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Let K be a field, and let E be a row-finite (directed) graph. We present a construction
of a wealth of maximal commutative subalgebras of the Leavitt path algebra LK(E),
which is a far-reaching generalization of the construction of the commutative core as a
maximal commutative subalgebra of LK(E).
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1. Introduction

Leavitt path algebras LK(E) of row-finite graphs E (where K is an arbitrary field)
were introduced in [5, 10]. These algebras have become a subject of significant inter-
est, both for algebraists and for analysts working in C∗-algebras. The Cuntz–Krieger
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algebras C∗(E), which are the C∗-algebra counterparts of these Leavitt path alge-
bras, where E denotes a graph, were investigated in [42].

As noted in [8], the interplay between these two classes of graph algebras has
been extensive and mutually beneficial. Graph C∗-algebra results have helped
to guide the development of Leavitt path algebras by suggesting the veracity of
some conjectures and by hinting at directions in which studies should be focused.
Similarly, Leavitt path algebras have provided a deeper understanding of graph
C∗-algebras by assisting in identifying those aspects of C∗(E) that are algebraic in
nature.

On the algebraic side of the picture, the algebras LK(E) are natural generaliza-
tions of the algebras investigated by Leavitt in [35], and they are a specific type of
path K-algebras associated with a graph E modulo certain relations. The family
of algebras which can be realized as Leavitt path algebras of graphs includes full
n×n matrix algebras Mn(K) for n ∈ N∪{∞} (where M∞(K) denotes matrices of
countably infinite size with only a finite number of nonzero entries), the Toeplitz
algebra T , the Laurent polynomial ring K[x, x−1], and the classical Leavitt alge-
bras L(1, n) for n ≥ 2.

Constructions such as direct sums, direct limits, and matrices over the men-
tioned examples, can be also realized in this setting. Moreover, in addition to the
fact that this class of algebras includes a wealth of well-known algebras, one of the
main interests in their study is the pictorial representations that their corresponding
graphs provide.

Recently, other algebras, which are more general than the Leavitt path algebras,
have also enjoyed a lot of interest. We are thinking here of, for example, Steinberg
algebras (see [18, 30]) and Kumjian–Pask algebras (see [11, 16, 17]).

One of the objects which has been studied intensively in all the mentioned
settings is maximal commutative subalgebras of the considered structures. See,
for example [17, 28, 30, 32, 38]. A common feature of the considerations in the
aforementioned papers is the interest in the object, which in the case of Leavitt
path algebras LK(E), is called the commutative core of LK(E).

Given a mathematical object, it is often rather natural to consider its maximal
subobjects as a means of understanding it better. Maximal subalgebras of (not nec-
essarily associative) algebras, and in particular maximal commutative subalgebras,
have classically guided such studies. A well-known example of this principle comes
to the fore, of course, in the structure theory of finite-dimensional semisimple Lie
algebras, where their Cartan subalgebras feature prominently: over the complex
number field, these are simply maximal commutative subalgebras, as seen in, for
example, [25, 36].

Similar ideas have subsequently been applied to maximal substructures of other,
possibly non-associative, algebraic structures, such as Malcev algebras, Jordan alge-
bras, associative superalgebras, or classical groups. See, for example [26, 27, 40, 41].

On the associative side, a classical result of Schur (see [43]), which has attracted
considerable historical interest, states that, for any algebraically closed field K of
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characteristic 0, the dimension over K of any commutative subalgebra of the full
n × n matrix algebra Mn(K) is at most �n2

4 � + 1, where � � denotes the integer
floor function. Jacobson showed in [31] that the mentioned upper bound holds for
commutative subalgebras of Mn(K) for all fields K. A concise proof of this result
was presented later by Mirzakhani in [37].

Moreover, this upper bound is sharp. Indeed, following [44], let K be any field,
let n ≥ 2, and let k1 and k2 be positive integers such that k1 + k2 = n. Define the
rectangular array B by

B = {(i, j) ∈ N × N : 1 ≤ i ≤ k1 < j ≤ n},

and consider the subset

J =

⎧⎨
⎩ ∑

(i,j)∈B

bijE(i,j) : bij ∈ K for all (i, j) ∈ B

⎫⎬
⎭

of Mn(K), where E(i,j) denotes the matrix unit in Mn(K) associated with posi-
tion (i, j). The reader will immediately observe that J comprises the subset
of Mn(K) comprising the block upper triangular matrices corresponding with B.

It is very easy to see that the subalgebra

A = KIn + J (1)

of Mn(K), where

KIn := {aIn : a ∈ K},

and where In denotes the n × n identity matrix, is a commutative subalgebra
of Mn(K). Taking k1 = k2 = n

2 if n is even (respectively, taking k1 = n−1
2 and

k2 = n+1
2 if n is odd), we obtain A with dimension equal to �n2

4 � + 1.
In the above vein, the famous result by Amitsur and Levitzky (see [9]), stating

that the full matrix algebra Mn(R) over any commutative ring R satisfies the
standard polynomial identity∑

σ∈S2n

sgn(σ)xσ(1)xσ(2) · · ·xσ(2n) = 0

of degree 2n (with S2n denoting the symmetric group on 2n symbols), and no
polynomial identity of lower degree, is very significant. An immediate consequence
is that every subring of Mn(R) also satisfies the standard polynomial identity of
degree 2n.

In [44], special attention is paid to subalgebras of Mn(K), K any field, satisfying
some extra polynomial identities which are not satisfied by Mn(K). Apart from the
standard polynomial identity, arguably the most important polynomial identity is
the so-called Lie nilpotency of index m (for some positive integer m). The m-Lie
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nilpotency

[[· · · [[x1, x2], x3], . . . , xm], xm+1] = 0

is not even a polynomial identity on the 2 × 2 matrix algebra M2(K). (Note that
an algebra or a ring is commutative if and only if it is Lie nilpotent of index 1, i.e.
if and only if [x1, x2] = 0 for all elements x1 and x2 in the algebra or ring.) One of
the results in [44] points out the difference, as far as the upper bounds considered
therein are concerned, between the situations where m ≤ 6 and the situations where
m > 6.

The importance of Lie nilpotency is buttressed by the fact that the (countably)
infinite dimensional Grassmann algebra G has “only one identity” in the sense that
the polynomial identity [[x1, x2], x3] = 0 generates the T -ideal of the polynomial
identities satisfied by G. The latter is a highly nontrivial result by Krakowski and
Regev (see [34]).

It is extremely important to note that the mentioned Grassmann algebra G

plays a fundamental role in Kemer’s monumental structure theory of T -ideals, as
well as in his solution of the famous Specht problem about the finite generation of
the polynomial identities of associative algebras over a field K of characteristic zero.
A remarkable consequence of the mentioned structure theory is that any T -ideal
contains all the polynomial identities of Mn(G) for some n.

In general, the dimension of a subalgebra of Mn(K) cannot be arbitrary. For
instance, the dimension of any proper subalgebra of Mn(K) is less than or equal
to (n − 1)2 + 1. It seems to be a very challenging problem to describe the inte-
gers between 1 and n2 which can appear as the dimension of a certain subalgebra
of Mn(K). Note that the mentioned results by Schur and Jacobson produce the
integer �n2

4 � + 1.
There is no doubt that commutativity is extremely important, and Lie nilpo-

tency is the most natural generalization of it. In the light of the foregoing
setting it is also worth drawing the reader’s attention to, for example, the
works [21, 29, 33, 37, 46–48].

In [28], Gil Canto and Nasr-Isfahani constructed and investigated a maximal
(with respect to inclusion) commutative subalgebra of a Leavitt path algebra over
a commutative ring R (see [28, Proposition 4.5 and Theorem 4.13]). For a given
graph E, this commutative subalgebra, called the commutative core, is denoted
by MR(E) and is generated over R by all elements of the following form:

• αα∗, where α is a path in E;
• αcα∗, where α is a path and c is a cycle without exits; and
• αc∗α∗, where α is a path and c is a cycle without exits.

