a(e; +e2) = ejae; + ezaey for every a € A. Therefore, as a
vector space, A = ey Ae; @ esAes. Considering conjugation of A with the change-of-basis
matrix from the standard basis for K™ to B, we get

A= I | Opx(n—) o I ‘ Ok (n—k)
On—k ‘ On—k
Ok | Opx(n—rk) /[ Ok ‘ Ok (n—k)
@ A =
( In—k: ‘ In—k
_ All Ok><(n—k)
Al '

where A’ is the conjugation of A, and A} C My (K) and Ay C M,,_(K) are commutative
subalgebras of M,,(K') with maximum dimensions isomorphic to A; and As, respectively.

e For n = 2 we have only one possibility, namely, A is conjugated with

K 0
C§(K)< K). (5.9)

e For n = 3, either both algebras A; and A are indecomposable or exactly one
is indecomposable (recall that the maximal possible dimension of a commutative
subalgebra of M3(K) is 3). In the first case, at first glance, A is conjugated either
with
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0 1 0
Note, however, that considering the invertible matrix Z =1 0 0 1 | we have
1 0 0
Z7'NZ = As.
Thus A in this case is conjugated with
a b 0
C§(K)—A1—{ a 0 :a,b,ceK}. (5.10)
c

In the case where exactly one of A; and A, is indecomposable, we get that A is
conjugated with

K 0 0
C3(K) = K 0 |. (5.11)
K

Amongst the algebras C}(K),Ci(K),C3(K),C}(K),C3(K),C3(K),C3(K) and
C3(K), only C3(K) and C%(K) are isomorphic. However, by Corollary 5.3 these iso-
morphic subalgebras are not conjugated.

We summarize the above considerations (in this section) as follows:

Remark 5.1. Every commutative subalgebra of M,,(K) with maximum dimension is con-
jugated with precisely one of these presented in (5.1) — (5.11). Amongst these algebras,
C3p1(K) and C3,, (K) are isomorphic for every £ > 1.

By [7] and the presentation above for algebraically closed fields K, we have determined,
up to conjugation, all commutative subalgebras of M,,(K) with maximum dimension. In
fact, in [7] for n > 3, there is even a weaker assumption on the field K (not imperfect of
characteristic 2), but in the above characterization of commutative subalgebras of Ma(K)
and M3(K) with maximum dimension, the assumption that K is algebraically closed is
used. For example, in the case of the field R of real numbers, { (Z _ab> ta,be ]R}
is a 2-dimensional subalgebra of Ms(R) (isomorphic to the field of complex numbers)
which is not conjugated with C3(K) nor C3(K).

We conclude the section by showing that, for some of the commutative subalgebras
A of M,,(K) with maximum dimension, namely those A’s presented in (5.1) — (5.7), the
only possible conjugation of .4 which is contained in U, (K) is equal to A itself. We will
use this result to give an exact description of D, subalgebras of U, (K) with maximum
dimension in Corollary 6.8.
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Proposition 5.2. Let A be a commutative subalgebra of M, (K) with mazimum dimension
presented in one of (5.1)— (5.7). If X € M,,(K) is invertible and X ' AX C U,(K),
then X 'AX = A.

Proof. If n = 1, then A = K and there is nothing to prove. Assume now that n > 2,
with A equal to one of the algebras in (5.1) — (5.3) or (5.5) — (5.7). Then there exist
positive integers r and s such that r + s = n and

0y MTXS(K>
— KI, ,
AT R (o 0, )

and so we have the inclusions

07” MTXS(K) —1 MT(K> MTXS(K)
<0W 0 )gA and X AXgUn(K)§< o i) |

Invoking Lemma 4.6, with ¢ = 2, we deduce that there exist matrices X;; € M, (K),
X9 € MTXS(K)7 and Xos € MS(K) such that

Xll X12
X = .
<Os><r X22>

Therefore, by (4.3),

X—l — Xl_ll X121
Osxr Xog

al, A

where X1, = —X1_11X12X2_21. Let "
S

) be an arbitrary element of A, with

a€ K, A1y € M, «s(K). Then

I, A X7t oxy 0, A X, X
x-1 aly 12 X — 11 12 I, r 12 11 12 ) _
( a—[s Osxr X{QI “ + Os 05><7‘ X22

0, X 'A;5X
:CLIn"’( 1 0j2 22))

and so X ' AX C A. Since we can take any matrix of M, s(K) for Ajs, it is not hard
to show that the opposite inclusion also holds. This completes the proof. [

For an odd integer n > 3, the algebras C}(K) and C2(K) are distinct subalgebras of
U, (K). Moreover, we have the following:
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Corollary 5.3. Let n be an odd integer greater than or equal to 3. Then the commutative
subalgebras CL(K) and C2(K) of M,(K) are not conjugated.

