

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

A power Cayley-Hamilton identity for $n \times n$ matrices over a Lie nilpotent ring of index k

Jenő Szigeti ^{a,1}, Szilvia Szilágyi ^a, Leon van Wyk ^{b,*}

- ^a Institute of Mathematics, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- ^b Department of Mathematical Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa

ARTICLE INFO

ABSTRACT

Article history: Received 12 March 2019 Accepted 15 September 2019 Available online 19 September 2019 Submitted by M. Bresar

For an $n\times n$ matrix A over a Lie nilpotent ring R of index k, with $k\geq 2$, we prove that an invariant "power" Cayley-Hamilton identity

Available online 19 September 2 Submitted by M. Bresar MSC:

 $\left(I_n \lambda_0^{(2)} + A \lambda_1^{(2)} + \dots + A^{n^2 - 1} \lambda_{n^2 - 1}^{(2)} + A^{n^2} \lambda_{n^2}^{(2)}\right)^{2^{k - 2}} = 0$

15A15 15A24 15A33

16S50

of degree $n^2 2^{k-2}$ holds. The right coefficients $\lambda_i^{(2)} \in R$, $0 \le i \le n^2$ are not uniquely determined by A, and the cosets $\lambda_i^{(2)} + D$, with D the double commutator ideal R[[R,R],R]R of R, appear in the so-called second right characteristic polynomial $p_{\overline{A},2}(x)$ of the natural image \overline{A} of A in the $n \times n$ matrix ring $M_n(R/D)$ over the factor ring R/D:

Keywords:
Lie nilpotent ring
Commutator ideals
The Lie nilpotent right
Cayley-Hamilton identity

$$p_{\overline{A},2}(x) = (\lambda_0^{(2)} + D) + (\lambda_1^{(2)} + D)x + \dots + (\lambda_{n^2-1}^{(2)} + D)x^{n^2-1} + (\lambda_{n^2}^{(2)} + D)x^{n^2}.$$

© 2019 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

 $E\text{-}mail\ addresses:\ matjeno@uni-miskolc.hu}$ (J. Szigeti), matszisz@uni-miskolc.hu (S. Szilágyi), LvW@sun.ac.za (L. van Wyk).

 $^{^{1}}$ The first named author was partially supported by the National Research, Development and Innovation Office of Hungary (NKFIH) K119934.

1. Introduction

The Cayley-Hamilton theorem and the corresponding trace identity play a fundamental role in proving classical results about the polynomial and trace identities of the $n \times n$ matrix algebra $M_n(K)$ over a field K (see, for example, [2], [3] and [13]).

In case of $\operatorname{char}(K) = 0$, Kemer's pioneering work (see [5]) on the T-ideals of associative algebras revealed the importance of the identities satisfied by the $n \times n$ matrices over the Grassmann (exterior) algebra

$$E = K \langle v_1, v_2, ..., v_i, ... \mid v_i v_j + v_j v_i = 0 \text{ for all } 1 \le i \le j \rangle$$

generated by the infinite sequence of anticommutative indeterminates $(v_i)_{i>1}$.

Accordingly, the importance of matrices over non-commutative rings features prominently in the theory of PI-rings; indeed, this fact has been obvious for a long time in other branches of algebra, for example, in the structure theory of semisimple rings. Thus any Cayley-Hamilton type identity for such matrices seems to be of general interest.

In the general case (when R is an arbitrary non-commutative ring with 1) Paré and Schelter proved (see [9]) that a matrix $A \in M_n(R)$ satisfies a monic identity in which the leading term is A^m for some large integer m, i.e., $m \ge 2^{2^{n-1}}$. The other summands in the identity are of the form $r_0Ar_1Ar_2\cdots r_{l-1}Ar_l$, with left scalar coefficient $r_0 \in R$, right scalar coefficient $r_l \in R$ and "sandwich" scalar coefficients $r_2, \ldots, r_{l-1} \in R$. An explicit monic identity for 2×2 matrices arising from the argument of [9] was given by Robson in [12]. Further results in this direction can be found in [10] and [11].

Obviously, by imposing extra algebraic conditions on the base ring R, we can expect "stronger" identities in $M_n(R)$. A number of examples show that certain polynomial identities satisfied by R can lead to "canonical" constructions providing invariant Cayley-Hamilton identities for A of degree much lower than $2^{2^{n-1}}$.

