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1. Introduction

Since the coordinatization of projective and continuous geometries (see [18]), it is well-
known that idempotents induce direct sum decompositions of regular representations 
which determine a structure of rings, provided that the rings have enough idempotents. 
This wealth of idempotents can be ensured if rings are proper matrix rings, i.e., they are 
n-by-n for n > 1. An idempotent e = e2 in a ring R not necessarily with unity induces 
the (two-sided) Peirce decomposition

R = eRe⊕ eR(1 − e) ⊕ (1 − e)Re⊕ (1 − e)R(1 − e),

or more transparently, e induces on R the generalized matrix ring structure

R =
[

eRe eR(1 − e)
(1 − e)Re (1 − e)R(1 − e)

]
,

with the obvious matrix addition and multiplication. Here eRe (= {ere | r ∈ R}), 
eR(1 −e), (1 −e)Re and (1 −e)R(1 −e) are abelian subgroups of R, where the abbreviated 
notation eR(1 −e) stands formally for the set {e(r−re) = er−ere | r ∈ R}; and similarly, 
(1 −e)Re = {re −ere | r ∈ R}, (1 −e)R(1 −e) = {r−er− re +ere | r ∈ R}. Henceforth, 
there are generally two ways to treat idempotents concerning their structural influence. 
The first is an internal way given by the classical Peirce decompositions; the second way 
is an external one provided by generalized (or formal) matrix rings. It is well known 
(e.g., see [1]) that with each Peirce decomposition, we can associate a generalized matrix 
ring; and with each generalized matrix ring, we can associate a Peirce decomposition. 
Observe that a Morita context is a 2-by-2 generalized matrix ring. Recall that a Morita 
context is a quadruple (A, B,AMB ,BNA) of rings A and B and bimodules AMB and 

BNA, together with (A, A)- and (B, B)-bimodule homomorphisms

(−,−) : M ⊗
B
N −→AAA, [−,−] : N ⊗

A
M −→BBB ,

satisfying the conditions

(m,n)m1 = m[n,m1] and [n,m]n1 = n(m,n1)

of associativity for all m, m1 ∈ M and all n, n1 ∈ N . It is not necessary to require A

and B to be unital rings and M and N to be unitary bimodules. Consequently, every 
Morita context provides a generalized matrix ring

R =
[
A M

N B

]
,
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endowed with the usual matrix addition and multiplication by using bimodule homo-
morphisms (−, −) and [−, −]; and vice versa in the case when at least one of A and B

is unital, by putting e =
[

1 0
0 0

]
or e =

[
0 0
0 1

]
, one obtains a Peirce decomposition.

Generalized matrix rings, in particular Morita contexts, provide an efficient way to 
obtain rings with prescribed idempotents of a certain type. Then, using the prescribed 
idempotents to obtain Peirce decompositions, one can obtain further information about 
the rings. For example, a ring with unity is a 2-by-2 generalized upper triangular ma-
trix ring if and only if it has a left semicentral idempotent which is neither 0 nor 1. 
Moreover, the Peirce decomposition may provide a means to unify a class of generalized 
matrix rings. For example, renumbering pairwise orthogonal idempotents leads to for-
mally different generalized matrix rings which can be transformed from one to another 
by appropriate interchanging of rows and columns, respectively. However, the associated 
Peirce decomposition is the same, because addition is commutative.

The associativity condition imposed on Morita contexts is satisfied trivially if the 
considered bilinear products are trivial, i.e., zero. This naturally suggests the notion of 
Peirce idempotents. An idempotent e = e2 ∈ R is called Peirce trivial if eR(1 − e)Re =
0 = (1 − e)ReR(1 − e) (see [1]). By defining the class of rings which are indecomposable 
relative to the Peirce trivial concept (i.e., rings in which 0 and 1 are the only Peirce 
trivial idempotents) one obtains building blocks for a new decomposition theory (see 
Definition 2.1). We refer to Peirce’s original paper [14] for decompositions induced by 
idempotents. Other aspects and related properties of matrix and generalized matrix rings 
can be found also in [1], [7], [8], [11], [12] and [17].

In this paper we devote our attention to the investigation of n-Peirce rings. In contrast 
to our other work in [1], in this article we give a coordinatization-free treatment, i.e., 
we look for results which are independent of particular generalized matrix ring repre-
sentations. In Section 2, the main result shows that one can develop a structure theory 
of Peirce rings similar to that of Bass for semiperfect rings. Thorough discussions on 
conditions weakening Peirce trivial idempotents can be found in [1]. In Section 3, fol-
lowing the program suggested by Jacobson’s classic (see [10]), we define so-called trivial 
idempotents relative to certain radicals, like J-trivial and B-trivial idempotents; and we 
sketch the process of how to lift results on semisimple factors to the rings. This is closely 
related to the classical theory of lifting idempotents modulo radicals. Applications of our 
theory are developed in the last section. In particular, we show that a variety of well 
known and useful conditions produce an n-Peirce ring with a generalized matrix repre-
sentation whose diagonal rings are 1-Peirce rings which satisfy the respective condition. 
Moreover, we provide many well known classes of rings for which an n-Peirce ring has 
a generalized matrix representation in which each diagonal ring is 1-Peirce and in the 
respective class.

A word about notation and convention: in the rest of this paper all rings are unital 
and all modules are unitary. When a ring R with an idempotent e2 = e ∈ R is viewed as a 
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generalized matrix ring R =
[

eRe eR(1 − e)
(1 − e)Re (1 − e)R(1 − e)

]
, then the identity element of 

the rings A = eRe and B = (1 −e)R(1 −e) is 1 by convention, not e or 1 −e, respectively. 
This convention will simplify and make routine calculations transparent. We consider an 
element r = 1 · r · 1 = [e + (1 − e)]r[e + (1 − e)] both as a sum r = ere + er(1 − e) + (1 −

e)re + (1 − e)r(1 − e) and as a formal matrix r =
[

ere er(1 − e)
(1 − e)re (1 − e)r(1 − e)

]
.

2. General structure theory

For the sake of self-containment we provide the following definition (see [1]).

Definition 2.1. An idempotent e = e2 in a ring R is called inner Peirce trivial if eR(1 −
e)Re = 0. Dually, e is outer Peirce trivial if 1 −e is an inner Peirce trivial. An idempotent 
e is Peirce trivial if it is both inner and outer Peirce trivial. The set of Peirce trivial 
idempotents of R is denoted by Pt(R). A ring R is a 0-Peirce ring if it has only one 
element 1 = 0, and R is called a Peirce ring, or more precisely, a 1-Peirce ring if 
Pt(R) = {0, 1}, with 1 �= 0. Inductively, for a natural number n > 1, a ring R is called 
an n-Peirce ring if there is an e ∈ Pt(R) such that eRe is an m-Peirce ring for some 
m, 1 ≤ m < n, and (1 − e)R(1 − e) is an (n − m)-Peirce ring. An idempotent e ∈ R

is called an n-Peirce idempotent if eRe is an n-Peirce ring. In particular, e = e2 ∈ R

is called a 1-Peirce idempotent if eRe is a 1-Peirce ring. Henceforth, for every natural 
number n, we denote the class of n-Peirce rings by Pn.

Recall from [1] that Pn is a proper subclass of Tn. Thus when R ∈ Pn is represented 
in generalized matrix form and [aij ], [bij ] ∈ R with [cij ] = [aij ][bij ], then cii = aiibii, for 
all i and j (i.e., the diagonal entries of the product of two matrices equals the product 
of the corresponding diagonal entries of the factor matrices).

Remark 2.2. Since all central idempotents are Peirce trivial, every R ∈ P1 is indecom-
posable as a ring. In particular, if a ring R is semiprime or Abelian then both inner and 
outer Peirce trivial idempotents in R are central; and such a ring R is in P1 if and only if 
R is indecomposable as a ring. Recall that a ring is Abelian if its idempotents are central. 
Peirce trivial idempotents generalize the notion of semicentral idempotents which occur 
naturally in the structure of 2-by-2 generalized triangular matrix rings. For a natural 
number n, n-Peirce rings are generalizations of n-strongly triangular matrix rings (see 
[3]), or in another terminology, rings with a complete set of triangulating idempotents 
(see [4]). For a thorough and subtle analysis of inner and outer Peirce idempotents, see [1]. 
It is also worth noting that for an idempotent e2 = e ∈ R the set e + eR(1 − e) is char-
acterized in [18, Part II, Chapter II, Lemma 2.7] as the set of idempotents f2 = f ∈ R

such that e and f generate the same right ideal.



P.N. Ánh et al. / Journal of Algebra 564 (2020) 247–275 251
The following characterization (which is related to [1, Corollary 3.6]) of Peirce trivial 
idempotents is obvious in view of Definition 2.1.

Proposition 2.3. Let e = e2 ∈ R and I = eR(1 − e) + (1 − e)Re. Then e ∈ Pt(R) if and 
only if I is an ideal of R.