Note that Proposition 5.2 cannot be extended to the subalgebras presented in (5.8) —

(5.11):

Example 5.4. Conjugation of the subalgebra C3(K) = { <O b

N 0> :a7beK} of My(K)

0

X1022(K)X<(1) _11)022(1()((1) 1){(3 a;b>:a,b€K},

which is a subalgebra of Us(K) different from C2(K).

with the invertible matrix X = ( L 1) gives

Similar examples can also be found in case of the subalgebras C3(K), C3(K) and
C3(K) of M3(K). Two of them can be already constructed from the previous analysis,
while defining C3(K) by formula (5.8) and C4(K) by formula (5.10).

In the following sections we will use the algebras presented in (5.1)—(5.11) for arbitrary
fields. If we need the assumption that K is an algebraically closed field, then we will stress
this assumption explicitly.

6. Isomorphic D, subalgebras of M,,(K) with max-dim db’s are of the same type

In this section, we will treat the isomorphism problem of D, subalgebras of M, (X)
with max-dim db’s. Before we state the main results we will give a characterization of
the subalgebras we are dealing with.

Note that by Remark 3.3, for any maximal D, subalgebra of M, (K) there exists
exactly one g-tuple (n1,ns,...,n,), which indicates the type of conjugated D, subalgebra
of M,,(K) with max-comm db’s. So we can look at the class of all maximal D, subalgebras
of M,,(K) associated with the fixed tuple (n1,n2,...,n4). In general, we are not able
to say much about this class, even if we treat algebras up to conjugation. However, if
we restrict it to these algebras with maximum possible dimension for the considered
class, then it consists of subalgebras conjugated with a D, subalgebra of M, (K) of
type (n1,ne,...,ny) with max-dim db’s, which is more accessible. We want to stress
that only for specific tuples, which will be described in Section 7, the restricted class
consists of D, subalgebras of M, (K) with maximum dimension.

In Theorem 6.2 we prove that if two D, subalgebras of M,,(K) with max-dim db’s
are isomorphic, then they are of the same type and the algebras in their diagonal blocks
are pairwise isomorphic. Next, we will show that this theorem cannot be inverted, which
indicates what should be modified to completely solve the isomorphism problem. Finally,
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for an algebraically closed field K, we will prove that two Dy subalgebras of M,, (K) with
max-dim db’s are isomorphic if and only if they are of the same type and their diagonal
blocks are pairwise conjugated. In contrast with the examples of isomorphic but not
conjugated commutative subalgebras of M, (K) with maximum dimension, it implies
that isomorphic D, subalgebras of M, (K) with maximum dimension are conjugated.

Recall that if we consider a D, subalgebra of M, (K) of type (n1,ng,...,n,) with
max-dim db’s, then we always use the notation related to (1.10). In other words, for D,
subalgebras A and B of M,,(K) of types (n1,ng,...,nq) and (41,42, .., £,), respectively,
with max-dim db’s, we will write

.A11 .A12 - .Alq 811 B12 C qu
A22 - .qu BQQ - ng

A= ) ) and B= ) . ) (6.1)
Aqgq Byq

where A;; (respectively, B;;) is a commutative subalgebra of M,,(K) (respectively,
My, (K)) with maximum dimension for every i, i = 1,2...,q, and Aj; = My, xn, (K)
and Bj; = My, x¢; (K) for all i and j such that 1 < i < j < ¢. Following the notation in
Proposition 4.2, we henceforth denote the ideal of A (respectively, B) generated by all
commutators [z,y], with z,y € A (respectively, z,y € B) by C (respectively, Cg).

In order to build a proof of Theorem 6.2, we will need a technical lemma based
on Proposition 4.2.

Lemma 6.1. Let ¢: A — B be an isomorphism of D, subalgebras A and B of M, (K) of
types (n1,na, ..., ng) and (b1, Ls, ... L), respectively, with maz-dim db’s. Then, using the
notation in (6.1),

BM e qu

for everyi, i =1,2,...,q.