If R satisfies the polynomial identity

$$[[[\dots [[x_1, x_2], x_3], \dots], x_k], x_{k+1}] = 0$$

of Lie nilpotency of index k (with [x,y] = xy - yx), then for a matrix $A \in \mathcal{M}_n(R)$, a left (and right) Cayley-Hamilton identity of degree n^k was constructed in [14] (see also [7]). Since E is Lie nilpotent of index k = 2, this identity for a matrix $A \in \mathcal{M}_n(E)$ is of degree n^2 .

In [1], Domokos considered a slightly modified version of the mentioned identity, in which the left (as well as the right) coefficients are invariant under the conjugate action of $GL_n(K)$ on $M_n(E)$. For a 2 × 2 matrix $A \in M_2(E)$, the left scalar coefficients of this Cayley-Hamilton identity are expressed as polynomials (over K) of the traces tr(A), $tr(A^2)$ and $tr(A^3)$.

If $\frac{1}{2} \in R$ and R satisfies the so-called weak Lie solvability identity

$$[[x, y], [x, z]] = 0,$$

then for a 2×2 matrix $A \in M_2(R)$, a Cayley-Hamilton trace identity (of degree 4 in A) with sandwich coefficients was exhibited in [8]. If R satisfies the identity

$$[x_1, x_2, ..., x_{2^s}]_{\text{solv}} = 0$$

of general Lie solvability, then a recursive construction (also in [8]) gives a similar Cayley-Hamilton trace identity (the degree of which depends on s) for a matrix $A \in M_2(R)$.

In the present paper we consider an $n \times n$ matrix $A \in M_n(R)$ over a ring R (with 1) satisfying the identity

$$[[x_1, y_1], z_1][[x_2, y_2], z_2] \cdots [[x_t, y_t], z_t] = 0,$$

and we prove that an invariant "power" Cayley-Hamilton identity of the form

$$\left(I_n\lambda_0^{(2)} + A\lambda_1^{(2)} + \dots + A^{n^2 - 1}\lambda_{n^2 - 1}^{(2)} + A^{n^2}\lambda_{n^2}^{(2)}\right)^t = 0$$

holds, with certain right coefficients

$$\lambda_i^{(2)} \in R, \ 0 \le i \le n^2 - 1, \quad \text{and} \quad \lambda_{n^2}^{(2)} = n \big\{ (n - 1)! \big\}^{1+n},$$

which are only partially determined by A. The cosets $\lambda_i^{(2)} + D$, with D the double commutator ideal R[[R,R],R]R of R, appear in the second right characteristic polynomial $p_{\overline{A},2}(x)$ of the natural image $\overline{A} \in \mathcal{M}_n(R/D)$ of A over the factor ring R/D:

$$p_{\overline{A},2}(x) = (\lambda_0^{(2)} + D) + (\lambda_1^{(2)} + D)x + \dots + (\lambda_{n^2-1}^{(2)} + D)x^{n^2-1} + (\lambda_{n^2}^{(2)} + D)x^{n^2}.$$

We note that $[[x_1, y_1], z_1][[x_2, y_2], z_2] \cdots [[x_t, y_t], z_t] = 0$ is a typical identity of the ring $U_t(R)$ of $t \times t$ upper triangular matrices over a ring R satisfying the identity [[x, y], z] = 0 (i.e., Lie nilpotency of index 2).

Finally, using a theorem of Jennings (see [4]), we prove that if R is Lie nilpotent of index k, then an identity of the form

$$\left(I_n \lambda_0^{(2)} + A \lambda_1^{(2)} + \dots + A^{n^2 - 1} \lambda_{n^2 - 1}^{(2)} + A^{n^2} \lambda_{n^2}^{(2)}\right)^{2^{k - 2}} = 0 \tag{*}$$

holds for $A \in \mathcal{M}_n(R)$. The total degree of this identity (in A) is $n^2 2^{k-2}$, a much smaller integer than the degree n^k of A in the right Cayley-Hamilton identity

$$I_n \lambda_0^{(k)} + A \lambda_1^{(k)} + \dots + A^{n^k - 1} \lambda_{n^k - 1}^{(k)} + A^{n^k} \lambda_{n^k}^{(k)} = 0$$
 (**)

arising from the k-th right characteristic polynomial

$$p_{A,k}(x) = \lambda_0^{(k)} + \lambda_1^{(k)}x + \dots + \lambda_{n^k-1}^{(k)}x^{n^k-1} + \lambda_{n^k}^{(k)}x^{n^k} \in R[x]$$

of A (see [14] and [16]). The advantage of (**) is that all of the coefficients are on the right side of the powers of A, while the expansion of the power in (*) yields a sum of products of the form $A^{i_1}\lambda_{i_1}A^{i_2}\lambda_{i_2}\cdots A^{i_s}\lambda_{i_s}$, with $s=2^{k-2}$.