Recall that the Leavitt path algebra LK(E), for a field K and the graph

E ≡ •v1

e1 �� •v2
e2 �� •v3 •vn−1

en−1 �� •vn ,
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is isomorphica to the full n×n matrix algebra Mn(K). Therefore, in the light of the
foregoing discussion, it would be interesting to see what the algebra MK(E) looks
like (see the construction by Gil Canto and Nasr-Isfahani) if we consider LK(E).
It occurs that we get exactly the commutative subalgebra of LK(E) generated by
all the vertices v1, . . . , vn, which, in matrix language, produce the commutative
subalgebra of Mn(K) generated by the matrix units E(1,1), E(2,2), . . . , E(n,n). Thus,
in the case of a full matrix algebra it can be said that MK(E) is a kind of trivial
example of a maximal commutative subalgebra.

Motivated by the above facts, in this paper, we will provide a construction of a
class of maximal commutative subalgebras of a Leavitt path algebra LK(E) such
that in the case of the matrix algebra Mn(K) (seen as an isomorphic copy of LK(E))
one of the elements of this class is the commutative subalgebra A = KIn + J

mentioned in (1). In [14], we achieved our goal of constructing a class of maximal
commutative subalgebras of LK(E) in the case where the considered Leavitt path
algebra is prime.

Maximal commutative subrings of non-commutative rings, entailing quite a
number of types of constructions, have also been investigated in, for exam-
ple [15, 17, 22, 39].

This paper is organized as follows:

Section 2 deals with the preliminaries, including some basic definitions and nota-
tion that will be used throughout the sequel. The main part of the paper consists
of Sec. 3 (see Theorem 3.8) and Sec. 4 (see Theorem 4.4). It includes construc-
tions of maximal commutative subalgebras of LK(E), which begin by considering
a pair (A, B) of subsets of the set E0 of vertices of the graph E, such that (A, B)
constitutes a partition {A, B} of the set E0.

In Sec. 3, we assume that the partition has properties that seem very strong at
first glance. Namely, we assume that for every vertex u in A we can find a vertex v

in B such that the trees of these two vertices intersect nontrivially, and we assume
that for every vertex v′ in B we can find a vertex u′ in A such that the trees of
these two vertices intersect nontrivially. In fact, in Sec. 5, we will show that in a
certain sense every partition of E0 comprising two subsets of E0 can be improved
to get a partition satisfying the mentioned conditions.

In Sec. 4, invoking the main result of Sec. 3, we will construct maximal com-
mutative subalgebras of LK(E) using any (i.e. without assuming the mentioned
seemingly strong conditions) given partition {A, B} of E0.

2. Preliminaries

A (directed) graph E = (E0, E1, s, r) consists of two sets, namely, E0 and E1, and
functions s, r : E1 → E0. The elements of E0 are called vertices, and the elements

aThe isomorphism we are thinking about here maps each vertex vi to the matrix unit E(i,i), each
path ei . . . ej−1 to E(i,j), and each ghost path e∗j−1 . . . e∗i to E(j,i), 1 ≤ i < j ≤ n.

2250077-5



January 25, 2024 10:23 WSPC/S0219-1997 152-CCM 2250077

G. Bajor et al.

of E1 are called edges. For each edge e, s(e) is the source of e and r(e) is the range
of e. A vertex which emits no edges is called a sink, and S denotes the set of all
sinks in E. A vertex v is called an infinite emitter if s−1(v) is an infinite set, and
a regular vertex otherwise. If every vertex v ∈ E0 is regular, then the graph E is
called row-finite.

A path η in a graph E is a sequence of edges η = e1e2 . . . en such that r(ei) =
s(ei+1) for i = 1, . . . , n−1. In this case, n is called the length of η, and it is denoted
by |η|. By η0 we denote the set of vertices {s(e1), s(e2), . . . , s(en), r(en)}.

We define s(η) = s(e1) and r(η) = r(en). The set of all paths of E is denoted
by Path(E).

A path η = e1 . . . en is closed if s(e1) = r(en). A closed path η = e1 . . . en is
simple in case s(ei) �= s(e1) for all 2 ≤ i ≤ n. Such a simple closed path η is
said to be based at v = s(e1). A simple closed path η = e1 . . . en is a cycle in
case there are no repeats in the list of vertices s(e1), s(e2), . . . , s(en). An exit of a
cycle η = e1 . . . en is an edge f such that s(f) = s(ei) for some i and f �= ei. If no
such f exists for a cycle η, then we say that η is a cycle without exits.

For a cycle c = e1e2 . . . en in E and ui = s(ei) we will write cui to denote the
cycle eiei+1 . . . ei−1. By C we denote the set of all those cycles c without exits such
that there is a finite number of paths ending at c and not containing c. Note that if
c is a cycle in C and u, v ∈ c0 with u �= v, then cu and cv will be distinct elements
in C.

Recall (see [19, Definition 2.1]) that a cycle c in E is an extreme cycle if c has
exits and for every path λ starting at a vertex in c0 there is a path μ such that
λμ �= 0 and r(μ) ∈ c0.

If there is a path from a vertex u to a vertex v, we write u ≥ v. Let P and Q

be subsets of E0. Then P ≥ Q means that there are vertices u ∈ P and v ∈ Q such
that u ≥ v. In this context, for a vertex u, the notation u ≥ P and P ≥ u should
be clear. Finally, T (P ) denotes the set of all vertices v ∈ E0 such that P ≥ v.

A subset H of E0 is called hereditary if, whenever v ≥ w and v ∈ H , then w ∈ H .
A hereditary set is saturated if every regular vertex which feeds into H and only
into H is again in H , that is, if, whenever s−1(v) �= ∅ is finite and r(s−1(v)) ⊆ H ,
then v ∈ H .

If H is a hereditary subset of E0, then the saturated closure of H (see [10]),
denoted by H, is defined as

⋃
i∈N∪{0} Λi(H), where Λ0(H) = H and recursively,

Λi(H) = Λi−1(H) ∪ {v ∈ E0 : v is a regular vertex, and r(s−1(v)) ⊆ Λi−1(H)}.

Following [20, Definition 1.3], for a given non-empty hereditary subset H of E0,
let FE(H) denote the set

{e1 . . . en : ei ∈ E1, s(e1) ∈ E0\H, r(ei) ∈ E0\H for i < n, and r(en) ∈ H}.

Following [2], we will say that a directed graph E is connected if, for all vertices
v, w ∈ E0, there is a sequence μ = μ1μ2 . . . μn, with μi ∈ E1 ∪ (E1)∗ for all i, such
that s(μ) = v and r(μ) = w. Intuitively, E is connected if E cannot be written
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as the union of two disjoint subgraphs, or equivalently, E is connected in case the
corresponding undirected graph of E is so in the usual sense. It is not difficult to
show that if E is the disjoint union of subgraphs Fi, then LK(E) ∼=

⊕
LK(Fi).

Now, we recall the following definition (see [4]):

Definition 2.1. Let E be an arbitrary graph and K be a field. The Leavitt path
algebra associated with E, denoted by LK(E), is the K-algebra generated by the
set E0, together with {e, e∗ : e ∈ E1}, satisfying the following relations:

(V) vw = δv,wv for all v, w ∈ E0,
(E1) s(e)e = er(e) = e for all e ∈ E1,
(E2) e∗s(e) = r(e)e∗ = e∗ for all e ∈ E1,

(CK1) e∗f = δe,fr(f) for all e, f ∈ E1,
(CK2) v =

∑
{e∈E1: s(e)=v} ee∗ for every vertex v which is not a sink and emits a

finite number of edges.

For an edge e ∈ E1, the element e∗ is called a ghost edge, and for a path
η = e1e2 . . . en, by σ∗ we denote the so-called ghost path e∗ne∗n−1 . . . e∗1. If c is a cycle
and s is a negative integer, then (c∗)−s is denoted by cs.

It is well known that the algebra LK(E) is Z-graded. We have LK(E) =⊕
n∈Z

LK(E)n, where

LK(E)n = spanK{αβ∗ : α, β ∈ Path(E) and |α| − |β| = n}.

Moreover, LK(E) = spanK{αβ∗ : α, β ∈ Path(E)}.
An element x in LK(E)n is said to be of degree n, and we use the notation

deg(x) = n.
Note that if α and β are paths such that α∗β �= 0, then either α = βα′ for some

path α′ (in the case |α| ≥ |β|) or β = αβ′ for some path β′ (in the case |α| < |β|).
In the first case we have α∗β = (α′)∗, and in the second α∗β = β′.