Proof. It follows from ¢(C4) = Cp that ¢(C’y) = Cj for every i, i = 1,2,...,¢, and so,
by Proposition 4.2,

Cf4 : Aii ={0.},

implying that
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Czig R4 Aii = {On} (6-2)

Let 1 < i < g. We first show that the equality in (6.2) implies that

Bll . Bli Bl,i+1 . qu
¢ Ai c o a (6.3)
O
On,
To this end, let Y = (y;;) be an arbitrary matrix in ¢ Aii , and let j be any

integer such that ¢4 + 0o+ --- +¢; < j < n (recall that £; + ¢y + ---+ ¢, =n). Then it
follows again from Proposition 4.2 that e1; € C, and so by (6.2),

Yi1 Y2 .-+ Yjn
0 o ... 0
0p = e1;Y = ) .
0 0 0

Hence, rows 01+ 0o+ --+€;+ 1,01+ b+ -+, +2,
(6.3).

Similar arguments, starting from the equality

...,nof Y are zero, which establishes

A C4T = {0,},

can be used to show that columns 1, 2, ..., ¢1 + /5 + -+ ;1 columns of an arbitrary
matrix in the image ¢ Aii are zero.
As far as the cases i+ = 1 and ¢ = ¢ are concerned, it is evident that the gist

of the above arguments also shows that rows ¢ + 1,¢; + 2,...,n of every matrix in



P. Matras et al. / Journal of Algebra 657 (2024) 159—-206 197

A

%) are zero, and that columns 1,2,..., ¢y + ¥l + --- 4+ {41 of every

matrix in ¢ are zero, which completes the proof. [

Aqq

Theorem 6.2. Let A and B be Dy subalgebras of M, (K) of types (n1,nz,...,n,) and
(1,02, ...,4,), respectively, with maz-dim db’s. If A and B are isomorphic, then the g-
tuples (n1,mn2,...,ng) and (f1,42,...,4,) are equal and, using the notation in (6.1), the
algebras A;; and B;; are isomorphic for every i, i =1,2,...,q.

Proof. We will use the notation in (6.1). Let ¢: A — B be an isomorphism of the
algebras A and B. As in Lemma 6.1, we have ¢(C4) = Cp, which implies the induced
isomorphism @: A/C4 — B/Cp. By Proposition 4.2, we identify the quotient algebras
A/C 4 and B/Cpg with the direct products A1 x Aga X -+ - X Agq and Bi1 X Bag X - - X Byq
of the algebras A;; and B;;, i = 1,2,...,q, respectively. As Cg comprises all matrices
with zero entries in the diagonal blocks, the inclusion

P(0ny X oo X Oy X Ay X Opyyy X oo X 0py )

i+1

C0g X oo X 0g,y X Bii X 0g,,y X ... X 0y,
follows from Lemma 6.1. Similarly, Lemma 6.1 applied to the inverse p~! yields

(@) 1 (0g, X ... x 0g,_, X By X 0,y X ... % 0p,)
0

ny XX Oy X Ay 0 X oo X Oy,

Mit1
These two inclusions imply the equality

D(0ny X ... X Opy_ X Aii X Ony g ><...><0nq):0¢1 X ... X Oy, ><B,~Z~><Ogi+1 X ... x Og,,

-1
and so the algebras A;; and B;; are isomorphic.

Next, since A;; and B;; are commutative subalgebras of M,,, (K) and My, (K) (respec-
tively) with maximum dimension, it follows from Schur’s Theorem that

n?2 /2
dimgA;; =1+ \\ZZJ =1+ \‘ZZJ = dimg B;;, (64)

which implies the equality n; = ¢; for any : =1,2,...,q. O

Note that in the equality (6.4) the assumption that A; and B;; are commutative
subalgebras of matrices with maximum dimension is essential. By Theorem 4.10 a con-
clusion related to that presented in Theorem 6.2 holds for D, subalgebras A and B of
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M, (K) of types (ni,nse,...,nq) and (¢1,4s,...,4,), respectively with max-comm db’s,
if we assume that A and B are conjugated. In this regard, we pose the following two
questions:

Question 6.3. Do there exist isomorphic D, subalgebras A and B of M, (K) of types
(n1,n2,...,nq) and (¢1,40s,...,¢,), respectively, with max-comm db’s, which are not
conjugated?