In order to provide a self-contained treatment, we present the necessary prerequisites in sections 2 and 3.

2. Some results on Lie nilpotent rings

Let R be a ring, and let [x,y] = xy - yx denote the additive commutator of the elements $x,y \in R$. It is well known that $(R,+,[\ ,\])$ is a Lie ring, [y,x] = -[x,y] and [[x,y],z] + [[y,z],x] + [[z,x],y] = 0 (the Jacobian identity).

For a sequence x_1, x_2, \ldots, x_k of elements in R we use the notation $[x_1, x_2, \ldots, x_k]_k$ for the left normed commutator (Lie-)product:

$$[x_1]_1 = x_1$$
 and $[x_1, x_2, \dots, x_k]_k = [\dots [[x_1, x_2], x_3], \dots, x_k].$

Clearly, we have

$$[x_1, x_2, \dots, x_k, x_{k+1}]_{k+1} = [[x_1, x_2, \dots, x_k]_k, x_{k+1}] = [[x_1, x_2], x_3, \dots, x_k, x_{k+1}]_k.$$

A ring R is called Lie nilpotent of index k (or having property L_k) if

$$[x_1, x_2, \dots, x_k, x_{k+1}]_{k+1} = 0$$

is a polynomial identity on R. If R has property L_k , then $[x_1, x_2, \ldots, x_k]_k$ is central for all $x_1, x_2, \ldots, x_k \in R$.

A concise proof of Theorem 2.1 due to Jennings can be found in [17].

Theorem 2.1 ([4]). Let $k \geq 3$ be an integer and R be a ring with L_k . Then

$$[x_1, x_2, \dots, x_k]_k \cdot [y_1, y_2, \dots, y_k]_k = 0$$

for all $x_i, y_i \in R$, $1 \le i \le k$. Thus the two-sided ideal

$$N = R\{[x_1, x_2, \dots, x_k]_k \mid x_i \in R, 1 \le i \le k\} = \{[x_1, x_2, \dots, x_k]_k \mid x_i \in R, 1 \le i \le k\}R$$

generated by the (central) elements $[x_1, x_2, \dots, x_k]_k$ is nilpotent, with $N^2 = \{0\}$.

Corollary 2.2 ([4]). If R is a ring with L_k ($k \ge 2$), then the double commutator ideal

$$D = R[[R, R], R]R = \{ \sum_{1 \le i \le m} r_i[[a_i, b_i], c_i] s_i \mid r_i, a_i, b_i, c_i, s_i \in R, 1 \le i \le m \} \triangleleft R$$
is nilpotent, with $D^{2^{k-2}} = \{0\}$.

Proof. This follows from Theorem 2.1 by an easy induction on k. \square

3. The Lie nilpotent Cayley-Hamilton theorem

A Lie nilpotent analogue of classical determinant theory was developed in [14]; further details can be found in [1], [15] and [16]. Here we present the basic definitions and results about the sequences of right determinants and right characteristic polynomials, including the so-called Lie nilpotent right Cayley-Hamilton identities.

Let R be an arbitrary (possibly non-commutative) ring or algebra with 1, and let

$$S_n = Sym(\{1,\ldots,n\})$$

denote the symmetric group of all permutations of the set $\{1, 2, ..., n\}$. If $A = [a_{i,j}]$ is an $n \times n$ matrix over R, then the element

$$\operatorname{sdet}(A) = \sum_{\tau, \rho \in \mathcal{S}_n} \operatorname{sgn}(\rho) a_{\tau(1), \rho(\tau(1))} \cdots a_{\tau(t), \rho(\tau(t))} \cdots a_{\tau(n), \rho(\tau(n))}$$
$$= \sum_{\alpha, \beta \in \mathcal{S}_n} \operatorname{sgn}(\alpha) \operatorname{sgn}(\beta) a_{\alpha(1), \beta(1)} \cdots a_{\alpha(t), \beta(t)} \cdots a_{\alpha(n), \beta(n)}$$

of R is called the symmetric determinant of A.