For general notation, terminology and results in Leavitt path algebras we refer
the reader to, for example [1, 4, 5, 13].

3. Fully Downward Directed Partitions

In this section, we will present a first construction which leads us to a class of
maximal commutative subalgebras of a Leavitt path algebra LK(E) associated with
an arbitrary graph E (where K is a field). If E is the disjoint union of subgraphs Fi,
and Mi is a maximal commutative subalgebra of LK(Fi) for every i, then

⊕
Mi is

a maximal commutative subalgebra of
⊕

LK(Fi) which is isomorphic to a maximal
commutative subalgebra of LK(E). Therefore, it is fully justified that henceforth we
consider only connected graphs. To be precise, throughout this section, we assume
that the (arbitrary) considered graph E is connected.

Definition 3.1. Consider a pair (A, B) of two disjoint (not necessarily non-empty)
subsets of E0 which constitutes a partition E0 = A ∪ B of E0. For short we say
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that (A, B) is a partition of E0. Let

D(A) = {u ∈ A : T (u) ∩ T (v) �= ∅ for some v ∈ B}

and

D(B) = {v ∈ B : T (u) ∩ T (v) �= ∅ for some u ∈ A}.

(We note that if A = ∅ or B = ∅, then both D(A) = ∅ and D(B) = ∅.) We call the
pair (D(A),D(B)) the downward directed part of the pair (A, B). If (D(A),D(B)) =
(A, B) (which, of course, implies that A �= ∅ and B �= ∅), then we say that the pair
(A, B) (or the partition of E0 constituted by (A, B)) is fully downward directed.

Since E is connected (by assumption), it is obvious that if A �= ∅ and B �= ∅
(for a partition A ∪ B = E0 of E0), then also D(A) �= ∅ and D(B) �= ∅.

Example 3.2. Let E be the graph

E ≡ •u •v�� �� •w ,

and consider the partition (A, B) of E0, with A = {u, v} and B = {w}. Then
D(A) = {v} and D(B) = {w}, and so the partition (A, B) is not fully downward
directed. However, it is easy to “improve” it in order to get one which is so. Indeed,
it suffices to move the vertex v to the set B and the vertex w to A.

In the last section, we will show that an “improvement”, as described above, is
always possible.

Definition 3.3. Let (A, B) be a partition of the set of vertices E0. We call the
subalgebra of LK(E) generated by all monomials αβ∗, such that s(α) ∈ A and
r(β∗) ∈ B, the diagonal subalgebra of LK(E) related to (A, B), and we denote it
by LK

(
D(A),D(B)

)
. If (A, B) is fully downward directed, then LK

(
D(A),D(B)

)
(= LK(A, B)) is called the full diagonal subalgebra of LK(E) related to (A, B).

For the graph considered in Example 3.2 with A = {u, v}, B = {w} we get
LK(D(A),D(B)) = 〈f〉, where f is the edge from v to w. If we take A = {u, w}
and B = {v}, then LK(D(A),D(B)) = 〈f∗, g∗〉, where g is the edge from v to u.

Remark 3.4. Henceforth, if we consider an element b ∈ LK(E), then we simulta-
neously fix a presentation b =

∑
j∈J kjαjβ

∗
j , where J is a finite set of indices, and

for every j ∈ J, αj , βj ∈ Path(E), kj ∈ K. We also assume that the presentation
we work with is chosen so that the cardinality of J is as small as possible. Moreover,
we assume that for every monomial αjβ

∗
j = e1e2 . . . enf∗

1 f∗
2 . . . f∗

m appearing in the
considered presentation of b, where e1, . . . , en, f1, . . . , fm are edges and n, m ≥ 1,
we have enf∗

1 �= s(en). In such a case, we will say that b is in a reduced form (or,
b is reduced).
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Definition 3.5. For a given graph E and a field K, consider a homogeneous ele-
ment b ∈ LK(E) which is in a fixed reduced form b =

∑
j∈J kjαjβ

∗
j with non-zero

kj ∈ K for every j ∈ J . Then for each n ≥ 0 define,

Sn(b) := {αjβ
∗
j ∈ supp(b) : |αj | = n}.

By [14, Proposition 4.5] we have the following proposition:

Proposition 3.6. Let K be a field and E be a graph, and let b be a non-zero
homogeneous element of LK(E) with a reduced presentation b =

∑
j∈J kjαjβ

∗
j ,

where 0 �= kj ∈ K for every j ∈ J . If n0 is the smallest integer such that Sn0(b) is
a non-empty subset of supp(b), then for every αiβ

∗
i ∈ Sn0(b) there are paths γ, γ̄

and a non-zero k ∈ K such that

γ∗bγ̄ = k · γ∗αiβ
∗
i γ̄ = k · s(γ∗) = k · r(γ̄).

Moreover, γ = αiσ and γ̄ = βiσ for some σ ∈ Path(E).

With the notation as in the above proposition we have the following straightfor-
ward, but very useful, fact, which should be viewed in the light of [14, Corollary 4.8]
and which will be used freely in the sequel.

Corollary 3.7. Let a pair (A, B) be a fully downward directed partition of E0, and
let v ∈ E0 be a vertex such that vbv �= 0. If v ∈ A, then there is a monomial αβ∗

such that γ̄αβ∗ ∈ LK(A, B) and

bγ̄αβ∗ �= 0.

On the other hand, if v ∈ B, then there is a monomial δσ∗ such that δσ∗γ∗ ∈
LK(A, B) and

δσ∗γ∗b �= 0.

Let Z(LK(E)) denote the center of LK(E). As the main result of this section
we will prove the following theorem:

Theorem 3.8. Let E be a row-finite graph and let K be a field. If a pair (A, B)
is a fully downward directed partition of E0, then for the full diagonal subalgebra
LK(A, B) of LK(E), the vector space

A(A, B) = LK(A, B) + Z(LK(E))

is a maximal commutative subalgebra of LK(E).

However, we first have to develop the required machinery in order to obtain a
proof of this result.

With reference to [19], we consider the following three sets of vertices, which
according to the mentioned paper, “... are the three primary colors of the center of
a Leavitt path algebra”:

• the set Pl(E), which consists of all vertices whose trees contain neither bifurca-
tions nor cycles;
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• the set Pc(E), comprising all vertices in cycles without exits;
• the set Pec(E) of all vertices which are vertices of extreme cycles.

Next, let

P = Pl(E) ∪ Pc(E) ∪ Pec(E).

Now, we recall some definitions and results from [19].

Definition 3.9. We define the relation ∼1 on E0 as follows: u ∼1 v if and only if
u = v or the following two conditions hold:

(i) u ≥ v or v ≥ u, and there are no bifurcations at any vertex in T (u) ∪ T (v);
(ii) there exists a cycle c such that c0 ≥ u and c0 ≥ v.

The relation ∼1 is reflexive and symmetric, but not necessarily transitive. There-
fore, we consider the transitive closure of ∼1 and denote it by ∼. The notation [v]
will be used for the (equivalence) class of a vertex v with respect to the equivalence
relation ∼. By [19, Lemma 3.12], [v] is a hereditary set for every v ∈ P .

Next, set X = P/ ∼, and consider the sets

Pf = {v ∈ P : |[v]| < ∞ and |FE([v])| < ∞}

and

Xf = {[u] ∈ X : v ∈ Pf for all v ∈ [u]}.

Taking into account the main results of [19] we can formulate the following result:

Theorem 3.10. If E is a row-finite graph, then the center Z(LK(E)) is graded
and

B0 = {r[v] : [v] ∈ Xf} (2)

is a basis for (Z(LK(E)))0, where r[v] =
∑

u∈[v]
u +

∑
α∈FE([v])

αα∗. Furthermore,
for every non-zero integer n,

Bn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
m, α, u
m·|c|=n

α∈FE(c0)∪c0

u∈c0

αcm
u α∗ : c ∈ C

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

is a basis for
(
Z

(
LK(E)

))
n
.

Remark 3.11. Using Theorem 3.10, it is not hard to see that x =
∑

v∈E0 vxv

for every element x of the center Z(LK(E)) of LK(E), which together with the
definition of LK(A, B) simply give that A(A, B) is an algebra. It should be also
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clear to the reader that the algebra A(A, B) is commutative. Thus, what remains to
be done is to show maximality of A(A, B) as a commutative subalgebra of LK(E).