Question 6.4. Do there exist isomorphic D, subalgebras A and B of M, (K) of types
(n1,n2,...,nq) and (€1, £s, ..., ¢,), respectively, with max-comm db’s, such that n; # ¢;
for at least one 37

Note that the paragraph preceding the two questions above implies that a positive
answer to Question 6.4 would also answer Question 6.3 in the positive.

The next part of this section will lead us to a full characterization of isomorphisms be-
tween D, subalgebras of M,,(K) with max-dim db’s if the field K is algebraically closed.
Firstly, without this assumption on K, we will show that there exist non-isomorphic
D, subalgebras of M,,(K) of the same type with max-dim db’s, and so the converse of
Theorem 6.2 does not hold.

Lemma 6.5. Let A and B be D, subalgebras of M,,(K) of type (n1,ne, ..., ng) with maz-
dim db’s, such that, for some j, n; is odd, n; > 3 and the j-th diagonal blocks of algebras
A and B are C%j (K) and C?Lj (K), respectively. Then A and B are not isomorphic.

Proof. Let nj; = LT;—JJ, Njo = L%’J + 1. Then nj1 # nj2 and by (5.2),(5.3), (5.6) and
(5.7),

C'rlzj (K) = Klnj + ( Onﬂ M"jlxnﬁ(K))

O’ILJ'Q X?’lj] O'n,jQ

and

On, M,y sn;, (K
CELJ(K)_KIRJ.-F( 42 joxn ( )>

Onjl XMnj2 Onjl

We first consider the case ¢ = 2 and j = 1. Then the Jacobson radical J(A) of A
satisfies

0n12 0’"«12

O"11 Mn11><’ﬂ12(K) Mn1><’ﬂ2(K) 07L11 Mnllxnlz(K) Mn1><7L2(K)
CJA)C ;

| Onsy | Mn, (K)

and by Proposition 4.2,
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C.A — (Onl } Mnlgﬂz(K)) ,

implying that

dimg (J(A)C4) = dimg (O 11 X7 ‘ TR )> =n11n2.

0(7L12+7L2)X7L2

Similarly, dimg (J(B)Cp) = mi2ne. If the algebras A and B were isomorphic, then the
images of the ideals J(A) and C4 of A under any algebra isomorphism from A to B
would be the ideals J(B) and Cg of B, respectively, and since the respective dimensions
would be equal, we would have that

niing = dll’nK(J(.A)CA) = dlmK(J(B)CB) = Ni2Nng,

i.e., n11 = n1o; a contradiction. Therefore, A and B are not isomorphic.

The case ¢ = 2 and j = 2 is very similar to the above one. Instead of the dimensions
of J(A)C4 and J(B)Cg we have to compare the dimensions of C4J(A) and CpJ(B).

Now we assume that ¢ > 2. Suppose (for the contrary) that ¢: B — A is an isomor-
phism, and let @: B/C§ — A/C% be the induced isomorphism. (A similar strategy was
followed in the proof of Theorem 6.2.) By T and § we denote the images of elements
z € Aand y € B in the quotient algebras A/C% and B/Cg, respectively. Consider the
subspace

Vi = J(Bj;) | |Cs

of the quotient algebra B/C%. Since, by assumption, Bj; = CZJ, (K), we have that

n

J(B_]j) _ (O Oan Mnj2><nj1(K)> , (65)

Mnj1 ang 07Lj1

and so by Proposition 4.2,

On1 812 0n1 Xnsg e On1 Xng

an72 an

Bq—Lq

(6.6)
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We consider two possibilities, namely 7 < q or 7 = ¢, as we did above with the case
q=2.
Firstly, let j < g. Then, by (6.6),

dimg V; = dimg (J(Bj;)Bj,j+1)

. 0y, M,,.scna (KK
= dimg ((0 i ”OX 3 >> 'Mnjme(K)) = njonjt1. (6.7)
nj1

Tj1 XMNj2

Under an isomorphism of algebras, nilpotent elements are mapped to nilpotent elements,
and so, invoking Lemma 6.1, we have the inclusion

Ay A . Ay
(V)= J(Bj;) Cac Ajil,j Aj_:l,j+1 Ajil,q Ca, (68)
J(Ajj)  Ajgvr - Ajg
where
J(Ajj) = J(Cy (K)) = <0n0nn ) Mnﬂoxntf(K)> . (6.9)

Since the diagonal blocks of C 4 are zero and the product of such elements in the quotient
algebra A/C% is zero, it follows from (6.9) that