The (r,s)-entry of the symmetric adjoint matrix $A^* = [a_{r,s}^*]$ of A is defined as follows:

$$a_{r,s}^* = \sum_{\tau,\rho} \operatorname{sgn}(\rho) a_{\tau(1),\rho(\tau(1))} \cdots a_{\tau(s-1),\rho(\tau(s-1))} a_{\tau(s+1),\rho(\tau(s+1))} \cdots a_{\tau(n),\rho(\tau(n))}$$

$$= \sum_{\alpha,\beta} \operatorname{sgn}(\alpha) \operatorname{sgn}(\beta) a_{\alpha(1),\beta(1)} \cdots a_{\alpha(s-1),\beta(s-1)} a_{\alpha(s+1),\beta(s+1)} \cdots a_{\alpha(n),\beta(n)} ,$$

where the first sum is taken over all $\tau, \rho \in S_n$ with $\tau(s) = s$ and $\rho(s) = r$, while the second sum is taken over all $\alpha, \beta \in S_n$ with $\alpha(s) = s$ and $\beta(s) = r$. We note that the (r,s) entry of A^* is exactly the signed symmetric determinant $(-1)^{r+s} \operatorname{sdet}(A_{s,r})$ of the $(n-1) \times (n-1)$ minor $A_{s,r}$ of A arising from the deletion of the s-th row and the r-th column of A.

The trace $\operatorname{tr}(M)$ of a matrix $M \in \operatorname{M}_n(R)$ is the sum of the diagonal entries of M. In spite of the fact that the well known identity $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ is no longer valid for matrices $A, B \in \operatorname{M}_n(R)$ over a non-commutative R, we still have (see [16])

$$sdet(A) = tr(AA^*) = tr(A^*A).$$

If R is commutative, then sdet(A) = n!det(A) and $A^* = (n-1)!adj(A)$, where det(A) and adj(A) denote the ordinary determinant and adjoint, respectively, of A.

The right adjoint sequence $(P_k)_{k\geq 1}$ of a matrix $A\in M_n(R)$ is defined by the following recursion:

$$P_1 = A^*$$
 and $P_{k+1} = (AP_1 \cdots P_k)^*$

for $k \geq 1$. The k-th right adjoint of A is defined as

$$\operatorname{radj}_{(k)}(A) = nP_1 \cdots P_k.$$

The k-th right determinant of A is the trace of $AP_1 \cdots P_k$:

$$rdet_{(k)}(A) = tr(AP_1 \cdots P_k).$$

The following theorem shows that $\operatorname{radj}_{(k)}(A)$ and $\operatorname{rdet}_{(k)}(A)$ can play a role similar to that played by the ordinary adjoint and determinant, respectively, in the commutative case.

Theorem 3.1 ([14], [16]). If $\frac{1}{n} \in R$ and the ring R is Lie nilpotent of index k, then for a matrix $A \in M_n(R)$ we have

$$A\operatorname{radj}_{(k)}(A) = nAP_1 \cdots P_k = \operatorname{rdet}_{(k)}(A)I_n.$$

The above Theorem 3.1 is not used explicitly in the sequel, however it helps our understanding and serves as a starting point in the proof of Theorem 3.3.

Let R[x] denote the ring of polynomials in the single commuting indeterminate x, with coefficients in R. The k-th right characteristic polynomial of A is the k-th right determinant of the $n \times n$ matrix $xI_n - A$ in $M_n(R[x])$:

$$p_{A,k}(x) = \mathrm{rdet}_{(k)}(xI_n - A).$$

Proposition 3.2 ([14], [16]). The k-th right characteristic polynomial $p_{A,k}(x) \in R[x]$ of $A \in M_n(R)$ is of the form

$$p_{A,k}(x) = \lambda_0^{(k)} + \lambda_1^{(k)}x + \dots + \lambda_{n^k-1}^{(k)}x^{n^k-1} + \lambda_{n^k}^{(k)}x^{n^k},$$

where
$$\lambda_0^{(k)}, \lambda_1^{(k)}, \dots, \lambda_{n^k-1}^{(k)}, \lambda_{n^k}^{(k)} \in R \text{ and } \lambda_{n^k}^{(k)} = n \{(n-1)!\}^{1+n+n^2+\dots+n^{k-1}}$$
.