Direct matrix computations (see [2] and [3]) yield the following:

Proposition 2.4. Let e ∈ Pt(R), and put A = eRe, B = (1 − e)R(1 − e), M = eR(1 − e)

and N = (1 − e)Re. For arbitrary elements m ∈ M, n ∈ N the element f =
[

1 m

n 0

]

is an idempotent, the rings A and fRf =
{[

a am

na 0

]
: a ∈ A

}
are isomorphic under 

the map ϕ, sending a ∈ A to ϕ(a) =
[

a am

na 0

]
, and B and (1 − f)R(1 − f) ={[

0 −mb

−bn 1

]
: b ∈ B

}
are isomorphic under the map �, sending b ∈ B to �(b) =[

0 −mb

−bn b

]
. Also, the modules RRe and RRf are isomorphic by sending e �→ ef and 

f �→ fe. Moreover, M = fR(1 − f), N = (1 − f)Rf and the identity maps on M and 
N are (ϕ, �)-bimodule isomorphisms, i.e., for any a ∈ eRe, b ∈ (1 − e)R(1 − e), x ∈ M

and y ∈ N one has axb = ϕ(a)x�(b) and bya = �(b)yϕ(a). Consequently, f is also in 
Pt(R).

Simple formal calculations with matrices also show the following result.

Lemma 2.5. If e ∈ Pt(R) and g ∈ Pt(eRe), then for any m ∈ eR(1 −e) and n ∈ (1 −e)Re:

(1) the element h =
[

g gm

ng 0

]
is an inner Peirce trivial idempotent in R;

(2) the rings gRg and hRh are isomorphic;
(3) the modules RRg and RRh are isomorphic.

Remark 2.6. It can be seen from [1, Example 3.9] that if e ∈ Pt(R) and g ∈ Pt(eRe), 
then g need not be in Pt(R); but g is inner Peirce trivial in R (see [1, Lemma 3.8(1)]). 
Observe that in general a product of two Peirce trivial idempotents is not even an 
idempotent; to wit, let R be the 2-by-2 upper triangular matrix ring over a ring A. Then [

1 0
0 0

][
0 1
0 1

]
is a product of Peirce trivial idempotents which is not an idempotent.

The following result provides basic properties of Peirce trivial idempotents.
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Proposition 2.7. Let R be a ring, and let e ∈ Pt(R). Then any idempotent f ∈ R =[
A M

N B

]
, where A = eRe, B = (1 −e)R(1 −e), M = eR(1 −e) and N = (1 −e)Re, can 

be written as a sum of two orthogonal idempotents α =
[

g gm

ng 0

]
and β =

[
0 mh

hn h

]

(f = α + β and αβ = βα = 0) for appropriate g2 = g ∈ A, h2 = h ∈ B, m ∈ M and 
n ∈ N . Furthermore,

(1) α, β ∈ Pt(fRf);
(2) the modules RRf and RRfe, where fe = g + h, are isomorphic;
(3) f ∈ Pt(R) if and only if fe ∈ Pt(R).

Moreover, if f ∈ Pt(R), then g ∈ Pt(A) and h ∈ Pt(B). They are inner Peirce trivial 
idempotents of R, but not necessarily outer Peirce trivial idempotents of R. The same is 
true for both α and β, i.e., they are inner Peirce trivial idempotents of R.

Proof. Since f can be written uniquely as the generalized matrix f =
[
g m

n h

]
for 

uniquely determined elements g ∈ A, h ∈ B, m ∈ M and n ∈ N , the equality f2 = f

implies that

g2 = g, h2 = h, m = gm + mh and n = ng + hn,

which in turn implies that

gmh = 0 and hng = 0.

Let

α =
[

g gm

ng 0

]
and β =

[
0 mh

hn h

]
.

Then one can verify directly that α = α2, β = β2, f = α + β and αβ = βα = 0.
To see that α, β ∈ Pt(fRf), one has to verify that αfRfβfRfα = αRβRα = 0 =

βfRfαfRfβ = βRαRβ, which is obvious by observing the inclusions αRβ ⊆ M and 
βRα ⊆ N . The modules RRf and RRfe are isomorphic by the equalities f = ffef and 
fe = feffe. Since f = fe + (gm + hn) + (mh + ng), gm + hn ∈ feR(1 − fe), mh + ng ∈
(1 −fe)Rfe, fe = f−(gm +hn) −(mh +ng), gm +hn ∈ fR(1 −f) and mh +ng ∈ (1 −f)Rf , 
it follows immediately in view of Proposition 2.4 that f ∈ Pt(R) if and only if fe ∈ Pt(R).

Assume now in addition that f ∈ Pt(R). The idempotent e is now the identity 1A of 

A, i.e., e =
[

1 0
0 0

]
, and similarly 1 − e =

[
0 0
0 1

]
is the identity 1B of B. The equality 
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0 = fR(1 −f)Rf = (α+β)R(1 −f)R(α+β) implies that 0 = αeRe(1 −f)eRef = gA(e −
g)Afe = aA(e −g)Ag, whence g is an inner Peirce trivial idempotent of A = eRe. On the 
other hand, the equality 0 = (1 −f)RfR(1 −f) shows that 0 = (1 −f)eRefeRe(1 −f) =
(1 −f)eAgAe(1 −f), from which 0 = e(1 −f)eAgAe(1 −f)e = (e −g)AgA(e −g) follows. 
Therefore, g is also an outer Peirce trivial idempotent of A. Consequently, g ∈ Pt(A). 
By symmetry, h ∈ Pt(B), with B = (1 − e)R(1 − e). The remaining assertions are now 
simply consequences of Lemma 2.5. �

As an obvious consequence of Proposition 2.7 and Remark 2.6, routine matrix multi-
plication shows that:

Corollary 2.8. In the notation of Proposition 2.7, the products efe and (1 − e)f(1 − e) of 
an e ∈ Pt(R) and an idempotent f ∈ R are the idempotents g and h of R, respectively. 
Moreover, in the case of a Peirce trivial idempotent f , the idempotents g and h are inner 
Peirce trivial, but not necessarily outer Peirce trivial idempotents of R.

To justify Definition 2.1, one has to show that n is an invariant of an n-Peirce ring, 
i.e., n does not depend on the choice of elements of Pt(R). This fact is shown in the 
following result.

Theorem 2.9. Let R ∈ Pn, and let f ∈ Pt(R). Then fRf ∈ Pk for some k ≤ n, and 
(1 − f)R(1 − f) ∈ Pn−k.

Proof. We use induction. The case n = 1 is obvious from Definition 2.1. Assume now 
that n > 1 and that the theorem is true for all m < n. Consider an R ∈ Pn defined by an 
e ∈ Pt(R) such that eRe ∈ Pm (1 ≤ m < n) and (1 −e)R(1 −e) ∈ Pn−m. For simplifying 
calculations put A = eRe, M = eR(1 − e), N = (1 − e)Re and B = (1 − e)R(1 − e), 

and write the elements of R as generalized matrices r =
[
a m

n b

]
. Therefore, if f is an 

arbitrary element in Pt(R), then in view of Proposition 2.7, for the unique generalized 

matrix representation f =
[
g m

n h

]
, with uniquely determined elements g ∈ A, h ∈

B, m ∈ M and n ∈ N , by putting α =
[

g gm

ng 0

]
and β =

[
0 mh

hn h

]
, one has that 

f = α + β, αβ = βα = 0, α, β ∈ Pt(fRf), g ∈ Pt(A) and h ∈ Pt(B). Without loss of 
generality, we may assume that f �= 0, 1.

By the induction hypothesis applied to both A and B, we have that gAg ∈ Pp and 
hBh ∈ Pq for some p, 0 ≤ p ≤ m, and some q, 0 ≤ q ≤ n −m, such that at least one of 
the two inequalities is proper by the extra assumption on f . For the sake of simplicity, 
by putting t = gm = gt, u = ng = ug, v = mh = vh and w = hn = hw, one has
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α =
[
g t

u 0

]
and β =

[
0 v

w g

]
.

Routine matrix calculations show that

αfRfα = αRα =
{[

gag gat

uag 0

]
: gag ∈ gAg

}

and

(f − α)fRf(f − α) = βRβ =
{[

0 vbh

hbw hbh

]
: hbh ∈ hBh

}
,

whence αRα and βRβ are isomorphic to gAg and hBh via the maps

[
gag gat

uag 0

]
�−→ gag ∈ gAg

and
[

0 vbh

hbw hbh

]
�−→ hbh ∈ hBh,

respectively. Consequently fRf ∈ Pp+q. Moreover, the left R-modules RRg and RRα are 
isomorphic, as are RRh and RRβ. By the same manner and by the induction hypothesis 
we have also that (1 − f)R(1 − f) ∈ Pn−p−q, completing the proof. �

Since an idempotent is either Peirce trivial or not Peirce trivial, Theorem 2.9 suggests 
the following dichotomy.

Definition 2.10. A ring R has Peirce dimension 0 if it has only one element 1 = 0, and 
R has Peirce dimension n (n > 0) if R ∈ Pn. All other rings are said to have infinite 
Peirce dimension.

As an obvious consequence of Definition 2.10 and Theorem 2.9 we have:

Corollary 2.11. The Peirce dimension is additive, i.e., the Peirce dimension of a finite 
direct sum of rings is the sum of the Peirce dimensions of the direct summands. In par-
ticular, if e ∈ Pt(R), then the Peirce dimension of R is the sum of the Peirce dimensions 
of eRe and (1 − e)R(1 − e).

The following consequence deals with rings of infinite Peirce dimension.
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Corollary 2.12. A ring R has infinite Peirce dimension if and only if there is an infinite 
set of nonzero pairwise distinct idempotents e0 = 1, e1, . . . , en, . . . such that ei+1 is a 
1-Peirce idempotent of eiRei for every i = 0, 1, 2, . . . .

The class P1 (of 1-Peirce rings) covers rings with a variety of different properties. It 
contains, for example, all prime rings and rings with only the two idempotents 1 and 0. 
Furthermore, all matrix rings over local rings are also in P1, as is easily verified. The 
problem of characterizing or describing the class P1 seems to be quite interesting. Since 
Pn is even larger, one needs additional invariants to get a closer look at them.