.Alj »Al,j+1 s Alq
dimg .Aj_l,j Aj—l,j+1 . Aj—lyq a = dimK(J(‘Ajj)Aj’jJrl)
J(Ajj) Ay . Ajg

= dimg (( " 1\/[7”10an2 (K)> 'M".fxnj+1(K)> = Nj1M5+1. (6.10)
Tj2 XMNj1 ;2
We have thus found (see (6.7)) that dimgV; = njen;y1, and by (6.8) and (6.10),
dimgB(V;) < njin;i11. However, these dimensions are equal, implying that njo < nji.
This is a contradiction, since njo = nj; + 1.
Lastly, let j = ¢. Now we need another argument, because in this case, by (6.6), V;
is the zero space (and so dimg V; = 0 = dimg %(V;)). Instead, we will compare the
dimensions of the spaces C% ' J(A) and C§ ' J(B). Note that
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On1 ./412 . Alq ./411 . Al,q—l .Alq
' ot cumc e :
Oqfl Aqfl,q Aqfl,qfl Aqfl,q
J(Agq) J(Aqgq)
and
On1 812 N qu Bll c. Bl,qfl qu
0(171 qul,q qul,qfl Bq*Lq
J(Bgq) J(Bgq)

where J(Ay,) and J(B,,) are as in (6.9) and (6.5), respectively, with j = ¢. Then,
by Proposition 4.2, it is not hard to show that dimK(Ci_lJ(A)) = ning and
dimK(C%_lJ(B)) = ning1. We conclude, as before, that nge = ng,1. This contradiction
completes the proof. O

Theorem 6.6. Let K be an algebraically closed field, and let A and B be Dy subalge-
bras of M,,(K) of types (n1,ne,...,ng) and (1,02, ...,4,), respectively, with maz-dim
db’s. Then A and B are isomorphic if and only if the g-tuples (ni,ne,...,ng) and
(1,02, ...,4y) are equal and the diagonal blocks Aj; and Bj; are pairwise conjugated
for j =1,2,...,q. Moreover, for every j, j = 1,2,...,q, there is exactly one k; such
that Aj; and B;; are conjugated with C’ﬁj(K)

Proof. Firstly, assume that the g-tuples (ni,ne,...,ng) and (41,42, ..., 4,) are equal and
that the diagonal blocks A;; and B;; are pairwise conjugated for j = 1,2, ..., q. It follows
from Theorem 4.10 that A and B are conjugated, and hence isomorphic.

Conversely, assume that A and B are isomorphic. By Remark 5.1, each diagonal
block Aj; (respectively, Bj;) is conjugated by a matrix X;; € M, (K) (respectively,
Yj; € My, (K)) with some subalgebra Cy’ (K) (respectively, C’Z (K)). We stress that,
for the algebra Cy’(K), the number n; is exactly the number appearing in the se-
quence (ni,ng,...,n,) which is the type of A; similarly for the algebra C’Z (K). So,
Xj;-IAijjj = Cy)(K) and nglBijjj = CZ (K). Define the following block diagonal
matrices:

X111 Y1
Xoo Yo

qu Y;Iq

It follows from Proposition 4.8 that A" = X' AX and B’ = Y 'BY are D, subalgebras
of M,,(K) of types (n1,n2,...,nq) and (¢1, s, ..., ¥4,), respectively, with max-dim db’s.
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It is straightforward to check that the diagonal blocks of the algebras A’ and B’ are equal
to Cp) (K) and C’Z(K ), respectively. Since A and B are isomorphic, so are A’ and B'.
Therefore, by Theorem 6.2, the g-tuples (n1, na, ..., ny) and (¢1,42,. .., £¢,) are equal and
the diagonal blocks Cy,’ (K) and C’Z (K) are isomorphic for j = 1,2,...,q. By Remark 5.1
and the arguments preceding it, an isomorphism is possible only for equal blocks, or for
pairs Oy, (K) and CF (K), or for pairs C}; (K) and Cj, (K), with odd integer n; = ¢; > 3.
However, in the case of at least one pair of distinct blocks, Lemma 6.5 can be applied,
and so A’ and B’ are not isomorphic; a contradiction. Consequently, Cy’ (K) = C’;”f (K)
for 5=1,2,...,q, and so ’

—1 —1
X5 A4 X5 =Y Bj; Y5,

from which we get (ijYj;l)’lAijijj;l = B,;. Hence the diagonal blocks A;; and B;;
are conjugated for j = 1,2,...,q, which completes the proof. [

Note that from Theorem 6.6 and Theorem 4.10 it follows that D, subalgebras of
M, (K) of some types with max-dim db’s over an algebraically closed field K are isomor-
phic if and only if these subalgebras are conjugated.

