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1. Introduction and preliminaries

We work over a fixed field F . If G is a group, a G-graded F -algebra is an F -algebra A

which has a decomposition A = ⊕
g∈G

Ag into a direct sum of F -subspaces such that 

AgAh ⊂ Agh for any g, h ∈ G. Two G-graded algebras A and B are isomorphic if there is 
an algebra isomorphism f : A → B preserving degrees, i.e., f(Ag) = Bg for any g ∈ G. 
A general problem is to classify up to isomorphism all possible group gradings on a given 
algebra A.

If θ : H → G is a group morphism and A = ⊕
h∈H

Ah is an H-graded algebra, then A

also has a G-graded algebra structure, denoted by Aθ, defined by (Aθ)g =
∑

h∈H,θ(h)=g

Ah

for any g ∈ G. In particular, if A is a G-graded algebra and θ : G → G is a group 
automorphism of G, we can define a new G-grading Aθ on A. In this way the automor-
phism group Aut(G) acts on the set of isomorphism types of G-graded algebras. If A
and B are two G-graded algebras, we say that A and B are equivalent, and we write 
A ≡ B, if A and B are in the same orbit of this action, i.e., if there is θ ∈ Aut(G) such 
that B ∼= Aθ as G-graded algebras. A second problem is to classify up to equivalence 
the gradings on a given algebra A; this second classification identifies (possibly non-
isomorphic) gradings which are obtained one from each other by “mixing” the degrees 
by an automorphism of the group. It makes sense to identify such gradings, since from 
the point of view of graded ring theory, if A is a G-graded algebra and θ ∈ Aut(G), then 
the graded algebras A and Aθ essentially have the same properties.

Of particular interest is the case where A = Ms(F ) is a full matrix algebra. The 
classification of all group gradings on A is a wide open problem. The case where F
is algebraically closed was solved in [1], [2], see also [6]. If F is an arbitrary field, all 
possible gradings were determined for s = 2 in [7], and for s = 3 in [3]. Among special 
classes of gradings that have been investigated we mention gradings for which all usual 
matrix units in Ms(F ) are homogeneous elements. Such gradings are called good gradings 
(or elementary gradings in [1], [6]) and they play a key role in the general problem 
of classification of all gradings on a matrix algebra; good G-gradings on Ms(F ) were 
classified in [4] by the orbits of a biaction of G and the symmetric group Ss on the set 
Gs.

Now we recall from [8, Section 14] the definition of cyclic algebras. Let F ⊂ K be 
a Galois extension of finite degree s ≥ 2 such that the Galois group Gal(K/F ) is a 
cyclic group. Let σ be a generator of Gal(K/F ), and let a ∈ F ∗. The associated cyclic 
algebra (K/F, σ, a) is the quotient of the Ore extension K[X, σ] by the ideal generated by 
the polynomial Xs − a. Denoting by x the class of the indeterminate X in this quotient, 
we have

(K/F, σ, a) = K ⊕Kx⊕ · · · ⊕Kxs−1,
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subject to the relations xs = a and xb = σ(b)x for any b ∈ K. Let Cs = 〈ω〉 be the 
cyclic group of order s. It is clear that (K/F, σ, a) as above has a Cs-grading, whose 
homogeneous component of degree ωi is Kxi for any 0 ≤ i ≤ s − 1. We denote this Cs-
graded algebra by D1(K/F, σ, a). In Section 2 we classify graded algebras of this kind 
up to isomorphism and up to equivalence. The cyclic algebra (K/F, σ, a) is isomorphic 
to Ms(F ) if and only if a ∈ NK/F (K∗), where NK/F is the norm associated with the 
extension K/F ; in this situation the grading of D1(K/F, σ, a) induces one on Ms(F ). A 
consequence of the results in this section is the following.

Proposition A. The equivalence classes of all Cs-gradings on Ms(F ) arising from gradings 
of type D1(K/F, σ, a) are in bijection to the isomorphism types of cyclic Galois extensions 
of degree s of F .