In order to construct a proof of this part we may assume, for a contradiction, that
there is a homogeneous element a ∈ LK(E) \ A(A, B) which commutes with all
the elements of A = A(A, B). We may also assume that a is an element with the
above properties such that the cardinality of the set {(u, v) ∈ E0×E0) : uav �= 0}
is as small as possible.

Throughout this section, we assume that E is a row-finite graph, (A, B)
is a fully downward directed pair, and a is an element with the properties
listed in Remark 3.11.

Lemma 3.12. For the element a, we have a =
∑

v∈E0 vav.

Proof. It is obvious that a =
∑

(u,v)∈E0×E0 uav. By Remark 3.11, we may assume
that uav = 0 for every pair (u, v) ∈ A × B.

Now, suppose for a contradiction, that xay �= 0 for some (x, y) ∈ (E0 × E0) \
(A × B) such that x �= y. Consider the case where x ∈ A. Then also y ∈ A. By
Proposition 3.6, there are paths γ and γ such that

γ∗xayγ = kw

for some non-zero k ∈ K and a vertex w. If w ∈ B, then γ ∈ A and we get
kw = γ∗xayγ = γ∗xyγa = 0; a contradiction. Hence, w ∈ A. Then there is a
monomial αβ∗ ∈ A such that s(α) = w. Moreover, γαβ∗ is a non-zero element
of A, and we get

kαβ∗ = γ∗xayγαβ∗ = γ∗xyγαβ∗a = 0;

a contradiction. Similarly, we can show that if x ∈ B, then we also arrive at a
contradiction.

Lemma 3.13. Let α, β be paths such that aαβ∗ �= 0, with αβ∗ ∈ LK(A, B). Then

aαβ∗ = α′aα′′β∗ = α(β′)∗a(β′′)∗

for all paths α′, α′′, β′, β′′ such that α = α′α′′ and β = β′′β′.

Proof. By the assumption we made, αβ∗a = aαβ∗ �= 0.
Let α = α′α′′ for some paths α′ and α′′. If r(α′) ∈ B, then α′ ∈ LK(A, B) and we

get aαβ∗ = α′aα′′β∗. On the other hand, if r(α′) ∈ A, then α′′β∗ ∈ LK(A, B) and
we have aαβ∗ = αβ∗a = α′aα′′β∗. It should be clear that the remaining equality
can be established similarly.

Lemma 3.14. If c is a cycle in E which has exits, then c is an extreme cycle if
and only if every element of T (c0) is in a cycle which has exits and v ≥ w for all
v, w ∈ T (c0).
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Proof. Note that the “if” part is straightforward. Now, suppose that c is an
extreme cycle. If v ∈ T (c0), then by assumption, v ≥ c0, and it follows that there
is a closed path τ such that s(τ) = v = r(τ). It is not hard to see that in this case
there is a cycle c′ such that v ∈ (c′)0. Obviously, c′ has exits.

Consider any two vertices v, w ∈ T (c0). We have c0 ≥ v and c0 ≥ w. By
assumption we also have v ≥ c0, and as ≥ is transitive relation, we get finally
v ≥ w.

Next, we consider the set

T = {(u, v) ∈ E0 × E0 : v ∈ T (u)},

and we fix a function π : T → Path(E) such that s(π(u, v)) = u and r(π(u, v)) = v

for all (u, v) ∈ T . Then πu,v stands for π(u, v).

Lemma 3.15. If a vertex u ∈ E0 is such that uau �= 0, then there is v ∈ T (u) such
that T (v) ⊆ Pl(E)∪Pc(E)∪Pec(E) and for every w ∈ T (v), waw �= 0. Moreover, if
deg(a) = 0, then there is v̄ ∈ Pl(E) ∪ Pc(E) ∪ Pec(E) such that v̄av̄ = kv̄ for some
non-zero k ∈ K.

Proof. Let uau �= 0 for a vertex u ∈ E0. By Proposition 3.6 there are paths γ, γ̄

such that γ∗uauγ̄ = ku′ for some non-zero k ∈ K and a vertex u′.

Case 1. Assume that u ∈ A. Consider the set T (u′) and an element w ∈ T (u′). For
the path πu′,w we have γ∗aγ̄πu′,w = kπu′,w �= 0.

Suppose that w ∈ B. Then γ̄πu′,w ∈ A and γ∗γ̄πu′,wa = γ∗aγ̄πu′,w �= 0 which
yields waw �= 0. If w ∈ A then there is αβ∗ ∈ A such that s(α) = w. Then
γ̄πu′,wαβ∗ ∈ A\{0} and using Lemma 3.13 we get γ∗γ̄πu′,waαβ∗ = γ∗aγ̄πu′,wαβ∗ �=
0 and the fact that waw �= 0 follows. So if u ∈ A, then waw �= 0 for any w ∈ T (u′).

Case 2. Suppose that u ∈ B. Consider any w ∈ T (u′) and πu′,w. Suppose also
that w ∈ B. As (A, B) is a fully downward directed partition of E0, then there is
αβ∗ ∈ A such that r(β∗) = w. Then αβ∗π∗

u′,wγ∗ is a non-zero element of A, and
we have

αβ∗aπ∗
u′,wγ∗γ̄ = αβ∗π∗

u′,wγ∗aγ̄ = kαβ∗π∗
u′,w �= 0,

which implies that waw �= 0.

If w ∈ A, then π∗
u′,wγ∗ ∈ A and we get

aπ∗
u′,wγ∗γ̄ = π∗

u′,wγ∗aγ̄ = kπ∗
u′,w �= 0.

So also in this case we have waw �= 0.
Summarizing the above considered cases, for any w ∈ T (u′) we have waw �= 0.
It should be clear from the foregoing arguments that the set T (u′) is finite. Then

using Lemma 3.14 we can conclude that there is v ∈ T (u′) such that v ∈S∪Pc(E)∪
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Pec(E) ⊆ Pl(E)∪Pc(E)∪Pec(E). Since T (v) ⊆ T (u′), it is clear that the first part
of the result has been proved.

Now, assume that deg(a) = 0, and let v ∈ T (u) be such that T (v) ⊆ Pl(E) ∪
Pc(E) ∪ Pec(E) and for every w ∈ T (v), waw �= 0.

Obviously, if v ∈ Pl(E), then there is v̄ ∈ T (v)∩ S such that v̄av̄ = kv̄ for some
non-zero k ∈ K.

Suppose that v ∈ c0, where c is either a cycle without exits or an extreme cycle.
By the above we have waw �= 0 for every w ∈ T (v) ⊆ T (u′).

Suppose now that v ∈ A. Then there is x ∈ B such that for a non-zero monomial
αβ∗ ∈ A we have s(α) = v and r(β∗) = x. Consider any positive integer m and the
element cm

v αβ∗, which is a non-zero element in A. Then

(cm
v )∗acm

v αβ∗ = (cm
v )∗cm

v αβ∗a = αaβ∗.

Since α∗αaβ∗β = v̄av̄ for v̄ = r(α), and v̄ ∈ T (v), we have (cm
v )∗acm

v �= 0. Thus,
by [14, Lemma 3.3(c)], for a big enough positive integer n we get (cn

v )∗acn
v = kv for

some non-zero k ∈ K. Then

v̄av̄ = α∗αaβ∗β = α∗(cn
v )∗cn

v αaβ∗β = α∗(cn
v )∗acn

vαβ∗β = kα∗αβ∗β = kv̄.

Note that by Lemma 3.14 we can see that, v̄ ∈ Pc(E) ∪ Pec(E), as required.
If v ∈ B, then similar considerations enable us to find v̄ ∈ Pc(E) ∪ Pec(E) such

that v̄av̄ = kv̄ for some non-zero k ∈ K.

Any element v ∈ Pl(E)∪Pc(E)∪Pec(E) such that waw �= 0 for every w ∈ T (v)
will be called a leading vertex of a. Notice that if v is a leading vertex of an element
a then every element of T (v) is also like that.

Now, we would like to show (in Lemma 3.18) that in the case where deg(a) �= 0,
there is a leading vertex of a with some special properties, which are useful in our
further considerations. In order to achieve our goal, we need two preliminary results.