Remark 6.7. For algebraically closed fields, we have another tool which can help to even
better describe a D, subalgebra A of M,,(K) of type (n1,ne,...,n,) with max-dim db’s,
namely we can say that A is of type ((nl,k‘l)7 (na, ka), ..., (nq,k‘q)) where for every
j, 3=1,2,...,¢q, the number k; appears as the superscript in C’ij (K). It should be clear
that k; depends on n;, as follows:

1, if n; = 1;

1or2, if nj =2;
kj=qlor2or3or4orb,if nj =3;

1, if n; > 4 and n; is even;

1 or 2, if n; > 5 and n; is odd.

Moreover, the g-tuples of ordered pairs ((n1,k1), (n2, k2), ..., (ng, kq)) determine all D,
subalgebras of M, (K) of type (n1,ns,...,nq) with max-dim db’s up to conjugation (and
isomorphism).

We have already shown that every D, subalgebra of U,, (K) with maximum dimension
is a max-dim D, subalgebra of M, (K) of some type (n1,no,...,n,) with max-dim db’s
(see Corollary 4.9). With the help of Remark 6.7 we can almost precisely say what the
diagonal blocks of this subalgebra look like when the field K is algebraically closed.

Corollary 6.8. Let K be an algebraically closed field, and let A be a D, subalgebra of
Un(K) with mazimum dimension. Then A is a maz-dim D, subalgebra of M, (K) of
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some type (ni,ng,...,ng) with maz-dim db’s, such that in form (1.10) each diagonal
block Ai;, i =1,2,...,q, satisfies one of the following conditions:

(1) Asi is equal to C} (K), with integer n; greater than or equal to 1,
(2) Ai; is equal to C2 (K), with odd integer n; greater than or equal to 3,
(3) A is conjugated with C3(K), C3(K), C3(K) or C3(K).

Proof. By Corollary 3.4 and Remark 6.7, there exists an invertible matrix Y € M,,(K)
such that Y ' AY is a max-dim D, subalgebra of M, (K) of type (ni,ns,...,n,) with
the Cli (K)’s as max-dim db’s. By hypothesis, A is contained in U,(K), and we have
that A =Y (Y ~'AY)Y ~!. By Proposition 4.8, A is a max-dim D,, subalgebra of M,,(K)
of type (n1,na,...,ng) with max-dim db’s conjugated with the Ci (K)’s. A conjugation
of C}i (K) is contained in Uy, (K), because A C U, (K), and so the conditions in the

statement of the corollary follow from Proposition 5.2. [

7. max-dim D, subalgebras of M,,(K) with max-dim db’s

In this section, we will describe the g-tuples (n1, ng, . .., ng) such that A is a max-dim
D, subalgebra of M,,(K) of type (n1,n2,...,n,) with max-dim db’s, and we will provide
examples illustrating our study.

All the results in this section are based on the description in [19, pages 251-253],
including [19, Lemma 12 and Lemma 13], where it was shown that if nq, na, ..., ng are
positive integers such that ny + ng + - -- + ny = n, then a D, subalgebra of M,,(K) of
type (n1,n2,...,ny) with max-dim db’s has maximum dimension if and only if, for all ¢
and j,

0 or 2, if both n; and n; are even;
i —ny| = (7.1)

0 or 1, otherwise.

We recall and reformulate slightly the mentioned results in [19] by starting in Proposi-
tion 7.1 with a description of max-dim Dy subalgebras of M,,(K) with max-dim db’s,
which follows directly from (7.1).

Proposition 7.1. Let ny and ny be positive integers such that n1 +ns = n, and consider a
Dy subalgebra of M, (K) of type (nq,ng) with maz-dim db’s. Then A is a Dy subalgebra
of M,,(K) of mazimum dimension if and only if one of the following possibilities occurs:

a) n is odd, and (n1,n2) = (|5, 5] +1) or ([5] +1,[5]).
b) )
)
)

n =2 and (n1,n2) = (1,1).
n>6,n=2 (mod4) and (n1,n2) = (5,%) or (5 —1,5+1) or (5 +1,5 —1).