Now consider a cyclic algebra (K/F, σ, a) and assume that F contains primitive roots 
of unity of order s. By Hilbert’s Theorem 90, K is a splitting field of a polynomial of the 
form Y s − b for some b ∈ F , see [9, pages 288-289]. If y is a root of Y s − b in K, then 
K = F (y) = F ⊕Fy⊕· · ·⊕Fys−1, and there exists a primitive s-th root of unity ε in F
such that σ(y) = εy. Then (K/F, σ, a) = ⊕

0≤i,j≤s−1
Fyixj , xs = a, ys = b, and xy = εyx.

This suggests a consideration of a more general construction as follows. Assume that 
F contains a primitive root of unity ε of order s. Let Cs × Cs = 〈ω〉 × 〈ρ〉 be the 
product of two cyclic groups of order s, and let a, b ∈ F ∗. Define the Cs × Cs - graded 
algebra D2(F, ε, a, b) by generators x, y subject to the relations

xs = a, ys = b, xy = εyx,

with grading given by D2(F, ε, a, b)ωiρj = Fyixj for any 0 ≤ i, j ≤ s − 1. The al-
gebras D2(F, ε, a, b), considered just as F -algebras, with no reference to the graded 
structure, were introduced by Milnor [10] in algebraic K-theory, in his approach to 
the K2 functor. More precisely, D2(F, ε, a, b) is a central simple F -algebra, and the map-
ping taking a pair (a, b) to the class of D2(F, ε, a, b) in the Brauer group of F defines a 
Steinberg symbol {, } : F ∗ × F ∗ → Br(F ), and further induces a group morphism from 
K2F to Br(F ); for this reason D2(F, ε, a, b) is called a symbol algebra.

Note that in other words, the algebra D2(F, ε, a, b) is the quotient of the quantum 
polynomial algebra Fε[X, Y ] (also known as a quantum plane) by the ideal generated 
by Xs − a and Y s − b. If s = 2, then the algebras D2(F, ε, a, b) are just the quaternion 
algebras, which play a key role in the theory of quadratic forms.

Clearly, D2(F, ε, a, b) is a graded division algebra, i.e., any non-zero homogeneous 
element is invertible. Denote by Kb

∼= F [Y ]/(Y s − b) its subalgebra generated by y, and 
by NKb/F the associated norm. We collect the main results about these algebras proved 
in Sections 3 and 4 in:
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Theorem B. D2(F, ε, a, b) is isomorphic to Ms(F ) if and only if a ∈ NKb/F (Kb). The 
isomorphism types of Cs×Cs - graded algebras of type D2(F, ε, a, b) are in bijection to the 
set U(Zs) × F ∗/(F ∗)s × F ∗/(F ∗)s, while the equivalence classes of such graded algebras 
are classified by the orbits of a certain action of SL2(Zs) on F ∗/(F ∗)s × F ∗/(F ∗)s. 
As for the Cs × Cs - graded algebras induced on Ms(F ) from graded algebras of type 
D2(F, ε, a, b), their isomorphism types are in bijection to U(Zs) ×E(F, s), where E(F, s)
is the SL2(Zs)-subset of F ∗/(F ∗)s × F ∗/(F ∗)s consisting of all pairs (a, b) with the 
property that a ∈ NKb/F (Kb), while their equivalence classes are classified by the orbits 
of E(F, s).

The result in the first sentence of Theorem B is not new. It was proved in [10, The-
orem 15.7]. The if implication was showed by using some properties of the Steinberg 
symbol, while the only if one used linear algebra arguments, by regarding Ms(F ) as the 
algebra of endomorphisms of a vector space V , and then by investigating when there are 
two endomorphisms of V satisfying the same relations as x and y in the symbol algebra. 
Another proof was given in [5, Corollary 4, page 82] by using considerations involving 
Brauer groups. Our approach is different. We uncover the ring structure of D2(F, ε, a, b), 
by showing that its basement is a direct sum of isomorphic cyclic Galois extensions of F , 
and there is an invertible element whose inner action on these extensions permutes them 
in a cycle, while the compositions of the isomorphisms in this cycle provide generators of 
the Galois groups. Then we prove the first implication by investigating the dimension of 
a non-zero left ideal. As for the other implication, we observe that Kb/F is a Hopf-Galois 
extension over the dual of the group Hopf algebra FCs.