The following invariant is an obvious consequence of Definition 2.1.

Definition 2.13. Let I be a finite nonempty set. A partition of I is a finite set of nonempty 
pairwise disjoint subsets whose union is I. A dyadic partition of I is a partition into two 
disjoint subsets. A partition λ is called a dyadic refinement of a partition γ if all elements 
of γ, with one exception, are elements of λ, and the exceptional element is a union of two 
elements of λ. A set Λ =

{
λ0 = {I}, λ1, λ2, · · · , λk

}
of partitions λi is called a complete 

dyadic set of partitions if λi+1 is a dyadic refinement of λi for all i = 0, . . . , k− 1 and all 
elements of λk are singletons. Therefore k = n − 1 if I has n elements.

For a subset I of {1, 2, . . . , n} and a set {e1, e2, . . . , en} of idempotents in a ring R

the sum 
∑
i∈I

ei is denoted by eI .

The following important characterization of n-Peirce rings is an easy consequence of 
Definitions 2.1 and 2.13.

Corollary 2.14. A ring R is in Pn if and only if there are n pairwise orthogonal 1-
Peirce idempotents e1, . . . , en whose sum is 1, and a complete dyadic set Λ =

{
λ0 ={

{1, 2, . . . , n}
}
, λ1, λ2, · · · , λk

}
of partitions of {1, 2, . . . , n} such that for an exceptional 

element I of λi, i = 0, . . . k−1, which is a union of two elements J and L of λi+1, eJ ∈
Pt(eIReI).

Proof. The sufficiency is obvious. For the necessity we use induction on n. The claim 
is obvious for n = 2, 3. Let n > 3 and assume that the claim is true for all m < n. 
By Definition 2.1 there is an E ∈ Pt(R) such that ERE ∈ Pn1 and FRF ∈ Pn2 , with 
F = 1 −E and n1 + n2 = n, n1n2 �= 0. Therefore by the induction hypothesis there are 
pairwise orthogonal 1-Peirce idempotents e1, . . . , en1 in ERE and f1, . . . , fn2 in FRF

together with complete dyadic sets Λ1 = {α0, . . . , αn1−1} and Λ2 = {δ0, . . . , δn2−1} of 
partitions of {1, . . . , n1} and {1, . . . , n2}, resulting in ERE ∈ Pn1 and FRF ∈ Pn2 . 
Now, putting ei = fi−n1 for all i, ni < i < n + 1, we obtain a set of n pairwise 
orthogonal idempotents {e1, . . . , en} with sum 1. Partitions of {1, . . . , n2} in the set Λ2
define partitions of the set {n1 + 1, . . . , n} by sending i, 0 < i < n2 + 1, to n1 + i, 
whence the set Λ2 of partitions of {1, . . . , n2} defines the set Λ3 = {β0, . . . , βn2−1} of 
partitions of the set {n1 + 1, . . . , n}. Putting λ0 = {1, . . . , n} and λi+1 = αi ∪ β0 for 
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all i, 0 ≤ i < n1, and λn1+i−1 = αn1−1 ∪ βi for all i, 0 < i < n1, one obtains a required 
complete dyadic set Λ = {λ0, . . . , λn−1} of partitions of {1, . . . , n}, which completes the 
proof. �

We emphasize the “advantage” of Peirce trivial idempotents over inner or outer Peirce 
trivial idempotents in that the symmetry of the Peirce trivial idempotents and the dyadic 
(refinement) partitioning provide the mechanism for decomposing a ring in Pn into n
rings in P1.

With the notation of Corollary 2.14, for an R ∈ Pn together with n pairwise orthog-
onal 1-Peirce idempotents ei with sum 1 and a complete dyadic set Λ of partitions, the 
subset D(R)− =

∑
i�=j

eiRej (see [1]) is a nilpotent ideal of nilpotency index at most n.

This simple assertion is based on the next observation. If I is an exceptional subset 
in the partition λk−1 which is a disjoint union of two subsets J, K in λk, put Dλi

(R)− =
eJReK + eKReJ . Then in view of Proposition 2.3, Dλi

(R)− is an ideal of EIREI with 
square 0. Since D(R)− =

∑
λi

Dλi
(R)−, the claim is proved.

We will see later that D(R)− is independent of the choice of a set of idempotents ei.
It is worth stating separately a result which is similar to the classical Wedderburn 

Principal Theorem:

Corollary 2.15. Under the above notation, an n-Peirce ring R is a direct sum of D(R)−
and a subring which is a direct sum of n 1-Peirce rings.

The converse of this simple result is, in general, not true. It is quite interesting to find 
sufficient conditions such that a ring R is an n-Peirce ring if it has a direct decomposition 
R = S ⊕D of a subring S, which is a direct product of n 1-Peirce rings, and a nilpotent 
ideal D of nilpotency index (at most) n.

The proof of Corollary 2.14 shows that there are several complete dyadic sets of 
partitions that define the same n-Peirce ring within a given set of pairwise orthogonal 
1-Peirce idempotents whose sum is 1, and there is freedom and room in numbering the 
idempotents under consideration.

Now we give an obvious way to construct one such set of idempotents with a possible 
numbering (indexing) and a complete dyadic set of partitions. Since Definition 2.1 is 
deductive, first the identity E0 = 1 is an orthogonal sum of two proper Peirce trivial 
idempotents E0 = E00+E01 of R. Second, each of E00 and E01 is again an orthogonal sum 
of two proper Peirce trivial idempotents in the associated rings E00RE00 and E01RE01, 
respectively, except the case when they are 1-Peirce idempotents. In this exceptional 
case, they are elements of a required set of pairwise orthogonal 1-Peirce idempotents.

Continuing in this way, after finitely many steps one obtains, for an R ∈ Pn, a sequence 
e1, . . . , en of pairwise orthogonal 1-Peirce idempotents with sum 1 and a complete dyadic 
set of partitions λ0 = {I} ⊆ λ1 ⊆ λ2 ⊆ · · · ⊆ λk such that for an exceptional element 
I of λi, i = 0, . . . k − 1, which is the union of two elements J and L of λi+1, eJ ∈



P.N. Ánh et al. / Journal of Algebra 564 (2020) 247–275 257
Pt(eIReI). Furthermore, one can index them such that for each index i < n there is an 
index ji, i < ji ≤ n, maximal with respect to the property that ei ∈ Pt(EiREi), where 
Ei = ei + ei+1 + · · · + eji .

However, a sequence e1, . . . , en of pairwise orthogonal 1-Peirce idempotents with sum 
1 such that for each index i < n there is an index ji, i < ji ≤ n, maximal with respect 
to the property that ei ∈ Pt(EiREi), where Ei = ei + ei+1 + · · · + eji , is not sufficient 
to ensure that a ring is in Pn. The reason is that such a sequence is far from ensuring 
that there exists a subsum of the ei’s which is Peirce trivial in the ring.

Furthermore, if f2 = f ∈ R is an arbitrary 1-Peirce idempotent of R, then according 
to Proposition 2.7 together with its notation, in the expression f = α+ β of f as a sum 
of two orthogonal idempotents α and β in Pt(fRf), one of α and β must be 0, say, 
β = 0. Then g is a 1-Peirce idempotent in a subring eRe in Pm, with m < n. Therefore, 
after finitely many steps one finds an idempotent ei, uniquely determined by f , such 

that there is a 1-Peirce idempotent g ∈ eiRei, with f =
[

g gm

ng 0

]
or f =

[
0 mg

gn g

]
, 

where m and n are appropriate elements of eiR(1 − ei) and (1 − ei)Rei, respectively. 
Note that g is, in general, not equal to ei, the identity of the ring eiRei, as one can see 
easily in the case of a matrix ring over a division ring.

These arguments lead to:

Proposition 2.16. Under the hypothesis and notation of Corollary 2.14, any 1-Peirce 
idempotent f in a ring R ∈ Pn determines uniquely an i ∈ {1, 2, . . . , n} and a 1-Peirce 
idempotent g ∈ eiRei such that

(1) RRf and RRg are isomorphic;

(2) f =
[

g gm

ng 0

]
or f =

[
0 mg

gn g

]
for appropriate m ∈ eiR(1 − ei) and n ∈

(1 − ei)Rei. If f ∈ Pt(R), then g = ei.

Remark 2.17. If f is an m-Peirce idempotent in a ring R ∈ Pn, then f is an orthogonal 
sum of m pairwise orthogonal 1-Peirce idempotents fj , and in view of Proposition 2.16, 
there are uniquely determined indices ij associated to j and a 1-Peirce idempotent gj ∈
eijReij such that

(1) RRfj and RRgj are isomorphic, and

(2) fj =
[

gj gjmj

njgj 0

]
or fj =

[
0 mjgj

gjnj gj

]
for appropriate mj ∈ eijR(1 − eij ) and 

nj ∈ (1 − eij )Reij .

However, it is possible that the indices ij are the same for different indices j as in the 
following example. Let
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R =

⎡
⎢⎣ Z/8Z 4Z/8Z 2Z/8Z

2Z/8Z Z/8Z 2Z/8Z
2Z/8Z 2Z/8Z Z/8Z

⎤
⎥⎦ .