Theorem 3.3 ([14], [16]). If $\frac{1}{n} \in R$ and the ring R is Lie nilpotent of index k, then a right Cayley-Hamilton identity

$$(A)p_{A,k} = I_n \lambda_0^{(k)} + A \lambda_1^{(k)} + \dots + A^{n^k - 1} \lambda_{n^k - 1}^{(k)} + A^{n^k} \lambda_{n^k}^{(k)} = 0$$

with right scalar coefficients holds for $A \in M_n(R)$. We also have (A)u = 0, where $u(x) = p_{A,k}(x)h(x)$ and $h(x) \in R[x]$ is arbitrary.

Theorem 3.4 ([1]). If $\frac{1}{2} \in R$ and the ring R is Lie nilpotent of index 2, then for a 2×2 matrix $A \in M_2(R)$ the right Cayley-Hamilton identity in the above 3.3 can be written in the following trace form:

$$(A)p_{A,2} = I_2 \left(\frac{1}{2} \text{tr}^4(A) + \frac{1}{2} \text{tr}^2(A^2) + \frac{1}{4} \text{tr}^2(A) \text{tr}(A^2) - \frac{5}{4} \text{tr}(A^2) \text{tr}^2(A) + \left[\text{tr}(A^3), \text{tr}(A) \right] \right)$$

$$+ A \left(\text{tr}(A) \text{tr}(A^2) + \text{tr}(A^2) \text{tr}(A) - 2 \text{tr}^3(A) \right) + A^2 \left(4 \text{tr}^2(A) - 2 \text{tr}(A^2) \right)$$

$$- A^3 \left(4 \text{tr}(A) \right) + 2A^4 = 0.$$

Corollary 3.5 ([1]). If $\frac{1}{2} \in R$ and the ring R is Lie nilpotent of index 2, then, for every $A \in M_2(R)$,

$$tr(A) = tr(A^2) = 0$$
 imply that $A^4 = 0$.

4. Matrices over a ring with $[[x_1,y_1],z_1][[x_2,y_2],z_2]\cdots [[x_t,y_t],z_t]=0$

We shall make use of the following well known fact.

Proposition 4.1. If $[[x_1, y_1], z_1][[x_2, y_2], z_2] \cdots [[x_t, y_t], z_t] = 0$ is a polynomial identity on a ring R, then $D^t = \{0\}$, with D the ideal R[[R, R], R]R of R.

Theorem 4.2. If $\frac{1}{2} \in R$ and $A \in M_n(R)$ is a matrix over a ring R satisfying the polynomial identity $[[x_1, y_1], z_1][[x_2, y_2], z_2] \cdots [[x_t, y_t], z_t] = 0$, then an invariant "power" Cayley-Hamilton identity of the form

$$\left(I_n\lambda_0^{(2)} + A\lambda_1^{(2)} + \dots + A^{n^2 - 1}\lambda_{n^2 - 1}^{(2)} + A^{n^2}\lambda_{n^2}^{(2)}\right)^t = 0$$

holds, with certain right coefficients

$$\lambda_i^{(2)} \in R, \ 0 \le i \le n^2 - 1, \quad and \quad \lambda_{n^2}^{(2)} = n\{(n-1)!\}^{1+n}$$

(only partially determined by A). The cosets $\lambda_i^{(2)} + D$ with $D = R[[R, R], R]R \triangleleft R$ appear in the second right characteristic polynomial $p_{\overline{A},2}(x)$ of the natural image $\overline{A} \in M_n(R/D)$ of A over the factor ring R/D:

$$p_{\overline{A},2}(x) = (\lambda_0^{(2)} + D) + (\lambda_1^{(2)} + D)x + \dots + (\lambda_{n^2-1}^{(2)} + D)x^{n^2-1} + (\lambda_{n^2}^{(2)} + D)x^{n^2} \in (R/D)[x].$$