Lemma 3.16. Let K be a field, E be a graph and λ be a closed path which is
neither a cycle without exits nor a positive power of a cycle without exits. If

λσ = σσ′ (3)

for some paths σ, σ′, then there is a path δ such that σδ �= 0 and

(σδ)∗λ(σδ) = 0 = (σδ)∗λ∗(σδ).

Proof. Let e1, e2, . . . , en be edges such that λ = e1e2 . . . en. By the assumption on
λ there is an i, 0 ≤ i ≤ n− 1, such that, for some edge f, s(f) = s(ei) and f �= ei.

It is not hard to check that there is a non-negative integer k such that σ = λkτ

for a path τ such that |τ | < |λ|. Moreover, λ = τλ̄ for some path λ̄.
Let δ = λ̄e1e2 . . . ei−1f . Straightforward calculations show that σδ �= 0 and

(σδ)∗λ(σδ) = 0 = (σδ)∗λ∗(σδ).
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Lemma 3.17. Let K be a field, E be a graph, σ be a path, and λ be a nontrivial
closed path in E. If either σ∗λσ �= 0 or σ∗λ∗σ �= 0, then λσ = σσ′ for some
σ′ ∈ Path(E).

Proof. First notice that λσ �= 0.
Assume now that |λ| < |σ|. Then, regardless of whether σ∗λσ �= 0 or σ∗λ∗σ �= 0,

we get σ = λσ′′ for some path σ′′. Thus σ∗λσ = σ′′∗λ∗λσ = σ′′∗σ and σ∗λ∗σ =
σ∗λ∗λσ′′ = σ∗σ′′ and it follows that σ = σ′′σ′ for some σ′ ∈ Path(E). Hence
λσ = λσ′′σ′ = σσ′.

If |λ| ≥ |σ|, then using the assumption that either σ∗λσ �= 0 or σ∗λ∗σ �= 0, we
conclude that λ = σσ′′ for some σ′′ ∈ Path(E). In this case λσ = σσ′ for σ′ = σ′′σ.

Lemma 3.18. If deg(a) �= 0, then there is a leading vertex v of a such that vav =
kcs

v for a cycle cv without exits, non-zero k ∈ K and a non-zero integer s.

Proof. The existence of a leading vertex v of a follows from Lemma 3.15. Obviously,
if deg(a) �= 0, then v cannot be an element of Pl(E) by the same lemma.

Suppose, for a contradiction, that v is a vertex of an extreme cycle c. Consider
the case deg(a) > 0. Using Proposition 3.6, there are αβ∗ ∈ supp(a) and paths
γ = ασ, γ̄ = βσ such that

γ∗(vav)γ̄ = γ∗αβ∗γ̄ = ku (4)

for some non-zero k ∈ K and a vertex u ∈ E0. As v = s(α), v ∈ c0 and v ≥ u, by
Lemma 3.14 we have u ∈ (c′)0 for some extreme cycle c′.

Suppose that v ∈ A. Then there is a monomial τη∗ such that γ̄τη∗ ∈ A\{0}.
Therefore we have the non-zero element γ∗aγ̄τη∗ = γ∗γ̄aτη∗, which implies that
σ∗α∗βσ �= 0, and so α = βλ for some non-trivial path λ. As αβ∗ = βλβ∗ �= 0, it
follows that λ is a closed path with all vertices in T (v). This implies that λ can
neither be a cycle without exits nor a positive power of a cycle without exits.

Since γ∗γ̄ �= 0, we have σ∗λ∗σ = σ∗λ∗β∗βσ �= 0. By Lemmas 3.16 and 3.17
there is a path δ such that σδ �= 0 and

δ∗σ∗λ∗σδ = 0. (5)

Note that s(δ) = u. Then

ku = δ∗γ∗(vav)γ̄δ.

As v ∈ A and s(γ̄) = v, we can find a monomial η̄θ∗ such that γ̄δη̄θ∗ is a non-zero
element of A. Then using Lemma 3.13, we get

kη̄θ∗ = δ∗γ∗(vav)γ̄δ︸ ︷︷ ︸
ku

η̄θ∗ = δ∗γ∗γ̄δaη̄θ∗ = δ∗ σ∗λ∗β∗︸ ︷︷ ︸
γ∗

βσ︸︷︷︸
γ̄

δaη̄θ∗

= δ∗σ∗λ∗σδaη̄θ∗
by (5)

= 0; (6)

a contradiction.
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Similarly, we get a contradiction if we assume that v ∈ B. Thus v ∈ c0 for some
cycle c without exits.

As c has no exits, looking at (4) we get u ∈ c0 and γγ∗ = v = γ̄γ̄∗. So we have

vav = γγ∗aγ̄γ̄∗ = kγγ̄∗.

Since deg(a) > 0 and v ∈ c0, we deduce that γ = γ̄λ for some path λ. As s(λ) = r(λ)
we get λ = cs

r(γ̄) for some positive integer s. So vav = kγ̄cs
r(γ̄)γ̄

∗ = kcs
v �= 0. Thus

the proof is complete in the case v ∈ A and deg(a) > 0. It is no hard to check that
the other cases can be treated similarly, and so we have finished the proof.

Lemma 3.19. If deg(a) = 0 and uau �= 0 for a vertex u ∈ E0, then waw �= 0
for every vertex w such that u ∈ T (w). Moreover, if w ∈ c0 for some cycle c, then
(cm

w )∗acm
w �= 0 for every positive integer m.

Proof. By Lemma 3.15 there is a u′ ∈ T (u) such that

u′au′ = ku′ (7)

for some non-zero k ∈ K. Obviously, if u ∈ T (w) for some w ∈ E0, then also
u′ ∈ T (w). In fact, we will only consider the case where w ∈ c0 for some cycle c,
which we assume from now on. It should be clear from the proof that the rest is
also true.

Consider the case w ∈ A, and take the path πw,u′ .
If u′ ∈ B, then πw,u′ ∈ A, and if u′ ∈ A, then there is a monomial αβ∗ ∈ A

such that s(α) = u′. In the first case, cm
w πw,u′ ∈ A for any positive integer m,

and using (7), we have (cm
w )∗acm

w πw,u′ = (cm
w )∗cm

w πw,u′a = πw,u′a = kπw,u′ �= 0.
Otherwise, we consider 0 �= cm

w πw,u′αβ∗ ∈ A, and we get

(cm
w )∗acm

w πw,u′αβ∗ = πw,u′aαβ∗ = kπw,u′αβ∗ �= 0.

If w ∈ B, then similar considerations lead us to the required facts.

Lemma 3.20. If deg(a) �= 0, waw �= 0 and w ∈ c0 for some cycle c, then c has no
exits.

Proof. Suppose, for a contradiction, that deg(a) > 0 and for some cycle c with
exits and for some w ∈ c0, waw �= 0 (the other cases can be treated similarly). By
Lemma 3.18 there is a u ∈ T (w) such that

uau = kc̄s
u (8)

for some non-zero k ∈ K and a non-zero integer s, where c̄ is a cycle without exits.
Consider the case w ∈ A, and take the path πw,u.
Let m be a positive integer. We consider two cases: either u ∈ B or u ∈ A. In

the first situation, using (8), we have

(cm
w )∗acm

w πw,u = πw,ua = kπw,uc̄s
u �= 0. (9)
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Otherwise, as u ∈ c̄0 and c̄ is a cycle without exits, it is not difficult to see that
there is a β∗ ∈ A such that s(β∗) = u. Then also cm

w πw,uβ∗ ∈ A and

(cm
w )∗acm

w πw,uβ∗ = πw,uaβ∗ = kπw,uc̄s
uβ∗ �= 0. (10)

In both (9) and (10) we have, for every positive integer m,

(cm
w )∗acm

w πw,u = kπw,uc̄s
u �= 0. (11)

On the other hand, by [14, Lemma 3.3], for a fixed, but large enough n,

(cn
w)∗acn

w = k′ct
w (12)

for some positive integer t and some non-zero k′ ∈ K (in fact, in this case one can
see that k′ = k). Note that t · |cw| = s · |c̄u|. It follows from (11) and (12) that

ct
wπw,u = πw,uc̄s

u. (13)

Now, by Lemma 3.16, there is a path δ such that πw,uδ �= 0 (so s(δ) = u), and
(πw,uδ)∗ct

wπw,uδ = 0. But, by (13),

(πw,uδ)∗ct
wπw,uδ = (πw,uδ)∗πw,uc̄s

uδ = δ∗c̄s
uδ �= 0,

since c̄u does not have exits and s(δ) = u; a contradiction.
If w ∈ B, then similar arguments get us home.