Then one can check that R ∈ P1 and fRf ∈ P2, where f = f1 + f2 and

f =

⎡
⎢⎣ 1 0 0

0 1 0
0 0 0

⎤
⎥⎦ , f1 =

⎡
⎢⎣ 1 0 0

0 0 0
0 0 0

⎤
⎥⎦ and f2 =

⎡
⎢⎣ 0 0 0

0 1 0
0 0 0

⎤
⎥⎦ ,

whence the corresponding indices i1 and i2 coincide. Although R seems to be quite 
simple, it has 220 elements! One can verify that R ∈ P1 in the same way as in [1, 
Example 5.9].

Note that [1, Example 5.9] also provides an example of a ring in P1 with 3 pairwise 
orthogonal 1-Peirce idempotents whose sum is 1. There is another handy short way to 
check this assertion without computation, as follows. Observing that R is a semiperfect 
ring, in fact, a finite ring, all complete sets of pairwise orthogonal primitive idempotents 
of R are conjugate, i.e., any such set can be transformed into another one by an inner 
automorphism (see Lemma 2.18 below). Hence it suffices to check for the complete set 
{f1, f2, 1 −(f1+f2)} of pairwise orthogonal primitive idempotents of R, which is obvious. 
In this way one can construct quite a large class of semiperfect rings in P1.

This example shows also that a ring in Pn can contain a proper l-Peirce idempotent 
e, i.e., e �= 1, 0, with l > n. For example, let A = Z/2nZ (n > 2) and let X = 2A, Y =
2n−1A. The above method implies immediately that the finite generalized n × n matrix 
ring

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

A Y Y · · · Y X
Y A Y · · · Y X2

Y Y A · · · Y X3

...
...

...
. . .

...
...

Y Y Y · · · A Xn−1

Xn−1 Xn−2 Xn−3 · · · X A

⎞
⎟⎟⎟⎟⎟⎟⎠

is in P1 together with an idempotent f2 = f ∈ R such fRf ∈ Pn−1. Consequently, a 
ring R in P1 can contain an idempotent f such that the subring fRf has an arbitrary
finite Peirce dimension.

In order to describe a relation between two sets of pairwise orthogonal 1-Peirce idem-
potents showing that a ring is in Pn, let us recall the following more general, but folklore, 
result.

Lemma 2.18. If {e1, . . . , en} and {f1, . . . , fn} are two sets of pairwise orthogonal idempo-
tents in a ring R whose sums are 1, such that the modules RRei and RRfi are isomorphic 



P.N. Ánh et al. / Journal of Algebra 564 (2020) 247–275 259
for all i = 1, 2, . . . , n, then there is an invertible element s ∈ R such that seis−1 = fi for 
all i = 1, 2, . . . , n.

Proof. By assumption, for each i = 1, 2, . . . , n there are elements si, ti ∈ R such that 
the equalities eisifi = si, fitiei = ti, siti = ei and tisi = fi hold. Put s = s1 + · · · + sn
and t = t1 + · · · + tn. Simple calculations show that st = ts = 1 and sfit = sfis

−1 = ei
for all i = 1, 2, . . . , n. �

In spite of Proposition 2.16, we are now in a position to give some partial positive 
results showing some similarity to the theory of semiperfect rings.

Theorem 2.19. Let R ∈ Pn be defined by n pairwise orthogonal 1-Peirce idempotents 
e1, . . . , en with sum 1 and a complete dyadic set of partitions 

{
λ0 = {I}, λ1, λ2, . . . , λk

}
of {1, 2, . . . , n} such that for an exceptional element I of λi, i = 0, . . . , k − 1, which is 
the union of two elements J and L of λi+1, eJ ∈ Pt(eIReI).

(1) If {f1, . . . , fm}, with m ≤ n, is any set of pairwise orthogonal 1-Peirce idempotents 
with sum 1, then m = n and there is an invertible element s ∈ R and a permutation 
σ of the set {1, . . . , n} such that fσ(i) = seis

−1 for all i = 1, . . . , n.
(2) If f2 = f ∈ R is a k-Peirce idempotent, then for each index j in a representation 

of f =
k∑

j=1
fj as a sum of k pairwise orthogonal 1-Peirce idempotents, there exists 

an index i and a 1-Peirce idempotent εij ∈ eiRei such that RRfj is isomorphic 
to RRεij , where the εij ’s are pairwise orthogonal appropriate 1-Peirce idempotents 

contained in eiRei. Consequently, RRf is isomorphic to RRε, ε =
k∑

j=1
εij .

(3) Moreover, if f ∈ Pt(R), then f is a k-Peirce idempotent for some k ≤ n, and in 

the above representation of f =
k∑

j=1
fj as a sum of k pairwise orthogonal 1-Peirce 

idempotents fj, for each index j one has εij = ei, i.e., the correspondence j �→ ij is 
injective.

Proof. (1) By Proposition 2.16, for each fj there is a uniquely determined eij with a 
1-Peirce idempotent gij ∈ eijReij such that fj and gij are equal modulo D(R)−. Since 
the factor of R by D(R)− is a direct product of n rings eiRei, and 

∑
fj maps to 1 in 

this factor ring, together with m ≤ n, one gets that all the gij are distinct and each gij
is the identity eij of the ring eijReij . This shows that m = n, and that RRfj and RReij
are isomorphic R-modules, whence the existence of an inner automorphism of R sending 
the ei onto the fi follows in view of Lemma 2.18.

(2) We use the notation in the proof of Theorem 2.9. Let e ∈ Pt(R), ensuring that 
R ∈ Pn, and put A = eRe, M = eR(1 − e), N = (1 − e)Re and B = (1 − e)R(1 − e), 
where A ∈ Pm and B ∈ Pn−m for some m, 1 ≤ m < n. For a k-Peirce idempotent 
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f =
[
g m

n h

]
with uniquely determined elements g ∈ A, h ∈ B, m ∈ M and n ∈ N , 

let α =
[

g gm

ng 0

]
and β =

[
0 mh

hn h

]
. One has that f = α + β, αβ = βα = 0, and 

α, β ∈ Pt(fRf), whence they are again l1- and l2-Peirce idempotents with l1, l2 ≤ k

of R, respectively, in view of Theorem 2.9 and Proposition 2.7. Simple formal matrix 
calculation shows that gRg and hRh are isomorphic to αRα and βRβ, respectively. 
Consequently, g and h are l1- and l2-Peirce idempotents of R, respectively. Then the 
obvious induction finishes the proof of the first part of (2).

(3) If f ∈ Pt(R), then again by Theorem 2.9 f is a k-Peirce idempotent for some k ≤ n. 

In a representation of f as a sum 
k∑

j=1
fj of k pairwise orthogonal 1-Peirce idempotents 

above, Proposition 2.7 shows that, for each index j, the corresponding idempotent εij
associated with fj is in Pt(eiRei), whence εij = ei, as required. It is worth noting that, 
in view of Remark 2.17, k > n can happen for Peirce idempotents f which are not Peirce 
trivial. �

One can see assertion (1) of Theorem 2.19 by using [1, Theorem 5.7(2)]. By this result, 
R ∈ Pk for some k, k ≤ m ≤ n, whence k = m = n by Theorem 2.9.

As a consequence of the above proof we obtain immediately that
∑
i�=j

fiRfj ⊆
∑
i�=j

eiRej .

Since the role of ei and of fj are now quite symmetric, in view of Proposition 2.7 and 
Theorem 2.19, by interchanging the role of fi and of ei in the above inclusion, we obtain 
the equality

∑
i�=j

fiRfj =
∑
i�=j

eiRej ,

showing that:

Corollary 2.20. The ideal D(R)− of a ring R ∈ Pn is independent of the choice of 
the set {e1, e2, . . . , en} of n pairwise orthogonal 1-Peirce idempotents with sum 1. In 
particular, a ring-theoretical direct sum 

∑
i

eiRei of n subrings eiRei ∈ P1 is uniquely 

determined by R up to isomorphisms, i.e., independent of the choice of the corresponding 
n pairwise orthogonal 1-Peirce idempotents whose sum is 1. Consequently, the subrings 
eiRei, i = 1, 2, . . . , n, are also invariants of R and the bimodules eiReieiRejejRej

are 
uniquely determined up to bimodule isomorphisms, too.

Unfortunately, the converse of this result is not true. However, in view of [1, Theo-
rem 5.7(2)] every ring with a complete set {e1, e2, . . . , en} of pairwise orthogonal 1-Peirce 
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idempotents ei is in Pk for some k ≤ n, whence R admits a Wedderburn-like principal 
decomposition described in Corollaries 2.15 and 2.20 with another complete set of k pair-
wise orthogonal 1-Peirce idempotents. Moreover, [1, Theorem 5.7(2)] together with the 
above consequences provides a very handy tool to determine if certain rings are in P1. 
To state the criterion, we define an auxiliary notion. A subset X of a ring R is said to be 
nilpotent of index n if its ring closure, i.e., the smallest additive group of R containing 
X and closed under multiplication is a nilpotent ring (without identity) of index n.

Corollary 2.21. Let R be a ring with a complete set {e1, e2, . . . , en} of pairwise orthogonal 
1-Peirce idempotents ei, i.e., 

∑
ei = 1, eiej = δijei. Then R ∈ P1 if for every subset 

I ⊆ {1, 2, . . . , n} of at least two elements, the nilpotency index of DI
− =

∑
i,j∈I, i �=j

eiRej

is larger than the cardinality of I.

Note that DI
− may not be nilpotent. Furthermore, it should be noted separately 

that [1, Theorem 5.7(2)] is an efficient tool for constructing certain rings in Pn with 
prescribed properties. In view of Corollary 2.14 one can refine the definition of rings 
in Pn by including a complete dyadic set of partitions of {1, 2, . . . , n} as an additional 
invariant.