Proof. Consider the factor ring R/D, where $D=R[[R,R],R]R \triangleleft R$ is the double commutator ideal. If $A=[a_{i,j}] \in \mathrm{M}_n(R)$, then we use the notation $\overline{A}=[a_{i,j}+D]$ for the image of A in $\mathrm{M}_n(R/D)$. Since R/D is Lie nilpotent of index 2, Theorem 3.3 implies that, in $\mathrm{M}_n(R/D)$,

$$(\overline{A})p_{\overline{A},2} = \overline{I_n}(\lambda_0^{(2)} + D) + \overline{A}(\lambda_1^{(2)} + D) + \dots + (\overline{A})^{n^2 - 1}(\lambda_{n^2 - 1}^{(2)} + D) + (\overline{A})^{n^2}(\lambda_{n^2}^{(2)} + D) = \overline{0},$$

where

$$p_{\overline{A},2}(x) = \operatorname{rdet}_{(k)}(x\overline{I_n} - \overline{A})$$

$$= (\lambda_0^{(2)} + D) + (\lambda_1^{(2)} + D)x + \dots + (\lambda_{n^2-1}^{(2)} + D)x^{n^2-1} + (\lambda_{n^2}^{(2)} + D)x^{n^2}$$

is the second right characteristic polynomial of \overline{A} in (R/D)[x]. Clearly,

$$\overline{I_n \lambda_0^{(2)} + A \lambda_1^{(2)} + \dots + A^{n^2 - 1} \lambda_{n^2 - 1}^{(2)} + A^{n^2} \lambda_{n^2}^{(2)}}
= \overline{I_n} (\lambda_0^{(2)} + D) + \overline{A} (\lambda_1^{(2)} + D) + \dots + (\overline{A})^{n^2 - 1} (\lambda_{n^2 - 1}^{(2)} + D) + (\overline{A})^{n^2} (\lambda_{n^2}^{(2)} + D) = \overline{0}$$

implies that

$$I_n \lambda_0^{(2)} + A \lambda_1^{(2)} + \dots + A^{n^2 - 1} \lambda_{n^2 - 1}^{(2)} + A^{n^2} \lambda_{n^2}^{(2)} \in \mathcal{M}_n(D).$$

Now $D^t = \{0\}$ is a consequence of Proposition 4.1, whence $(M_n(D))^t = \{0\}$ and

$$\left(I_n \lambda_0^{(2)} + A \lambda_1^{(2)} + \dots + A^{n^2 - 1} \lambda_{n^2 - 1}^{(2)} + A^{n^2} \lambda_{n^2}^{(2)}\right)^t = 0$$

follows. \square

Remark 4.3. If $[x_1, y_1][x_2, y_2] \cdots [x_t, y_t] = 0$ is a polynomial identity on R and $A \in M_n(R)$, then using the commutator ideal T = R[R, R]R and the natural image $\widetilde{A} \in M_n(R/T)$ of A over the commutative ring R/T, a similar argument as in the proof of Theorem 4.2 gives that

$$\left(I_n\lambda_0^{(1)} + A\lambda_1^{(1)} + \dots + A^{n-1}\lambda_{n-1}^{(1)} + A^n\lambda_n^{(1)}\right)^t = 0$$

holds, where $p_{\widetilde{A},1}(x) = (\lambda_0^{(1)} + T) + (\lambda_1^{(1)} + T)x + \dots + (\lambda_{n-1}^{(1)} + T)x^{n-1} + (\lambda_n^{(1)} + T)x^n$ is the n! times scalar multiple of the classical characteristic polynomial of \widetilde{A} in (R/T)[x] with $\lambda_n^{(1)} = n!$.

Theorem 4.4. If $\frac{1}{2} \in R$ and $A \in M_n(R)$ is a matrix over a Lie nilpotent ring R of index k, then an invariant "power" Cayley-Hamilton identity of the form

$$\left(I_n\lambda_0^{(2)} + A\lambda_1^{(2)} + \dots + A^{n^2 - 1}\lambda_{n^2 - 1}^{(2)} + A^{n^2}\lambda_{n^2}^{(2)}\right)^{2^{k - 2}} = 0$$

holds, with certain right coefficients

$$\lambda_i^{(2)} \in R, \ 0 \le i \le n^2 - 1, \quad and \quad \lambda_{n^2}^{(2)} = n \{(n-1)!\}^{1+n}$$

(only partially determined by A). The cosets $\lambda_i^{(2)} + D$ with $D = R[[R, R], R]R \triangleleft R$ appear in the second right characteristic polynomial $p_{\overline{A},2}(x)$ of the natural image $\overline{A} \in M_n(R/D)$ of A over the factor ring R/D:

$$p_{\overline{A},2}(x) = (\lambda_0^{(2)} + D) + (\lambda_1^{(2)} + D)x + \dots + (\lambda_{n^2-1}^{(2)} + D)x^{n^2-1} + (\lambda_{n^2}^{(2)} + D)x^{n^2} \in (R/D)[x].$$