We give explicit presentations of the gradings on Ms(F ) obtained in this way.
In Section 5 we classify all gradings on Mp(F ), where p is a prime number and F is an 

arbitrary field, by any possible group. In brief, the classification is done in the following 
theorem, showing that any grading is either isomorphic to a good grading, or it arises 
from a cyclic algebra or from a symbol algebra. The complete and precise statement is 
in Section 5.

Theorem C. Let p be a prime number. Then any group grading on the algebra Mp(F ) is 
isomorphic to one of the following three types:

(I) A good grading;
(II) A grading induced from D1(K/F, σ, 1) for a Galois extension K/F of degree p and a 

generator σ of Gal(K/F ). The equivalence classes of such gradings are in bijection 
to the set of isomorphism types of Galois extensions of degree p of F ;

(III) A grading induced from D2(F, ε, a, b) for a p-th root of unity ε �= 1, and elements 
a, b ∈ F ∗ satisfying a certain condition. The equivalence classes of such gradings 
are in bijection to the orbits of the action of SL2(Zp) on E(F, p). Gradings of this 
type do not occur if F does not contain non-trivial p-th roots of unity.
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2. Gradings on cyclic algebras

Let F ⊂ K be a cyclic Galois extension of degree s ≥ 2, thus the Galois 
group Gal(K/F ) is isomorphic to Cs. Let σ be a generator of Gal(K/F ), and let a ∈ F ∗. 
We consider the Cs-graded algebra D1(K/F, σ, a) described in Section 1. Let NK/F de-
note the norm associated to the extension F ⊂ K. We have NK/F (b) = bσ(b) · · ·σs−1(b)
for any b ∈ K, in particular, NK/F (b) = bs for any b ∈ F .

We first classify these Cs-gradings.

Proposition 2.1. Let F ⊂ K and F ⊂ E be cyclic Galois extensions of degree s, with 
Gal(K/F ) = 〈σ〉 and Gal(E/F ) = 〈τ〉, and let a, b ∈ F ∗. Then:

(1) D1(K/F, σ, a) ∼= D1(E/F, τ, b) as Cs-graded algebras if and only if there is an F -
isomorphism ϕ : K → E such that τϕ = ϕσ, and a/b ∈ NE/F (E∗) (= NK/F (K∗)).

(2) D1(K/F, σ, a) ≡ D1(E/F, τ, b) if and only if there is an F -isomorphism ϕ : K → E

such that a/bm ∈ NK/F (K∗), where m is an integer (relatively prime to s, and 
unique modulo s) such that ϕσ = τmϕ.

Proof. (1) If f : D1(K/F, σ, a) → D1(E/F, τ, b) is an isomorphism of Cs-graded algebras, 
then restricting f to the homogeneous components of trivial degree, we obtain an F -
isomorphism ϕ : K → E. Now x ∈ D1(K/F, σ, a)ω, so then f(x) ∈ D1(E/F, τ, b)ω, 
showing that f(x) = δx for some δ ∈ E∗. Apply f to xu = σ(u)x, where u ∈ K, and get 
δxϕ(u) = ϕ(σ(u))δx, and then δτ(ϕ(u))x = ϕ(σ(u))δx. This shows that τϕ = ϕσ.

On the other hand, if we apply f to xs = a and use the commutation relations in 
D1(E/F, τ, b), we get δτ(δ) · · · τ s−1(δ)xs = a, which rewrites as a/b = NE/F (δ).