Definition 2.22. A ring R is called an n-Peirce ring associated with a complete dyadic 
set of partitions λ0 = {I} ⊆ λ1 ⊆ λ2 ⊆ · · · ⊆ λk of {1, 2, . . . , n} if there are n pairwise 
orthogonal 1-Peirce idempotents e1, . . . , en with sum 1 such that for an exceptional 
element I of λi, i = 0, . . . , k − 1, which is the union of two elements J and L of λi+1, 
eJ ∈ Pt(eIReI).

It is worth noting that a ring in Pn in the sense of Definition 2.1 can admit different 
complete dyadic sets of partitions of {1, 2, . . . , n}. It is quite an interesting combina-
torial question to determine all complete dyadic set of partitions of {1, 2, . . . , n} for a 
ring in Pn. This freedom would provide room for a combinatorial description of certain 
automorphisms of rings in Pn.

To justify Definition 2.22 we give an example of a ring in P4 associated with the com-
plete dyadic set 

{
λ0 =

{
{1, 2, 3, 4}

}
, λ1 =

{
{1, 2}, {3, 4}

}
, λ2 =

{
{1}, {2}, {3, 4}

}
, λ3 ={

{1}, {2}, {3}, {4}
}}

of partitions of {1, 2, 3, 4} which does not contain a Peirce trivial 
3-Peirce idempotent. Consider the field K = Z2 of 2 elements, together with the trivial 

bilinear forms [−, −] = (−, −) : Z2 ⊗Z2 Z2 → Z2, and let A = B =
[
K K

K K

]
be the 

generalized matrix ring induced by these trivial bilinear forms. Let M = N = A = B, 
considering AMB and BNA as bimodules equipped with the trivial bilinear form 
(−, −)B : M ⊗B N → A and [−, −]A : N ⊗A M → B. Now the generalized matrix 



262 P.N. Ánh et al. / Journal of Algebra 564 (2020) 247–275
ring R =
[
A M

N B

]
induced by these bilinear forms is the required example, as is easily 

verified by using the method described in Remark 2.17.
Since a complete dyadic set associated with a 2-Peirce or a 3-Peirce ring is unique, or 

equivalently, a Peirce trivial idempotent that defines a 2-Peirce or 3-Peirce ring, can be 
chosen to be a 1-Peirce idempotent, we can make the definition of a complete dyadic set 
essentially simpler as follows.

Definition 2.23. A set Λ =
{
λ0 = {I}, λ1, λ2, · · · , λk

}
of partitions λi of a finite nonempty 

set I is called a reduced dyadic set of partitions if λi+1 is a dyadic refinement of λi for 
all i = 0, . . . , k − 1 and all elements of λk are sets having at most three elements.

Definition 2.23 simplifies Corollary 2.14 as

Corollary 2.24. A ring R is in Pn if and only if there are n pairwise orthogonal 
1-Peirce idempotents e1, . . . , en with sum 1 and a reduced dyadic set Λ =

{
λ0 ={

{1, 2, . . . , n}
}
, λ1, λ2, · · · , λk

}
of partitions of {1, 2, . . . , n} such that for an exceptional 

element I of λi, i = 0, . . . , k − 1, which is the union of two elements J and L of 
λi+1, eJ ∈ Pt(eIReI) and for all subsets J in λk, eJReJ ∈ P|J|, where |J | ∈ {1, 2, 3}
denotes the cardinality of J .

In the last part of this section we describe automorphisms of certain n-Peirce rings 
associated with a complete dyadic set of partitions, generalizing the notion of strongly 
generalized triangular matrix rings. First we need the following definition.

Definition 2.25. An idempotent e = e2 in a ring R is called a strict 1-Peirce idempotent 
if e ∈ Pt(R) and eRe ∈ P1. Also, e is called a strict n-Peirce idempotent if e ∈ Pt(R)
and eRe ∈ Pn. A ring R is called inductively a strict n-Peirce ring if there is a strict 
1-Peirce e ∈ R such that (1 − e)R(1 − e) is a strict (n − 1)-Peirce ring. Strict 1-Peirce
rings are precisely 1-Peirce rings, whence strict 2- and strict 3-Peirce rings coincide also 
with 2- and 3-Peirce rings, respectively.

Observe that if {ei}ni=1 is a complete set of orthogonal 1-Peirce idempotents contained 
in Pt(R), then R is a strict n-Peirce ring. In particular, if {ei}ni=1 is a complete set of 
orthogonal primitive idempotents contained in Pt(R), then R is a strict n-Peirce ring. 
To construct such rings, see [1, Example 4.5(3)].

Strict n-Peirce rings are precisely n-Peirce rings associated with a complete dyadic set 
{λ1, . . . , λn} of partitions of {1, 2, . . . , n} given by λk =

{
{1}, {2}, . . . , {k− 1}, Ik

}
, k =

1, . . . , n, where Ik = {k, . . . , n}. Therefore strict n-Peirce rings are natural extensions of 
strongly generalized triangular matrix rings (see [3]), or in alternative terminology, rings 
with a complete set of triangulating idempotents (see [4]).
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Remark 2.26. It is worth emphasizing the subtle difference between 1-Peirce idempotents 
and strict 1-Peirce idempotents. The former are not necessarily Peirce trivial while the 
latter are such idempotents. For example, all proper idempotents in a matrix ring over 
a division ring are 1-Peirce idempotents, but they are never strict 1-Peirce idempotents!

In order to obtain a description of isomorphisms between strict n-Peirce rings, one 
needs some technical preparation.

Let A be a strict m-Peirce ring defined by an ordered sequence e1, . . . , em of pairwise 
orthogonal Peirce idempotents with sum 1 such that every ei ∈ Pt(Ai), i = 1, . . . , m −1, 
where Ai = (ei + · · · + em)A(ei + · · · + em). Then A1 = A. Letting Ri = eiAei, we have 
Am = Rm.

Next, let B be another strict n-Peirce ring defined by an ordered sequence f1, . . . , fn
of pairwise orthogonal Peirce idempotents with sum 1 such that every fi ∈ Pt(Bi), i =
1, . . . , n −1, where Bi = (fi+ · · ·+fn)B(fi+ · · ·+fn). Then B1 = B. Letting Si = fiBfi, 
we have Bn = Sn.

If σ is any permutation of {1, . . . , n}, put fσ
1 := fσ(1), . . . , fσ

n := fσ(n). According to 
this notation, if we write gi = fσ

i , then one can identify the above convention as follows:

Sσ
i := Sσ(i) = giBgi, Bσ

i := Bσ(i) = (gi + · · · + gn)B(gi + · · · + gn).

We are now in a position to describe isomorphisms between strict n-Peirce rings (see 
[3, Theorem]).

Theorem 2.27. Let A and B be strict m- and strict n-Peirce rings defined by or-
dered sequences e1, . . . , em and f1, . . . , fn of pairwise orthogonal 1-Peirce idempotents 
(with sum 1 in both cases) associated with the complete dyadic sets {λ1, λ2, . . . , λm}
and {λ′

1, λ
′
2, . . . , λ

′
n} of partitions of {1, 2, . . . , m} and {1, 2, . . . , n}, respectively, where 

λk = {{1}, {2}, .., {k − 1}, Ik}, k = 1, . . . , m, and λ′
k′ = {{1}, {2}, .., {k′ − 1}, Ik′}, k′ =

1, . . . , n, with Ik = {k, . . . , m} and Ik′ = {k′, . . . , n}. Then A and B are isomorphic via 
an isomorphism ϕ : A → B iff m = n and there is a permutation σ of {1, . . . , m} together 
with ring isomorphisms ρi : Ri = eiAei → Sσ

i = Sσ(i) = fσ
i Bfσ

i = fσ(i)Bfσ(i), i =
1, . . . , m = n, and for i = 1, . . . , m − 1 there are elements mi ∈ Mσ

i = fσ
i B

σ
i (1 − fσ

i )
and ni ∈ Nσ

i = (1 − fσ
i )Bσ

i f
σ
i , ring isomorphisms ϕi+1 : Ai+1 → Bσ

i+1, Ri − Ai+1-
bimodule isomorphisms χi : eiAi(1 − ei) → Mσ

i and Ai+1 − Ri-bimodule isomorphisms 
δi : (1 − ei)Aiei → Nσ

i , with respect to ρi and ϕi+1, such that for i = 1, . . . , m − 1 and 

ai =
[
ri xi

yi ai+1

]
∈ Ai,

ϕi(ai) =
[

ρi(ri) ρi(ri)mi + χi(xi) −miϕi+1(ai+1)
niρi(ri) + δi(yi) − niϕi+1(ai+1) ϕi+1(ai+1)

]
.

Moreover, all isomorphisms between isomorphic rings A and B can be described in this 
manner. (Keep in mind that ϕ1 = ϕ, ϕm = ρm; Am = Rm.) In particular, the auto-
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morphism group of a strict n-Peirce ring can be inductively described in terms of ones 
of 1-Peirce subrings and of related bimodules.