4n and (n1,m2) = (5,5
c

d
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Invoking Proposition 7.1 and the examples of commutative subalgebras of M, (K)
with maximum dimensions given in Section 5 (see (5.1) —(5.11)), we obtain the following
examples of Dy subalgebras of M5(K) and Mg(K) with maximum dimension.

Example 7.2. The max-dim Dy subalgebras of M5(K) with max-dim db’s are of types
(2,3) or (3,2), for example,

0 K| K K K
0| K K K
K (e + e22) + K(ess + eaa + e55) + 0 K K|,
0 0
0
0 K K| K K
0 0|K K
K(611 + eg9 + 633) + K(644 + 655) + 0| K K
0 K
0

In such a way we can construct 20 different max-dim Dy subalgebras of Ms(K) of
types (2,3) or (3,2) with max-dim db’s equal to C4(K) or C}(K), with i € {1,2}
and j € {1,2,3,4,5}. By Theorem 6.2 and Lemma 6.5, these 20 different max-dim
Dy subalgebras of M5(K) of types (2,3) or (3,2) with max-dim db’s are pairwise non-
isomorphic. If K is algebraically closed, then by Corollary 3.4 and Theorem 6.6, any Do
subalgebra of M5(K) with maximum dimension is conjugated with exactly one of them.

Similarly, the max-dim Dy subalgebras of Mg(K) with max-dim db’s are of types (2, 4),
(3,3) or (4,2). There are 29 such pairwise non-isomorphic subalgebras with diagonal
blocks equal to C4(K) or CJ(K), with i € {1,2} and j € {1,2,3,4,5}, or C}(K).

The procedure of determining g-tuples (n1,ng, ..., nq), such that n; < n; for all i < j
and such that a Dy subalgebra of M, (K) of type (n1,ns,...,ns) with max-dim db’s is a
D, subalgebra of M,,(K) with maximum dimension was discussed in Remark 15 of [19].
It starts with determining numbers satisfying |n; — n;| < 1 (for s = 0 and ¢ = 0 in the
theorem below). Next, in some situations we can add 1 to some of the numbers in the
g-tuple (n1,na,...,n,) and simultaneously subtract 1 from some of the others numbers
in such a way that condition (7.1) is satisfied.

The introductory paragraphs in Section 1 show that a max-dim D, subalgebra of
M, (K) of some type (ni,ne,...,ny) with max-dim db’s has dimension equal to the
expression in (1.6). It follows that a permutation which changes the (ordered) g-tuple
(n1,n2,...,n4) give rise to a max-dim D, subalgebra of M, (K) of another type with
max-dim db’s. Combining this observation with [19, Remark 15] we get the following:
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Theorem 7.3. Let A be a Dy subalgebra of M, (K) of type (n1,ns, ..., ng) with maz-dim
db’s. Writen = q HJ +r, where r is the non-negative integer less than q in the Division

Algorithm. Then A is a Dy subalgebra of M, (K) with mazimum dimension if and only
if there exists a permutation o € Sy such that ne;) < ng(;y for all it < j and one of two
possibilities occurs:

a) {—J is even and there exists a non-negative integer s, with s < ng , such that

l

Mo(i) = {
l

b) {%J is odd and there exists a non-negative integer t, with t < |15 |, such that

{

No(i) = \‘

HJ+1,ﬁq—r—t<i§q

Q3

J, f1<i<qg—r+s;

3

J—Fl, fg—r+s<i<qg—s;

23

J—|—2, ifg—s<i<gq.

23

JfLﬁlgigt

2|3

J, ift<i<qg—r-—t

We conclude with two examples illustration the two parts of Theorem 7.3.

Example 7.4. We will find all 5-tuples (n1,ng, ng,ng,ns) with n; < ns <nsz <ng < ns
resulting in a max-dim D5 subalgebra of My4(K) of type (n1, n2, n3, ng, n5) with max-dim
db’s.

Using the notation in Theorem 7.3, we have n = 14, ¢ = 5, {%J =2 and r = 4. Then,

for s =0, 1,2, the 5-tuples (n1, ng, ng, ng4, ns) are respectively equal to
(2,3,3,3,3), (2,2,3,3,4) and (2,2,2,4,4).

If we do not assume that the n;’s appear in increasing order, then we can permute them,
which leads to 4, 2,5—'2, —1=29 and % — 1 =9 more possibilities, respectively.