Lemma 3.21. If deg(a) �= 0 and waw �= 0 for some w ∈ c0, with c a cycle without
exits, then uau �= 0 for every vertex u such that w ∈ T (u).

Proof. Since for the considered w ∈ c0, waw �= 0 and c is a cycle without exits,
we may assume that waw = kcs

w for some non-zero k ∈ K and a non-zero integer
s. Suppose that w ∈ T (u) for a vertex u, and suppose that u ∈ A. Consider πu,w.
It follows readily that there is a path δ∗ such that s(δ∗) = w and r(δ) ∈ B. Then
πu,wδ∗ ∈ A. Hence, we have aπu,wδ∗ = πu,waδ∗ = kπu,wcs

wδ∗ �= 0. Since the other
cases can be treated similarly, the proof is complete.

Lemma 3.22. Let u, v ∈ E0. If u ∼1 v and uau �= 0, then vav �= 0.

Proof. Consider firstly the case deg(a) = 0. It should be clear, using Lemma 3.15,
that vav �= 0 if u ≥ v or v ≥ u, and there are no bifurcations at any vertex in
T (u) ∪ T (v).

Suppose now that there is a cycle c̄ such that c̄0 ≥ u and c̄0 ≥ v. By Lemma 3.19
for every w ∈ c̄0, (c̄m

w )∗ac̄m
w �= 0 for every positive integer m. So it follows from [14,

Lemma 3.3] that for a big enough positive integer n

(c̄n
w)∗ac̄n

w = k′w (14)

for some non-zero k′ ∈ K.
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Take the path πw,v and consider the following cases:
Case 1. w, v ∈ A: In this case there is a monomial αβ∗ ∈ A such that s(α) = v.
Then c̄n

wπw,vαβ∗ ∈ A, and using Lemma 3.13 we get

(c̄n
w)∗c̄n

wπw,vaαβ∗ = (c̄n
w)∗ac̄n

wπw,vαβ∗ = k′πw,vαβ∗ �= 0,

which implies that vav �= 0.
Case 2. w ∈ A, v ∈ B: Then c̄n

wπw,v ∈ A. and similar arguments as in Case 1
suffice.
Case 3. w, v ∈ B: Then there is a monomial αβ∗ ∈ A such that r(β∗) = v. So also
αβ∗π∗

w,v(c̄n
w)∗ ∈ A, and we get

αβ∗aπ∗
w,v(c̄n

w)∗c̄n
w = αβ∗π∗

w,v(c̄n
w)∗ac̄n

w = k′αβ∗π∗
w,v �= 0,

which gives vav �= 0.
Case 4. w ∈ B, v ∈ A. Now π∗

w,v(c̄n
w)∗ ∈ A, and similar arguments as in the Case

3 can be used to show what we need.

If deg(a) �= 0 then by Lemmas 3.18, 3.20 and 3.21 there is only one possibility,
namely there is a cycle c without exits such that u, v ∈ c0. But then the result
follows from Lemma 3.15. The proof is complete.

By the above considerations we have the following proposition:

Proposition 3.23. If deg(a) = 0, then there is a vertex v ∈ P such that the sets
[v] and FE([v]) are both finite, uau �= 0 for every u ∈ [v], and vav = kv for some
non-zero k ∈ K.

Proof. By Lemma 3.15 there is a vertex v ∈ P such that vav = kv for some non-
zero k ∈ K. If u ∈ [v], then there is a sequence of vertices v = v0 ∼1 v1 ∼1 · · · ∼1

vq = u, but then Lemma 3.22 gives uau �= 0. If u ∈ [v], then there is a path η such
that s(η) = u and r(η) ∈ [v]. This fact, in conjunction with Lemma 3.19, shows
that uau �= 0. Obviously, [v] must be a finite set. Also by Lemma 3.19 there are
finitely many vertices w ∈ E0 \ [v] such that there is a path μ with the property
s(μ) = w and r(μ) ∈ [v]. Note that no such w can be in a cycle, because then
w ∈ [v]; a contradiction. Finally, we deduce that the set FE([v]) is finite.

Proposition 3.24. If deg(a) �= 0, then there is a cycle c ∈ C such that

(i) for every u ∈ c0, uau �= 0,

(ii) for some v ∈ c0, vav = kcs
v for some non-zero k ∈ K and some non-zero

integer s,

(iii) for every α ∈ FE(c0), waw �= 0 where w = s(α).

Proof. By Lemma 3.18 there is a cycle c without exits such that conditions (i)
and (ii) hold. Now, Lemmas 3.20 and 3.21 give c ∈ C and (iii).

We are now in a position to prove Theorem 3.8.
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Proof. Lemma 3.12 is needed. Let a be an element such that the set {u ∈
E0 : uau �= 0} has the smallest cardinality among all the elements of LK(E) which
commute with A and do not belong to A.

Case 1. Suppose that deg(a) = 0. By Proposition 3.23 there is a leading ver-
tex v such that vav = kv for some non-zero k ∈ K. Moreover, |[v]| < ∞ and
|FE([v])| < ∞. Consider the element r[v] belonging to B0 defined in (2). Note that
r[v] ∈

∑
w∈E0 wLK(E)w, and if w ∈ E0 is such that wr[v]w �= 0, then waw �= 0.

Obviously, a − kr[v] commutes with all the elements of A, and a − kr[v] /∈ A. By
the assumption we made at the beginning of this proof and the fact that

v(a − kr[v])v = vav − kvr[v]v = kv − kv = 0,

we deduce that a = kr[v]; a contradiction.

Case 2. Suppose that deg(a) = n, where n is a non-zero integer. Then there
is a cycle c without exits and a leading vertex v of a which belongs to c0 such
that vav = kcs

v for some non-zero k ∈ K and some non-zero integer s such that
s · |c| = deg(a). By Proposition 3.24, c ∈ C, and one of the non-zero elements of
Bn is

r =
∑

α∈FE(c0)∪c0

u∈c0

αcs
uα∗.

As in the previous case, a−kr commutes with all the elements of A, and a−kr /∈ A.
Since v(a − kr)v = 0, we get a = kr; a contradiction.

We conclude that A is indeed a maximal commutative subalgebra of LK(E).

In the following example, we want to present for a concrete graph what the
algebra A looks like.

Example 3.25. Consider the following graph:

E ≡ •A
v1

•B
v2

e�� f �� •A
v3

c�� .

Then the set

B = {v1 + v2 + v3} ∪ {fcnf∗ + cn |n ∈ Z\{0}},

is a basis for Z(LK(E)) and the set

C = {f∗, e∗} ∪ {cnf∗ |n ∈ Z\{0}},

is a basis for LK(A, B). And we have A = LK(A, B) + Z(LK(E)).
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4. Downward Directed Pairs

In this section, we will consider the case where a pair (A, B) of subsets of E0 which
constitutes a partition of E0 is not a fully downward directed pair. In such a case
we to take into account the following two subsets of E0:

U(A) = {u ∈ A : if v ∈ E0 and T (u) ∩ T (v) �= ∅, then v ∈ A},

U(B) = {v ∈ B : if u ∈ E0 and T (u) ∩ T (v) �= ∅, then u ∈ B}.

It is obvious that U(A) = A\D(A) (and U(B) = B\D(B)), but we “think” of
U(A) and U(B) in the above form.

Elements of the set U = U(A) ∪ U(B) will be called uniform elements of the
pair (A, B).

Now, we would like to present a useful lemma whose proof we leave to the reader.

Lemma 4.1. With the above notation, we have the following properties of the sets
U(A) and U(B) :

(i) The collection {D(A),D(B),U(A),U(B)} of subsets of E0 is a partition of E0.
(ii) U is a hereditary and saturated subset of E0.

(iii) If for a vertex v ∈ E0, v ≥ U(A), then v �≥ U(B) and v ∈ A.
(iv) If for a vertex v ∈ E0, v ≥ U(B), then v �≥ U(A) and v ∈ B.
(v) If v ≥ U(A), then u ≥ U(A) for every u ∈ E0 such that v ∈ T (u).
(vi) If v ≥ U(B), then u ≥ U(B) for every u ∈ E0 such that v ∈ T (u).