Proof. Assume that A and B are isomorphic via ϕ. Then ϕ(e1) is a strict 1-Peirce 
idempotent in B. Therefore, as in the proof of Theorem 2.9, for the unique gener-

alized matrix representation ϕ(e1) =
[
s1 m

n b2

]
, with uniquely determined elements 

s1 ∈ S1, b2 ∈ B2, m ∈ f1B(1 − f1) and n ∈ (1 − f1)Bf1, by putting α =
[

s1 s1m

ns1 0

]

and β =
[

0 mb2
b2n b2

]
, one has that ϕ(e1) = α + β, αβ = βα = 0, and α and β are 

Peirce trivial idempotents of ϕ(e1)Bϕ(e1) as well as of S1 and B2, respectively. Since 
ϕ(e1)Bϕ(e1) ∈ P1, one of α and β must be 0. If β = 0, then ϕ(e1) = α, and hence in 
this case one has s1 = f1, the identity element of S1, and one puts σ(1) = 1. If α = 0, 
then ϕ(e1) = β, and b2 is a strict 1-Peirce idempotent of both B1 = S and B2.

In this situation, one can repeat the process. Therefore after finitely many steps there 
exists a natural number j = σ(1) such that fj is a strict 1-Peirce idempotent of S, for 
each k < j there are elements xk ∈ fkSfj and vk ∈ fjSfk, and for each k > j there are 
elements uk ∈ fjSfk and yk ∈ fkSfj such that

ϕ(e1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · · · · 0 x1 0 · · · · · · · · · 0

0 0 0 · · · 0 x2
...

. . .
...

...
. . . . . . . . .

...
...

...
. . .

...
...

. . . . . . 0
...

...
. . .

...
0 · · · · · · 0 0 xj−1 0 · · · · · · · · · 0
v1 v2 · · · · · · vj−1 1 uj+1 uj+2 · · · · · · un

0 · · · · · · · · · 0 yj+1 0 0 · · · · · · 0
...

. . .
... yj+2 0 0 0 · · · 0

...
. . .

...
...

...
. . . . . . . . .

...
...

. . .
...

...
...

. . . . . . 0
0 · · · · · · · · · 0 yn 0 · · · · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

or equivalently, for

m1 = x1 + · · · + xj−1 + uj+1 + · · · + un ∈ Mσ
1 = Mσ(1) = fjB(1 − fj)

and

n1 = v1 + · · · + vj−1 + yj+1 + · · · + yn ∈ Nσ
1 = Nσ(1) = (1 − fj)Bfj ,
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ϕ(e1) =
[

1 m1
n1 0

]
∈
[

fjBfj fjB(1 − fj)
(1 − fj)Bfj (1 − fj)B(1 − fj)

]
.

Therefore ϕ induces ring isomorphisms ρ1 : e1Ae1 = R1 → ϕ(e1)Bϕ(e1) ∼= Bσ
1 =

fjBfj = Sj = Bσ
1 and ϕ2 : A2 = (1 − e1)A(1 − e1) → (1 − ϕ(e1))B(1 − ϕ(e1)) ∼=

(1 − fj)B(1 − fj) = Bσ
2 , and the restrictions of ϕ to e1A(1 − e1) and (1 − e1)Ae1 define 

the bimodule isomorphisms χi and δi to Mσ
1 and Nσ

1 , respectively. Consequently, if

a = a1 =
[
r1 x1
y1 a2

]
∈ A = A1 =

[
e1Ae1 e1A(1 − e1)

(1 − e1)Ae1 (1 − e1)A(1 − e1)

]
,

then

ϕ(a) = ϕ1(a1) = ϕ(r1) + ϕ(x1) + ϕ(y1) + ϕ(a2) =

=
[

ρ1(r1) ρ1(r1)m1 + χ1(x1) −m1ϕ2(a2)
n1ρ1(r1) + δ1(y1) − n1ϕ2(a2) ϕ2(a2)

]
.

The theorem follows now easily by reduction. �
Observing that the proof of Theorem 2.27 also shows, for each index i, that

ϕ(ei) =
[

1 mi

ni 0

]
∈
[

Sσ(i) fσ(i)B(fσ(i+1) + · · · + fσ(n))
(fσ(i+1) + · · · + fσ(n))Bfσ(i) Bi+1

σ

]
,

one obtains the following result in view of Lemma 2.18.

Theorem 2.28. Let R be a strict n-Peirce ring defined by two sequences e1, . . . , en and 
f1, . . . , fn of pairwise orthogonal 1-Peirce idempotents with sum 1 in each case. Then 
there is a permutation σ of {1, 2, . . . , n} and a unit s ∈ R such that seis−1 = fσ(i) for 
all i = 1, . . . , n.

Observe that not every permutation can occur in the description of the isomorphisms 
between and automorphisms of n-Peirce rings. Of course, such permutations form a 
subgroup of the symmetric group and this subgroup leaves invariant the class of all 
complete dyadic sets of partitions defining R.

We conclude this section with some remarks on the automorphism group of a ring 
R ∈ Pn together with a complete set I = {e1, e2, . . . , en} of pairwise orthogonal 
1-Peirce idempotents. Any automorphism φ of R transforms I to the complete set 
Iφ = {φ(e1), φ(e2), . . . , φ(en)} of pairwise orthogonal 1-Peirce idempotents. Therefore 
by Theorem 2.19 φ determines uniquely the permutation σφ and a unit sφ such that 
φ(ei) = s−1

φ eσφ(i)sφ for every i. However, sφ is not uniquely determined by φ. To sim-
plify notation, we write σ and s for σφ and sφ, respectively. These permutations σ form 
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a subgroup ΩR of the symmetric group leaving invariant the class of all complete dyadic 
sets of partitions. It is clear that φ induces the automorphisms ρi between subrings 
Ri = eiRei and Rσ

i = eσ(i)Reσ(i) and the (ρi, ρj)-bimodules isomorphisms χij between 
bimodules Ri

eiReRj
= Rij and Rσ

ij = eσ(i)Reσ(j). One can describe automorphisms of R
in terms of permutations from ΩR and isomorphisms ρi, χij and units s in the way similar 
to that given in Theorem 2.27 by using a complete dyadic set of partitions defining R.

3. Lifting process

If e ∈ Pt(R), then (ReR(1 −e)R)2 = 0 = (R(1 −e)ReR)2, whence R is a direct product 
of the rings eRe and (1 − e)R(1 − e), provided that R is semiprime. This observation 
implies the following result, which is basic in the lifting process concerning the structure 
of rings. Recall that R/ρ(R) is a semiprime ring for any supernilpotent radical ρ (see 
[9]). The collection of supernilpotent radicals includes the prime, nil, Levitzki, Jacobson, 
and Brown-McCoy radicals.

Theorem 3.1. A ρ-semisimple n-Peirce ring, for a supernilpotent radical ρ, is a di-
rect product of n ρ-semisimple 1-Peirce (i.e., indecomposable) rings. In particular, a 
semiprime n-Peirce ring is a direct product of n semiprime 1-Peirce (i.e., indecompos-
able) rings.

Since prime rings are clearly 1-Peirce rings, it is quite natural to ask: How large is 
the class of semiprime 1-Peirce rings? The following example indicates that the class of 
semiprime 1-Peirce rings is quite extensive.

Example 3.2. (1) Let K be a field, and let R = K[x, y, z]/I be the factor ring of the 
commutative polynomial ring in three variables x, y, z by the ideal I generated by the 
monomial xyz. Then R is a semiprime 1-Peirce ring which is not prime, because R has 
only the two trivial idempotents 0 and 1.

(2) The ring R = {m
n : m, n ∈ Z, (n, 2) = (n, 3) = (n, 5) = 1} is a semilocal domain 

with nonzero Jacobson radical, namely the ideal generated by 30. Let E be the minimal 
injective cogenerator of R, i.e., E is a direct sum of three quasi-cyclic abelian groups 
C(2∞), C(3∞) and C(5∞). Then the trivial extension of R by E is also a ring having 
only the two trivial idempotents, and with nonzero nil radical. Consequently, this ring 
is a non-prime 1-Peirce ring.

(3) More generally, if R is a ring with only the two trivial idempotents, e.g., a poly-
nomial ring over a not necessarily commutative domain with not necessarily commuting 
variables, and if M is any (R, R)-bimodule, then the trivial extension of R by M is also 
a ring with only the two trivial idempotents. This observation shows that the class P1
is a large and diverse class.

Definition 3.3. An idempotent e in a ring R is called J-trivial if both eR(1 − e)Re and 
(1 − e)ReR(1 − e) are contained in the Jacobson radical of R, J(R). Observe that e is a 
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J-trivial idempotent in R if and only if e +J(R) is central in R/J(R). A ring R is called 
a 1-J ring if 0 and 1 are the only J-trivial idempotents of R. Inductively, for a natural 
number n > 1, a ring R is called an n-J ring if there is a J-trivial idempotent e ∈ R

such that eRe is an m-J ring for some 1 ≤ m < n and (1 − e)R(1 − e) is an (n −m)-J
ring. A J-trivial idempotent e ∈ R is called an n-J idempotent if eRe is an n-J ring. In 
particular, a ring R is called 1-primary if R/J(R) is isomorphic to the endomorphism 
ring of (a not necessarily finite dimensional) vector space over a division ring, and R is 
called n-primary (n > 1) if there is a J-trivial idempotent e ∈ R such that eRe is an 
m-primary ring for some 1 ≤ m < n and (1 − e)R(1 − e) is an (n −m)-primary ring.

Note that n-J rings are well-defined in either the class of Jacobson-semisimple rings 
or in the class of rings where idempotents can be lifted modulo the Jacobson radical, 
according to Theorem 2.9. However, it is possible that there exists a ring which is at the 
same time both an m- and an n-J ring for different natural numbers m and n. Therefore 
it is an interesting question to determine classes of rings where the notion of n-J ring is 
well-defined.