Proof. According to Jennings's result (Corollary 2.2), the double commutator ideal

$$D = R[[R, R], R]R = \left\{ \sum_{1 \le i \le m} r_i[[a_i, b_i], c_i] s_i \mid r_i, a_i, b_i, c_i, s_i \in R, 1 \le i \le m \right\} \lhd R$$

is nilpotent, with $D^{2^{k-2}}=\{0\}$. Thus the application of Theorem 4.2 gives our identity. \square

Remark 4.5. If k = 2, then $R[[R, R], R]R = \{0\}$, and the identity in Theorem 4.4 remains the same as the Lie nilpotent right Cayley-Hamilton identity in Theorem 3.3.

Remark 4.6. The Grassmann algebra

$$E = K \langle v_1, v_2, ..., v_i, ... \mid v_i v_j + v_j v_i = 0 \text{ for all } 1 \le i \le j \rangle$$

over a field K (with $2 \neq 0$) has property L₂, and

$$[v_1, v_2] \cdot [v_3, v_4] \cdot \cdots \cdot [v_{2t-1}, v_{2t}] = 2^t v_1 v_2 \cdots v_{2t} \neq 0$$

shows that L₂ does not imply the identity $[x_1, y_1][x_2, y_2] \cdots [x_t, y_t] = 0$ for any t. Thus the identity mentioned in Remark 4.3 cannot be used directly to derive new identities for matrices over a Lie nilpotent ring of index $k \geq 2$. However, as the referee pointed out, the following (weak) version of Latyshev's theorem provides a possibility to use Remark 4.3 in order to obtain another remarkable "power" Cayley-Hamilton identity.

Theorem ([6]). If S is a Lie nilpotent algebra (over an infinite field) of index k, generated by m elements, then there exists an integer d = d(k, m) such that S satisfies the polynomial identity $[x_1, y_1][x_2, y_2] \cdots [x_d, y_d] = 0$. (In the original version S satisfies a so-called nonmatrix polynomial identity.)

If $A \in M_n(R)$ is a matrix over a Lie nilpotent algebra (over an infinite field) R of index k, then $A \in M_n(S)$, where S is the (unitary) subalgebra generated by the n^2 entries of A. Thus $[x_1, y_1][x_2, y_2] \cdots [x_d, y_d] = 0$ is a polynomial identity on S with $d = d(k, n^2)$ and Remark 4.3 gives that an identity

$$\left(I_n \lambda_0^{(1)} + A \lambda_1^{(1)} + \dots + A^{n-1} \lambda_{n-1}^{(1)} + A^n \lambda_n^{(1)}\right)^{d(k,n^2)} = 0$$

of degree $nd(k, n^2)$ holds. Unfortunately, our knowledge about $d(k, n^2)$ is very limited, the fact that d(2, 4) = 3 was mentioned by the referee.

Remark 4.7. If R is an algebra over a field K of characteristic zero, then the invariance of the identities in 4.2 and 4.4 means that $p_{\overline{T^{-1}AT},2}(x) = p_{\overline{A},2}(x)$ holds for any $T \in GL_n(K)$ (see [1]).

Corollary 4.8. If $\frac{1}{2} \in R$ and the ring R is Lie nilpotent of index k, then, for every $A \in M_2(R)$,

$$\operatorname{tr}(A) = \operatorname{tr}(A^2) = 0$$
 imply that $A^{2^k} = 0$.

Proof. Using $D = R[[R, R], R]R \triangleleft R, \overline{A} \in M_2(R/D)$ and

$$tr(\overline{A}) = tr(A) + D = 0, \ tr((\overline{A})^2) = tr(\overline{A^2}) = tr(A^2) + D = 0,$$

the application of Corollary 3.5 ensures that $\overline{A^4} = (\overline{A})^4 = \overline{0}$. Thus the nilpotency of $D(D^{2^{k-2}}) = \{0\}$ gives that $A^{2^k} = (A^4)^{2^{k-2}} = 0$. \square