Let I(U) be the ideal of LK(E) generated by all the elements (vertices) of U ,
and let E/U denote the quotient graph

(E0\U , {e ∈ E1 : r(e) /∈ U}, r|(E/U)1 , s|(E/U)1).

Sticking to the above notation, by [12, Lemma 2.3] we have the following lemma:

Lemma 4.2. Define Ψ : LK(E) → LK(E/U) by setting

Ψ(v) = χ(E/U)0(v)v, Ψ(e) = χ(E/U)1(e)e and Ψ(e∗) = χ((E/U)1)∗(e∗)e∗

for every vertex v ∈ E0 and every edge e ∈ E1, where χ(E/U)0 : E0 → K and
χ(E/U)1 : E1 → K are the characteristic functions. Then the map Ψ extends to
a K-algebra epimorphism of Z-graded algebras, with Ker(Ψ) = I(U), which gives
LK(E\U) ∼= LK(E)/I(U).

Lemma 4.3. If c is a cycle in E/U which does not have exits in this graph, then
neither does c have exits in E.

Proof. Suppose that c is a cycle in E/U which, in this graph, does not have exits,
and suppose that c has exits in E. Let e be an edge which is an exit for c in E. Then
s(e) ∈ c0 ⊆ E0 \U and r(e) ∈ U = U(A)∪U(B). Without loss of generality, we may
assume that r(e) ∈ U(A). Then Lemma 4.1 implies that for every edge f which is
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an exit for c, r(f) ∈ U(A) and c0 ⊆ D(A). Also by Lemma 4.1, for every vertex u

such that u ≥ c0, we have u ∈ U(A). However, then we deduce that s(e) ∈ U(A); a
contradiction.

Although LK(E\U) need not be a subalgebra of LK(E), as is easily seen, we
want to consider the elements of the center Z(LK(E\U)) of LK(E\U) as elements
of LK(E). We denote the vector space of LK(E) spanned by all such elements
simply by Ψ−1(Z(LK(E\U))), which will hopefully not cause any confusion.

Recall (see [28]) that the commutative core of a Leavitt path algebra LK(E),
denoted by MK(E), is a subalgebra LK(E), and it is generated by all elements of
the form

αα∗, αcα∗ and αc∗α∗,

where α is a path and c is a cycle without exits. We consider the subset G(U) of the
above set of generators of MK(E) comprising all the elements of the above form
with r(α) ∈ U . The subalgebra of LK(E) generated by G(U) is denoted by MK(U).

As the main theorem of this section we prove the following theorem:

Theorem 4.4. Let E be a row-finite graph and let K be a field. Consider a
pair (A, B) of sets which constitutes a partition of E0. Then the vector space

A(A, B) = LK(D(A),D(B)) + Ψ−1(Z(LK(E \ U))) + MK(U)

is a maximal commutative subalgebra of LK(E).

Proof. If U = ∅, then the result follows from Theorem 3.8. Thus, we may assume
that U �= ∅.

Firstly, we will show that any two elements of A(A, B) commute with each
other. Note that

Ψ(A(A, B)) = Ψ(LK(D(A),D(B)) + Ψ−1(Z(LK(E\U)))),

and that it follows from Theorem 3.8 that Ψ(A(A, B)) is a maximal commutative
subalgebra of LK(E\U). Therefore, for every monomial

αβ∗ ∈ LK((D(A),D(B))

and every

x ∈ Ψ−1(Z(LK(E\U))) + MK(U),

αβ∗ · x − x · αβ∗ ∈ I(U). It is evident from Theorem 3.10 and the construction
of MK(U) that

x =
∑

v∈E0

vxv. (15)

Suppose, for a contradiction, that αβ∗ · x− x ·αβ∗ �= 0. Then for some paths γ

and γ, some non-zero k ∈ K and a some vertex u ∈ U ,

γ∗(αβ∗ · x − x · αβ∗)γ = ku.
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By (15), with s(α) ∈ A and r(β∗) ∈ B, we have s(α) ≥ u and r(β∗) ≥ u; a contra-
diction (see Lemma 4.1). Since the product of any two elements of LK((D(A),D(B))
is zero, the foregoing arguments imply that all the elements of LK((D(A),D(B))
commute with all the elements of A(A, B).

By the construction of the commutative core MK(E) (see [28]), Theorem 3.10,
Lemma 4.3 and the construction of MK(U), it is not difficult to see that all the
elements of Ψ−1(Z(LK(E \U)))+MK(U) belong to the commutative core MK(E)
of LK(E), and so they commute with one another. We conclude that indeed all the
elements of A(A, B) commute with one another.

Next, suppose, for a contradiction, that there is an element a of LK(E) which
commutes with all elements of A(A, B), but which does not belong to A(A, B).
By Theorem 3.8, the algebra Ψ(A(A, B)) is a maximal commutative subalgebra
of LK(E\U), and so Ψ(a) ∈ Ψ(A(A, B)). Thus there is an aI ∈ I(U) such that
a = x + aI , where

x ∈ LK((D(A),D(B)) + Ψ−1(Z(LK(E\U))).

In particular, aI commutes with all the elements of MK(U). It is easy to check
that aI =

∑
j∈J σjδ

∗
j for some finite set J of indices and paths σj and δj with the

property that

r(σj) = s(δ∗j ) ∈ U (16)

for every j ∈ J. For a contradiction we may assume that none of the monomials
σjδ

∗
j belong to MK(U).
Let γ, γ∗ ∈ Path(E) be such that γ∗aIγ = ku for some non-zero k ∈ K and

some u ∈ E0. By Proposition 3.6, there is an i ∈ J and a path τ such that

γ = σiτ and γ = δiτ. (17)

As U is a hereditary set, it follows from (16) that

γγ∗, γγ∗ ∈ MK(U), (18)

which in conjunction with the fact that aI commutes with all the elements
of MK(U), implies that

γ∗γ �= 0. (19)

Hence, by (17), τ∗σ∗
i δiτ �= 0, and finally, σ∗

i δi �= 0.
If |σi| = |δi|, then by the above, σiδ

∗
i = σiσ

∗
i ∈ MK(U); a contradiction. Thus

either |σi| > |δi| or |δi| < |σi|.
Firstly, we will consider the case |σi| > |δi|. In this situation σi = δiλ for some

path λ, and σiδ
∗
i = δiλδ∗i . As σiδ

∗
i /∈ MK(U) and δiλδ∗i �= 0, it follows that λ is

a closed path which is neither of the form c� nor (c∗)�, where c is a cycle without
exits and  is a positive integer. Thus, assuming that

λ = e1e2 . . . em

for some edges e1, e2, . . . , em with s(e1) = r(em), there is a j, 1 ≤ j ≤ m, and an
edge f such that s(ej) = s(f) and ej �= f . Note that λ0 ⊆ U .
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From (19) we get, for z = δiλττ∗δ∗i , the following:

z = δiλττ∗δ∗i = γγ∗ = γγ∗aIγγ∗ ∈ MK(U) \ {0}. (20)

Thus, for γγ∗ = δiττ∗δ∗i , by (18) we have δiττ∗δ∗i z = zδiττ∗δ∗i , which implies that

δiττ∗λττ∗δ∗i = δiλττ∗δ∗i = z �= 0.

By the above, τ∗λτ �= 0, and it is not hard to check that

τ∗λτ = eiei+1 . . . eme1e2 . . . ei−1

for some i ∈ {1, 2, . . . , m}.
Consider η = eiei+1 . . . ej−1f , which is of length less than or equal to m, and

y = δiτηη∗τ∗δ∗i = δiτη(δiτη)∗,

which by the construction is a non-zero element of MK(U) (by (16), r(δi) ∈ U).
Then we deduce from (20) that zy = yz. Notice that zy = δiλτηη∗τ∗δ∗i �= 0. On
the other hand, in the product yz we have η∗τ∗λτ as a factor, which equals

(f∗e∗j−1 . . . e∗i+1e
∗
i )(eiei+1 . . . eme1e2 . . . ei−1) = 0,

since f �= ej . Hence yz = 0; a contradiction.
In a similar way we get a contradiction if we consider the case |σi| < |δi|. Finally,

we deduce that indeed A(A, B) is a maximal commutative subalgebra of LK(E).