In general, for a ring R idempotents do not lift module J(R) without additional 
conditions on R or J(R). However in the investigation of n-J rings, we are primarily 
interested in lifting J-trivial idempotents. Thus we make the following definition.

Definition 3.4. A ring R is called a weakly lifting ring if central idempotents in R/J(R)
can be lifted to J-trivial idempotents in R.

The next result is obvious.

Lemma 3.5. If R is a weakly lifting ring and e2 = e ∈ R is any J-trivial idempotent, then 
eRe is also a weakly lifting ring.

We are now in a position to generalize the classical structure theory of semi-perfect 
rings as follows.

Corollary 3.6.

(1) If R is an n-J ring, then R/J(R) is a direct sum of n semisimple rings which are, 
in general, not in P1.

(2) If R is, in addition, a weakly lifting ring, then all these direct summands are 1-Peirce 
(indecomposable) rings. Furthermore, in this case of a weakly lifting n-J ring R, all 
sets {f1, . . . , fm} of pairwise orthogonal J-trivial idempotents with sum 1 such that 
all the subrings fiRfi are 1-J rings, have n elements, i.e., m = n. Moreover, these 
sets are permuted by inner automorphisms.

(3) A ring R is an n-primary ring if and only if there are n pairwise orthogonal J-
trivial idempotents e1, . . . , en, whose sum is 1, such that all the eiRei, i = 1, . . . , n, 
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are 1-primary rings. Any set {f1, . . . , fm} of pairwise orthogonal J-trivial idempo-
tents, with sum 1, such that all the fiRfi, i = 1, . . . , m, are 1-primary rings, has 
n elements, i.e., m = n. Furthermore, if g2 = g ∈ R is any J-trivial idempo-
tent, then there is a uniquely determined natural number k ≤ n such that g can 
be written as a sum of k pairwise orthogonal J-trivial idempotents gj such that 
all the gjRgj , j = 1, . . . , k, are 1-primary rings. The projective module RRg is 
isomorphic to the projective module RRe, where e is a sum of k appropriate idem-
potents eit , t = 1, . . . , k.

(4) An n-primary ring is semiperfect if idempotents can be lifted modulo the Jacobson 
radical and the semisimple factor is a finite direct sum of matrix rings.

The proof of this result can be carried out in the same way as it was carried out in 
Section 2 for similar results on (strict) n-Peirce rings. Since a semisimple n-J ring is a 
direct sum of n semisimple 1-Peirce rings, one has the following result.

Theorem 3.7. If R is a weakly lifting n-J ring, then its semisimple factor is a direct sum 
of n semisimple 1-Peirce rings R̄i, n is an invariant of R and every J-trivial idempotent 
e of R maps to the identity of a product of some R̄i in the semisimple factor R̄ of R. 
Conversely, if the semisimple factor of a ring R is a direct sum of n semisimple 1-Peirce 
rings and the corresponding pairwise orthogonal idempotents can be lifted to pairwise 
orthogonal idempotents, then R is a weakly lifting n-J ring.

Another short way to verify this result is by passing to the semisimple factor which 
is a direct sum of n semisimple 1-Peirce rings, then applying the corresponding results 
on n-Peirce rings and thereafter lifting them by using [10, Proposition III.8.1].

We now list some problems related to this classical topic of lifting idempotents.

Problems 3.8. Semiperfect rings are characterized as complemented rings. It would be 
nice to give a constructive proof that (pairwise orthogonal) idempotents of such rings, 
even of rings satisfying AB5∗ can be lifted to (pairwise orthogonal) idempotents. Recall 
that a ring satisfies the condition AB5∗ on the right if the lattice of right ideals is lower 
continuous, i.e., for any right ideal K and any set Iα of right ideals downward directed 
by inclusion one has K + ∩Iα = ∩(K + Iα). An open question is whether there are 
n-primary rings which are not semiperfect, i.e., which are not matrix rings over local 
rings. It is quite an interesting enterprise to develop the theory of such n-J rings where 
idempotents can be lifted. For example, all commutative local rings are semiperfect, 
because they have only the trivial idempotents 0 and 1, which obviously can be lifted 
modulo the Jacobson radical. However, if a ring does not have an identity, then it is not 
known whether idempotents modulo the Jacobson radical can be lifted, even in the case 
of left chain rings. Posner [16] discussed an interesting relation between the question of 
lifting idempotents in left chain rings and the existence of left but not right primitive 
rings.
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Since prime rings are 1-Peirce rings and semiprime n-Peirce rings are direct sums of n
semiprime 1-Peirce rings, a semiprime n-Peirce ring is called a semiprime strict n-Peirce 
ring if it is a direct sum of n prime rings. Semiprime 1-Peirce rings are not necessarily 
prime as we have seen at the beginning of this section. The case of primitive rings are 
more doubtful: both left and right primitive rings are both 1-J rings and 1-Peirce rings, 
but the converse is not true in view of the ring R = {m

n : m, n ∈ Z, (n, 2) = (n, 3) =
(n, 5) = 1}. It is worth noting that both primeness and (left, right) primitiveness are 
matrix invariants, i.e., a matrix ring over a prime ring or primitive rings is again prime 
or primitive, respectively. Since pairwise orthogonal idempotents can be lifted modulo 
the prime radical, we obviously have the following result.

Theorem 3.9. If R is a ring such that the factor by the prime radical is a semiprime 
strict n-Peirce ring, then R has n pairwise orthogonal idempotents e1, . . . , en whose sum 
is 1 such that all eiR(1 − ei)Rei and (1 − ei)ReiR(1 − ei) are contained in the prime 
radical and the factor of every eiRei by its prime radical is prime, i = 1, . . . , n.

Motivated by the theory of semiperfect rings one can ask for some homological char-
acterization of the class of rings described in the above theorem. In particular, one can 
introduce the following notions:

Definition 3.10. An idempotent e in a ring R is called B-trivial if eR(1 − e)Re and 
(1 − e)ReR(1 − e) are contained in the prime radical B(R) of R. Observe that e is a 
B-trivial idempotent in R if and only if e + B(R) is central in R/B(R). Note that this 
condition was used in [1, Lemma 3.12]. If 0 and 1 are the only B-trivial idempotents of 
R, then R is said to be a 1-B ring. Inductively, for a natural number n > 1, a ring R is 
called an n-B ring if there is a B-trivial idempotent e ∈ R such that eRe is an m-B ring 
for some 1 ≤ m < n and (1 − e)R(1 − e) is an (n −m)-B ring. A semiprime n-B ring is 
clearly a semiprime n-Peirce ring.

More generally, one can introduce the notion of trivial idempotents concerning certain 
radicals similar to ones defined above for the Jacobson and Baer radicals (e.g., various su-
pernilpotent radicals, see [9]) and then develop a corresponding structure theory. Results 
on n-Peirce rings can be used to determine properties of rings concerning such radicals 
by which their factors are semiprime n-Peirce rings, whence they are direct sums of n
semiprime 1-Pierce rings together with additional assumptions on lifting idempotents. 
For example, in the case of the Brown-McCoy radical we are interested in finite direct 
sums of simple rings. Therefore assuming that central idempotents modulo the Brown-
McCoy radical can be lifted and the factor ring is a direct sum of finitely many simple 
rings of a certain kind, one can develop a structure theory based on Brown-McCoy trivial 
idempotents.
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If A = Z4 and R =
[

A A

2A A

]
, then R ∈ P1, but R is not a 1-B ring, because 

e =
[

1 0
0 0

]
is a B-trivial idempotent of R.

Note that for radicals ρ such that ρ(R) ⊆ J(R), a nonzero idempotent in R remains 
nonzero in R/ρ(R). This is not so for radicals not contained in J(R). For example, the 
Brown-McCoy radical, G(R), may contain nontrivial idempotents. However, any nonzero 
inner Peirce trivial idempotent is not an element of G(R).

Since finitely many pairwise orthogonal idempotents can be lifted modulo the prime 
radical, we have the following generalization of Theorem 3.9.

Theorem 3.11. R is an n-B ring if and only if its factor by the prime radical is a direct 
sum of n semiprime 1-Peirce rings. In particular, n is an invariant of R, i.e., there are 
n pairwise orthogonal B-trivial idempotents ei, i = 1, . . . , n, in R, with sum 1, such that 
all eiRei, i = 1, . . . , n, are 1-B rings. Moreover, every B-trivial idempotent f ∈ R can be 
written as a sum of m pairwise orthogonal B-trivial idempotents fi, i = 1, . . . , m, m ≤ n, 
such that all the fiRfi are 1-B rings (hence semiprime indecomposable rings), and there 
is an idempotent e ∈ R which is a sum of m appropriate idempotents ei, i = 1, . . . , n, 
such that RRe and RRf are isomorphic. In particular, if {f1, . . . , fm} is an arbitrary 
set of pairwise orthogonal B-trivial idempotents with sum 1 and all the fiRfi are 1-B 
rings, then m = n and there is a permutation σ of {1, 2, . . . , n} and an invertible element 
u ∈ R such that ei = ufσ(i)u

−1 for all i = 1, . . . , n.

By Theorem 3.11 it is an interesting problem to search for good homological charac-
terizations of classes of rings described in Theorem 3.11, even when it is assumed that 
the semiprime factor ring is a direct sum of the corresponding n prime rings. It would 
also be interesting to compare the classes of prime rings and semiprime 1-Peirce rings.

4. Applications

In this section we apply our theory of rings in Pn to various important classes of rings. 
Observe that from our previous results each ring in Pn is isomorphic to a generalized 
matrix ring

R′ =

⎡
⎢⎢⎢⎢⎣

R1 M12 · · · M1n

M21 R2
. . .