Note that indeed NE/F (E∗) = NK/F (K∗), since for any δ ∈ E we have

NE/F (δ) = δτ(δ) · · · τ s−1(δ)

= δ(ϕσϕ−1)(δ)(ϕσ2ϕ−1)(δ) · · · (ϕσs−1ϕ−1)(δ)

= ϕ(ϕ−1(δ)σ(ϕ−1(δ))σ2(ϕ−1(δ)) · · ·σs−1(ϕ−1(δ)))

= ϕ(NK/F (ϕ−1(δ)))

= NK/F (ϕ−1(δ)),

showing that NE/F (E∗) = NK/F (K∗).
Conversely, if a/b = NE/F (δ), with δ ∈ E∗, and there is an F -isomorphism ϕ :

K → E such that τϕ = ϕσ, then it is a straightforward check that the linear map 

f : D1(K/F, σ, a) → D1(E/F, τ, b) defined such that f(uxi) = ϕ(u) 
( ∏

0≤j≤i−1
τ j(δ)

)
xi

for any u ∈ K and 0 ≤ i ≤ s − 1, is an isomorphism of Cs-graded algebras.
(2) Assume that D1(K/F, σ, a) ≡ D1(E/F, τ, b) and let θ ∈ Aut(Cs) be such that 

there is an isomorphism of Cs-graded algebras f : D1(K/F, σ, a) → D1(E/F, τ, b)θ. The 
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restriction of f to the homogeneous components of trivial degree is an F -isomorphism ϕ :
K → E. We have θ−1(ω) = ωm for some m relatively prime to s, and then f(x) = δxm for 
some δ ∈ E∗. Apply f to xu = σ(u)x, where u ∈ K, and see that δxmϕ(u) = ϕ(σ(u))δxm, 
so then τm(ϕ(u))xm = ϕ(σ(u))xm, showing that τmϕ = ϕσ.

Now apply f to xs = a, and get that (δxm)s = a, so then

δτm(δ)τ2m(δ) · · · τ (s−1)m(δ)xsm = a. (2.1)

As τm is a generator of Gal(E/F ) and xs = b in D1(E/F, τ, b), the left hand side in 
(2.1) is NE/F (δ)bm, showing that a/bm = NE/F (δ) ∈ NE/F (E∗) = NK/F (K∗).

For the converse, let δ ∈ E∗ with a/bm = NE/F (δ). Let θ ∈ Aut(Cs) such that 
θ−1(ω) = ωm. Then the unique algebra map f : D1(K/F, σ, a) → D1(E/F, τ, b)θ whose 
restriction to the trivial degree component is ϕ and such that f(x) = δxm, is an isomor-
phism of graded algebras. �
Corollary 2.2.

(1) The isomorphism classes of Cs-graded algebras of the type D1(K/F, σ, a) are in 
bijection to the set of triples (K, σ, μ), where K runs through the isomorphism types 
of cyclic Galois extensions of degree s of F , σ is an arbitrary generator of Gal(K/F ), 
and μ ∈ F ∗/NK/F (K∗).

(2) The equivalence classes of Cs-graded algebras of the type D1(K/F, σ, a) are in bijec-
tion to the set of pairs (K, μ), where K runs through the isomorphism types of cyclic 
Galois extensions of degree s of F , and μ ∈ F ∗/NK/F (K∗).

Proof. (1) It is clear that we can choose K in a set of representatives for the isomor-
phism types of cyclic Galois extensions of degree s of F . Next it suffices to see that 
D1(K/F, σ, a) ∼= D1(K/F, τ, b) if and only if a/b ∈ NK/F (K∗), i.e., a and b lie in the same 
NK/F (K∗)-coset of F ∗, and there is ϕ ∈ Gal(K/F ) such that τϕ = ϕσ. As Gal(K/F ) is 
abelian, the latter implies that τ = σ.