Remark 4.5. Note that if a pair (A, B) gives a fully downward directed partition
of E0, then U = ∅ and A(A, B) in Theorem 4.4 is equal to LK(A, B) + Z(LK(E)).
On the other hand, if U = E0 (it could happen, for example, if we take A = E0

and B = ∅), then A(A, B) = MK(E) is the commutative core of LK(E) considered
in [28].

5. Partitions

In this section, we want to show that, considering a graph E, and starting with a
pair (A, B) which constitutes a partition of E0, we can “improve” it to get a fully
downward directed pair (A′, B′) of E0 with the property that D(A) ⊆ D(A′) and
D(B) ⊆ D(B′). In such a case we will say that (A′, B′) is a downward directed
correction of the pair (A, B).

Let E be a graph. For a pair (A, B) which constitutes a partition of E0 we will
consider, as in the previous section, the sets U(A) and U(B).

Definition 5.1. We define the relation ≈′ on E0 as follows: for u, v ∈ E0, u ≈′ v

if T (u) ∩ T (v) �= ∅.

The relation ≈′ is reflexive and symmetric, but not necessary transitive. There-
fore, by ≈ we denote the transitive closure of ≈′. The (equivalence) class of a
vertex v with respect to ≈ is denoted by [v].
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Definition 5.2. For vertices u and v such that u ≈ v, by the distance between u

and v we mean the smallest k such that there are u0, . . . , uk ∈ E0 with

u = u0 ≈′ u1 ≈′ · · · ≈′ uk = v.

For a class [v], let

[v]A = [v] ∩ U(A) and [v]B = [v] ∩ U(B),

and let

[EA] = {[v] : [v]A �= ∅} and [EB ] = {[v] : [v]B �= ∅}.

Consider any functions fA : [EA] → U(A) and fB : [EB] → U(B) such that

fA([v]) ∈ [v]A and fB([v]) ∈ [v]B.

It should be clear that

U(A) =
⋃

[v]∈[EA]

[v]A and U(B) =
⋃

[v]∈[EB ]

[v]B . (21)

For any [v] ∈ [EA] and i ≥ 0 we set

[v]iA = {u ∈ [v] : distance between u and fA([v]) is equal to i}

and, similarly, for any [v] ∈ [EB] and i ≥ 0, we set

[v]iB = {u ∈ [v] : distance between u and fB([v]) is equal to i}.

Next, we consider the following sets:

[v]i,AA = [v]iA ∩ U(A) and [v]i,BB = [v]iB ∩ U(B).

Note that, using this notation, for a class [v] ∈ [EA],

[v]0A = [v]0,A
A = {fA([v])},

and for a class [v] ∈ [EB],

[v]0B = [v]0,B
B = {fB([v])}.

We want to stress that it is not hard to see that for some positive integers
i, [v]i,AA or [v]i,BB can possibly be the empty set.

By (21) and the above definitions we have

U(A) =
⋃

[v]∈[EA]

[v]A =
⋃

[v]∈[EA]

⋃
i≥0

[v]i,AA

and

U(B) =
⋃

[v]∈[EB ]

[v]B =
⋃

[v]∈[EB]

⋃
i≥0

[v]i,BB .
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Now, fix a class [v] ∈ [EA], and consider the set

I(A, [v]) = {i ≥ 0 : [v]i,AA �= ∅}.

For x ∈ [v]iA define the set

NA(x) = {w ∈ [v]i−1
A : w ≈′ x}.

Let a and b be distinct symbols, and define the function

FA,[v] : [v] → {a, b}

in the following way: for every x ∈ [v]\[v]A,

FA,[v](x) =

{
a, if x ∈ A,

b, if x ∈ B,

and

FA,[v](fA([v])) = b.

Then consider n > 0 and suppose that the set [v]n,A
A is not empty. Suppose also that

for every element x ∈
⋃n−1

i=0 [v]iA the image FA,[v](x) of x is known. Now, consider
the following sets:

[v]n,A,a
A = {x ∈ [v]n,A

A : b /∈ FA,[v](NA(x))},

[v]n,A,b
A = {x ∈ [v]n,A

A : b ∈ FA,[v](NA(x))}.

Obviously, [v]n,A
A = [v]n,A,a

A ∪[v]n,A,b
A and [v]n,A,a

A ∩[v]n,A,b
A = ∅. Then considering

the set [v]n,A
A we set

FA,[v](x) =

{
b, if x ∈ [v]n,A,a

A ,

a, if x ∈ [v]n,A,b
A .

For every class [v] ∈ [EB], the set I(B, [v]) and the function FB,[v] are defined
analogously.

Finally, we consider the following two sets:

X (A) =
⋃

[v]∈[EA]

⋃
i≥0

[v]i,A,a
A ,

and

X (B) =
⋃

[v]∈[EB ]

⋃
i≥0

[v]i,B,b
B .

With the notation as above we have the following theorem:

Theorem 5.3. Let E be a graph, and let (A, B) be a pair constituting a parti-
tion of E0. Then there is a pair (A′, B′) which is a downward directed correction
of (A, B).
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Proof. One can readily verify that the pair (A′, B′) constitutes a required partition
of E0, where

A′ = D(A) ∪ X (B) ∪ (U(A)\X (A)) and B′ = D(B) ∪ X (A) ∪ (U(B)\X (B)).

Example 5.4. In the graph in Fig. 1, we label vertices and also we indicate sets
(according to the partition) where these vertices belong to.

All notations for the example we work on now, are explained in the above consid-
eration. So we want to ask the reader to use them freely in the entire construction.

For the above graph D(A) = {x0, x1}, D(B) = {x2}, U(A) = {v0, v1, . . .}
U(B) = {u0, u1, u2, u3, u4}.

Note that for all vertices w ∈ E0 there is [w] = E0, so [w]A = U(A) and
[w]B = U(B). Let for every w ∈ E0, fA([w]) = v0 and fB([w]) = u4. Then

[w]0A = [w]0,A
A = {v0} and by the definition of FA,[w] on fA([w]) we got

FA,[w](v0) = b. The next layer set is [w]1A = {x0, v1}, especially [w]1,A
A = {v1}.

Notice that NA(v1) = {v0}, so FA,[w](v1) = a. Next, [w]2A = {x1, x2, v2, v3, v4},
so [w]2,A

A = {v2, v3, v4} and the neighborhood is NA(v2) = NA(v3) =
NA(v4) = {v1}, so FA,[w](v2) = FA,[w](v3) = FA,[w](v4) = b. Similarly, [w]3A =
{u0, u1, u2, u3, u4, v5, v6} and inside the set A we have [w]3,A

A = {v5, v6} and then
NA(v5) = NA(v6) = {v2, v3, v4}, so we got FA,[w](v5) = FA,[w](v6) = a. We get the
sets [w]iA and [w]i,AA analogously for any i > 3.

In the next step we have [w]0B = [w]0,B
B = {u4}, so by the definition of

FB,[w](fA([w])) there is FB,[w](u4) = a. Furthermore, [w]1B = {u0, u1, u2, u3, x2}
and inside the set B we have [w]1,B

B = {u0, u1, u2, u3} and then NB(u0) =
NB(u1) = NB(u2) = NB(u3) = {u4}, so FB,[w](u0) = FB,[w](u1) = FB,[w](u2) =
FB,[w](u3) = b. Then we have [w]2B = {x0, x1} but then [w]2,B

B = ∅. It is not hard
to see that for i ≥ 2 we get [w]i,BB = ∅ (what is the set [w]iB can be omitted here).

•B
u4

��

•B
u0

•A
x1

•A
v0

•A
v2

•A
v5

•A
v7

•A
v9

E ≡ •B
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��

•B
u1

��

�����
•B
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		��� �����
•A

x0

		��� �����
•A
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��� �����
•A
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���

•A
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��� �����
•A
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��� �����
��



. . .
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•A
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���
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Fig. 1. Example of graph with partition before correction.
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Fig. 2. Example of graph with partition after correction.
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After the described algorithm we get the graph in Fig. 2 which in our terminol-
ogy is after the correction.
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