...
...

. . . . . . Mn−1,n
Mn1 · · · Mn,n−1 Rn

⎤
⎥⎥⎥⎥⎦ ,

where each Ri ∈ P1, each Mij is an (Ri, Rj)-bimodule and MijMji = 0Ri
for all i �= j, 

and R1, . . . , Rn are unique up to isomorphism and permutation. The fact that MijMji =
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0Ri
simplifies the matrix multiplication of elements of R′. For example, it is relatively 

easy to compute idempotents. Also the calculation of various radicals which contain 
the prime radical (e.g., the Jacobson, nil, and Brown-McCoy radicals) is reduced to 
computing the radicals of the rings Ri, since D(R)− is nilpotent.

Since the notion of a (quasi-)Baer ring will play a role in the main results of this sec-
tion, recall: a ring R is (quasi-)Baer if for each nonempty X ⊆ R (X an ideal of R) there 
is an e = e2 ∈ R such that r(X) = eR, where r(X) denotes the right annihilator of X in 
R. Note that the quasi-Baer property is a Morita invariant, whereas the Baer property 
is not. The class of quasi-Baer rings is ubiquitous, since it contains all: Baer rings (hence 
endomorphism rings of vector spaces over division rings), AW∗-algebras (in particular, 
von Neumann algebras), local multiplier C*-algebras [7, Theorem 10.3.10], regular right 
selfinjective rings, prime rings, and biregular right selfinjective rings. Moreover, the class 
of quasi-Baer rings is closed under direct products, matrix rings, triangular matrix rings, 
and various polynomial extensions. Furthermore, each semiprime ring has a quasi-Baer 
hull contained in its (Martindale) symmetric ring of quotients; for more details, see [7].

Lemma 4.1.

(1) [1, Lemma 3.4] Let R be a ring and e ∈ R. Then e is an inner Peirce trivial idem-
potent if and only if h : R → eRe, defined by h(x) = exe, is a surjective ring 
homomorphism.

(2) [1, Lemma 5.13] R is a prime ring if and only if R is a quasi-Baer 1-Peirce ring.

Lemma 4.2. Let R be a ring and 0 �= c ∈ Pt(R).

(1) Let f = f2 ∈ R be primitive and c1 ∈ Pt(cRc) such that cfc �= 0 and c1fc1 �= 0. 
Then:

(a) fcf = f = fc1f ; and
(b) cfc is a primitive idempotent of R.

(2) Let {f1, . . . , fk} be a complete set of primitive orthogonal idempotents of R. Then 
there exists H ⊆ {1, . . . , k} such that {cfhc | h ∈ H} is a set of primitive orthogonal 
idempotents of R such that c =

∑
h∈H

cfhc.

Proof. (1) By [1, Proposition 5.4(1)], (a) holds. Since c is inner Peirce trivial, cfc =
(cfc)2. To show that cfc is primitive, we prove that cfc is the only nonzero idempotent 
in cfcRcfc. Let 0 �= cxc = (cxc)2 ∈ cfcRcfc, where x = fcycf for some y ∈ R. Observe 
that cxc = cxccxc = cx2c, since c is inner Peirce trivial. Consider

(fcxcf)2 = fcxcffcxcf
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= fcx(cfc)xcf

= fcxcxcf

= fcx2cf

= fcxcf ∈ fRf.

Observe that c(fcxcf)c = cfc(cxc)cfc = cxc �= 0. Hence fcxcf �= 0. Since f is primitive, 
f = fcxcf . Then

cfc = c(fcxcf)c

= (cfc)(cxc)(cfc)

= cxc.

Therefore cfc is primitive, so (b) holds.
(2) Take H = {h ∈ {1, . . . , k} | cfhc �= 0}. Let h, j ∈ H such that h �= j. Then 

(cfhc)(cfjc) = cfhfjc = 0, because c is inner Peirce trivial. Using (1) we now have that 
(2) holds. �
Theorem 4.3. Let R ∈ Pn. Then R has a complete set of orthogonal idempotents, 
{e1, . . . , en}, and a generalized matrix representation

R ∼=

⎡
⎢⎢⎢⎢⎣

R1 M12 · · · M1n

M21 R2
. . .

...
...

. . . . . . Mn−1,n
Mn1 · · · Mn,n−1 Rn

⎤
⎥⎥⎥⎥⎦ ,

where each Ri = eiRei ∈ P1, each Mij = eiRej with MijMji = 0Ri
for all i �= j, and 

R1, . . . , Rn are unique up to isomorphism and permutation. Moreover, if R satisfies any 
condition which transfers from R to a homomorphic image or to eRe, where e = e2 ∈ R, 
then each Ri also satisfies the condition.

Proof. This result is a consequence of [1, Theorem 5.7(1)], Theorem 2.19(1) and 
Lemma 4.1. �

To indicate the applicability of Theorem 4.3, the following is a list of some of the classes 
of rings which are closed with respect to homomorphic images or contain eRe whenever 
e = e2 ∈ R and R is in the following class: right Noetherian, right (semi-)Artinian, PI 
(i.e., satisfies a polynomial identity), (quasi-)Baer, right (semi-)hereditary, (bi-, π-, semi-
)regular, I-ring (i.e., every non-nil right ideal contains a nonzero idempotent), bounded 
index of nilpotency, right selfinjective, etc. Furthermore, in Theorem 4.3, if R satisfies 
any of the above conditions and is quasi-Baer, then each Ri is a prime ring satisfying 
the condition.
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In the next result, see [13] for details on Krull dimension.

Corollary 4.4. If R satisfies any of the following conditions, then R ∈ Pn with a complete 
set of orthogonal idempotents, {e1, . . . , en}, and a generalized matrix representation as 
in Theorem 4.3 and each Ri satisfies the same condition as R.

(1) R has DCC on {ReR | e = e2 ∈ R is Peirce trivial}.
(2) R has a complete set of primitive orthogonal idempotents.
(3) R has no infinite set of orthogonal idempotents.
(4) RR has Krull dimension.
(5) R is semilocal.
(6) R is semiperfect.
(7) R is left (or right) perfect.
(8) R is semiprimary.

Proof. From [1, Theorem 5.7(1)] and Theorem 2.19, R ∈ Pn with a complete set of or-
thogonal idempotents, {e1, . . . , en}, and the indicated generalized matrix representation, 
where each Ri = eiRei ∈ P1, each Mij = eiRej with MijMji = 0Ri

for all i �= j, and 
R1, . . . , Rn are unique up to isomorphism and permutation. It only remains to show that 
if R satisfies any of the conditions (1) - (8), then so does each Ri.

For condition (1), the result follows from [1, Theorem 5.11]. So assume condition (2) 
that R has a complete set of primitive orthogonal idempotents, {f1, . . . , fk}. Using Corol-
lary 2.14 and Lemma 4.2, then eifjei = 0 or eifjei is primitive for each i = 1, . . . , n and 
j = 1, . . . , k. Then for each Ri there exists Hi ⊆ {1, . . . , k} such that {eifhei | h ∈ H}
is a complete set of primitive orthogonal idempotents for Ri.

If R satisfies any of conditions (3) - (8), then each Ri contains no infinite set of 
orthogonal idempotents and satisfies the same condition as R. �
Corollary 4.5. Assume R is left perfect in Corollary 4.4. Then each Ri is either simple 
Artinian or [Soc(RiRi

)]2 = 0. If R is also quasi-Baer, then each Ri is simple Artinian 
and R is semiprimary.

Proof. Observe that a ring in P1 is semicentral reduced. Now from [5, Theorem 3.13]
each Ri is either simple Artinian or [Soc(RiRi

)]2 = 0. The remainder of the proof follows 
from Lemma 4.1(2). Since J(R) = D(R)−, [1, Proposition 4.4] and Corollary 2.15 yield 
that R is semiprimary (also see [6, Theorem 2.3]). �

The following examples illustrate Corollary 4.5.

Examples 4.6.

(1) Let F be a field, S the ring of k-by-k upper triangular matrices over F , and R the 
n-by-n upper triangular matrix ring over S, where k, n ≥ 1. Then R is a semiprimary 
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quasi-Baer ring in Pkn which is not a Baer ring, where each Ri is isomorphic to F
(see [15]).

(2) Let A be an Artinian ring in P1 such that A/J(A) is a simple ring, 
(
J(A)

)3 = 0, 

and 
(
J(A)

)2 �= 0 (e.g., A = Z/8Z). Let R =
[
A A/J(A)
0 A/J(A)

]
. Then R ∈ P2 with 

R1 = A and [Soc(R1R1)]
2 = 0, and R2 is a simple Artinian ring.

(3) Let A be as in (2). Let

R =

⎡
⎢⎣ A

(
J(A)

)2 J(A)(
J(A)

)2
A

(
J(A)

)2(
J(A)

)2 J(A) A

⎤
⎥⎦ .

Then R ∈ P3, where each Ri = A, hence [Soc(RiRi
)]2 = 0 for all i.

Theorem 4.7. If R is an n-B ring such that R/B(R) is quasi-Baer, then R is an n ×
n generalized matrix ring with rings having prime factors by the prime radical on the 
diagonal.

Proof. The condition that the factor by the prime radical is quasi-Baer implies that 
this factor is a direct sum of prime rings. Therefore the result follows immediately from 
Theorem 3.9. �

We conclude the paper with the following question:

Question 4.8. Characterize the rings R in Pn whose maximal right ring of quotients is 
in Pk for some positive integer k?
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