Similarly, we will find all the 7-tuples (nq,nga,...,n7) with ny < ng < ... < ny
resulting in a max-dim D7 subalgebra of My (K) of type (n1,n2,...,n7) with max-dim
db’s. Again, using the notation from in Theorem 7.3, we have n = 22, ¢ = 7, % =3,

r = 1. So, for t = 0,1,2,3, the 7-tuples (n1, no, ns, n4, ns,ng, n7) are respectively equal
to

(3,3,3,3,3,3,4), (2,3,3,3,3,4,4), (2,2,3,3,4,4,4) and (2,2,2,4,4,4,4).
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In this case we have 6, 4,7—'2, — 1 =104, %:3, — 1 =209 and % — 1 = 34, respectively,

more sequences if we don’t assume that the n;’s appear in increasing order.
Data availability

No data was used for the research described in the article.
Acknowledgment

The authors would like to express their gratitude to Arkadiusz Mecel who provided
Example 2.3 to them.

References

[1] M. Auslander, I. Reiten, S.O. Smalg, Representation Theory of Artin Algebras, Cambridge Studies
in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995.

[2] K.I. Beidar, A.V. Mikhalev, Generalized polynomial identities and rings which are sums of two
subrings, Algebra Log. 34 (1) (1995) 3-11, 118 (in Russian); English translation in Algebra Log.
34 (1) (1995) 1-5.

[3] M. Domokos, On the dimension of faithful modules over finite dimensional basic algebras, in: Spe-
cial Issue on Linear Algebra Methods in Representation Theory, Linear Algebra Appl. 365 (2003)
155-157.

[4] V. Drensky, Free Algebras and PI-Algebras, Springer-Verlag, 2000.

[5] V. Drensky, E. Formanek, Polynomial Identity Rings, Birkhduser-Verlag, 2004.

[6] N. Jacobson, Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, vol. 10, Inter-
science Publishers (a division of John Wiley & Sons), New York - London, 1962.

[7] N. Jacobson, Schur’s theorems on commutative matrices, Bull. Am. Math. Soc. 50 (1944) 431-436.

[8] A.R. Kemer, Ideals of Identities of Associative Algebras, Translations of Math. Monographs, vol. 87,
AMS, Providence, Rhode Island, 1991.

[9] T.Y. Lam, A First Course in Noncommutative Rings, second edition, Graduate Texts in Mathe-
matics, vol. 131, Springer-Verlag, New York, 2001.

[10] Yu.N. Mal’'tsev, A basis for the identities of the algebra of upper triangular matrices, Algebra Log.
10 (1971) 393-400 (in Russian); English translation in Algebra Log. 10 (1971) 242-247.

[11] Yu.N. Mal’tsev, Identities of matrix rings, Sib. Mat. Zh. 22 (3) (1981) 213-214, 239 (in Russian).

[12] J. Meyer, J. Szigeti, L. van Wyk, A Cayley-Hamilton trace identity for 2 x 2 matrices over Lie-
solvable rings, Linear Algebra Appl. 436 (2012) 2578-2582.

[13] S.V. Polin, Identities of the algebra of triangular matrices, Sib. Mat. Zh. 21 (4) (1980) 206-215 (in
Russian); English translation in Sib. Math. J. 21 (1980) 638-645.

[14] H. Radjavi, P. Rosenthal, Simultaneous Triangularization, Universitext, Springer-Verlag, New York,
2000.

[15] J. Schur, Zur Theorie der vertauschbaren Matrizen, J. Reine Angew. Math. 130 (1905) 66-76.

[16] P.N. Siderov, Basis of identities of the algebra of triangular matrices over an arbitrary field, Pliska
Stud. Math. Bulgar. 2 (1981) 143-152 (in Russian).

[17] J. Szigeti, S. Szildgyi, L. van Wyk, A power Cayley-Hamilton identity for n X n matrices over a Lie
nilpotent ring of index k, Linear Algebra Appl. 584 (2020) 153-163.

[18] J. Szigeti, J. van den Berg, L. van Wyk, M. Ziembowski, The maximum dimension of a Lie nilpotent
subalgebra of M, (F) of index m, Trans. Am. Math. Soc. 372 (7) (2019) 4553-4583.

[19] L. van Wyk, M. Ziembowski, Lie solvability and the identity [z1, y1][z2,y2] - - [2q, yq] = O in certain
matrix algebras, Linear Algebra Appl. 533 (2017) 235-257.

[20] L. van Wyk, M. Ziembowski, Lie solvability in matrix algebras, Linear Multilinear Algebra 67 (4)
(2019) 777-798.