Remark 4.9. According to the following important observation of the referee, the use of Latyshev's theorem gives an $n \times n$ variant of Corollary 4.8. If $A \in \mathcal{M}_n(R)$ is a matrix over a Lie nilpotent algebra (over a field K of characteristic zero) R of index k, then we prove that

$$\operatorname{tr}(A) = \operatorname{tr}(A^2) = \dots = \operatorname{tr}(A^n) = 0$$

implies that $A^{nd(k,n^2)} = 0$. Indeed, $A \in \mathcal{M}_n(S)$, where $S \subseteq R$ is the (unitary) subalgebra of R generated by the entries of A. Now consider the natural image $\widetilde{A} \in \mathcal{M}_n(S/S[S,S]S)$ of A. The application of the well known fact that

$$\operatorname{tr}(\widetilde{A}) = \operatorname{tr}((\widetilde{A})^2) = \dots = \operatorname{tr}((\widetilde{A})^n) = \widetilde{0}$$

implies that $\widetilde{A^n}=(\widetilde{A})^n=\widetilde{0}$ (it is a consequence of the Newton trace formulae for the coefficients of the characteristic polynomial $p_{\widetilde{A},1}(x)\in (S/S[S,S]S)[x]$, where the factor S/S[S,S]S is a commutative algebra over K). Since $(S[S,S]S)^{d(k,n^2)}=\{0\}$ by Latyshev's theorem and $A^n\in \mathrm{M}_n(S[S,S]S)$, we obtain the desired equality.

Declaration of competing interest

There is no competing interest.

Acknowledgement

The authors thank the referee for the valuable report and the important contributions mentioned in Remarks 4.6 and 4.9.

References

[1] M. Domokos, Cayley-Hamilton theorem for 2×2 matrices over the Grassmann algebra, J. Pure Appl. Algebra 133 (1998) 69–81.

- [2] V. Drensky, Free Algebras and PI-Algebras, Graduate Course in Algebra, Springer-Verlag, Singapore, Singapore, 2000.
- [3] V. Drensky, E. Formanek, Polynomial Identity Rings, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser-Verlag, Basel, 2004.
- [4] S.A. Jennings, On rings whose associated Lie rings are nilpotent, Bull. Amer. Math. Soc. 53 (1947) 593-597.
- [5] A.R. Kemer, Ideals of Identities of Associative Algebras, Translated from the Russian by C.W. Kohls Translations of Math. Monographs, vol. 87, American Mathematical Society, Providence, RI, 1991.
- [6] V.N. Latyshev, Generalization of the Hilbert theorem on the finiteness of bases, Sibirsk. Mat. Zh. 7 (1966) 1422–1424 (Russian). Translation: Sib. Math. J. 7 (1966) 1112–1113.
- [7] L. Márki, J. Meyer, J. Szigeti, L. van Wyk, Matrix representations of finitely generated Grassmann algebras and some consequences. Israel J. Math. 208 (2015) 373–384.
- [8] J. Meyer, J. Szigeti, L. van Wyk, A Cayley-Hamilton trace identity for 2×2 matrices over Lie-solvable rings, Linear Algebra Appl. 436 (2012) 2578–2582.
- [9] R. Paré, W. Schelter, Finite extensions are integral, J. Algebra 53 (1978) 477–479.
- [10] K.R. Pearson, A lower bound for the degree of polynomials satisfied by matrices, J. Aust. Math. Soc. A 27 (1979) 430–436.
- [11] K.R. Pearson, Degree 7 monic polynomials satisfied by a 3 × 3 matrix over a noncommutative ring, Comm. Algebra 10 (1982) 2043–2073.
- [12] J.C. Robson, Polynomials satisfied by matrices, J. Algebra 55 (1978) 509-520.
- [13] L.H. Rowen, Polynomial Identities in Ring Theory, Pure and Applied Mathematics, vol. 84, Academic Press, New York-London, 1980.
- [14] J. Szigeti, New determinants and the Cayley-Hamilton theorem for matrices over Lie nilpotent rings, Proc. Amer. Math. Soc. 125 (1997) 2245–2254.
- [15] J. Szigeti, On the characteristic polynomial of supermatrices, Israel J. Math. 107 (1998) 229–235.
- [16] J. Szigeti, L. van Wyk, Determinants for $n \times n$ matrices and the symmetric Newton formula in the 3×3 case, Linear Multilinear Algebra 62 (2014) 1076–1090.
- [17] J. Szigeti, L. van Wyk, On Lie nilpotent rings and Cohen's theorem, Comm. Algebra 43 (2015) 4783–4796.