(2) Let K/F be a cyclic Galois extension of degree s, and fix some generator σ of 
the associated Galois group. If τ is any other generator, and b ∈ K∗, then σ = τm for 
some m relatively prime to s, and D1(K/F, τ, b) ≡ D1(K/F, σ, bm) by Proposition 2.1. 
Thus we can only consider gradings of the type D1(K/F, σ, a), with a ∈ K∗. Now 
D1(K/F, σ, a) ≡ D1(K/F, σ, b) if and only if there is m (relatively prime to s) such 
that σm = σ, which means that m = 1 (modulo s), and a/bm ∈ NK/F (K∗), implying 
that a/b ∈ NK/F (K∗). �

It is known that D1(K/F, σ, a) is a central simple F -algebra of dimension s2, and 
D1(K/F, σ, a) ∼= Ms(F ) if and only if a ∈ NK/F (K∗), see [8, Theorem 14.6 and 
Theorem 14.7] for details. In fact, if a ∈ NK/F (K∗), then we have already seen in 
Proposition 2.1 that D1(K/F, σ, a) ∼= D1(K/F, σ, 1) as Cs-graded algebras, and on the 
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other hand, there is an algebra isomorphism π : D1(K/F, σ, 1) → EndF (K) such that 
π(β) is the multiplication by β for any β ∈ K, and π(x) = σ. Hence the Cs-grading of 
D1(K/F, σ, 1) induces a Cs-grading on EndF (K) via π, and further a Cs-grading on the 
matrix algebra Ms(F ) via an algebra isomorphism EndF (K) ∼= Ms(F ). An immediate 
consequence of Corollary 2.2 is the following.

Corollary 2.3.

(1) The isomorphism types of Cs-gradings on Ms(F ) obtained as above from Cs-gradings 
of type D1(K/F, σ, a) are in bijection to the pairs (K, σ), where K is an isomorphism 
type of cyclic Galois extension of degree s of F , and σ is a generator of Gal(K/F ).

(2) The equivalence types of Cs-gradings on Ms(F ) obtained from Cs-gradings of type 
D1(K/F, σ, a) are in bijection to the isomorphism types of cyclic Galois extensions 
of degree s of F .

Remark 2.4. We discuss the possibility to obtain an explicit description of the Cs-
grading on Ms(F ) induced from cyclic algebras via the isomorphism π : D1(K/F, σ, 1) →
EndF (K) described above. A cyclic Galois extension K/F of degree s, with Gal(K/F ) =
〈σ〉, has a normal basis, this is a basis of the form {w, σ(w), σ2(w), . . . , σs−1(w)}, where 
w is an element of K. Then the matrix of π(x) in this basis is the permutation matrix 
associated to the cycle (1 2 . . . n), but in general we do not have an explicit form for 
the matrices of the endomorphisms in π(K). However, if we assume that F contains 
a primitive s-th root of unity ε, then K is obtained by adjoining to F an element y
such that ys = b, where b ∈ F , and then a normal basis of K/F is z0, z1, . . . , zs−1, 
where zi = 1 + εiy + ε2iy2 + · · · + ε(s−1)iys−1 for any 0 ≤ i ≤ s − 1. Now a simple 
computation produces the matrix Y in this normal basis, and then the homogeneous 
component of degree ωi of the Cs-grading induced on Ms(F ) is the subspace spanned 
by Xi, Y Xi, . . . , Y s−1Xi for any 0 ≤ i ≤ s − 1.

We note that one can also obtain explicitly an associated grading on Ms(F ) by working 
with the basis {1, y, . . . , ys−1} instead of the normal basis {z0, . . . , zs−1}. We postpone 
the details for the end of Remark 3.4, because such a grading will follow as a coarsening 
of a Cs × Cs - grading described there.

3. The graded algebras D2(F, ε, a, b)

If A is a finite dimensional commutative F -algebra, we denote by NA/F the associated 
norm, defined by NA/F (a) = det(ma) · 1A for any a ∈ A, where ma : A → A is the 
multiplication by a, det(ma) is its determinant, and 1A is the identity of A. If F is 
identified with its image inside A, we simply regard NA/F as taking values in F .

In this section and in the next one we assume that F contains primitive s-th roots of 
unity. Consider now a Cs × Cs - graded algebra of the type D2(F, ε, a, b), where ε is a 
primitive s-th root of unity in F , and a, b ∈ F ∗. It is known that D2(F, ε, a, b) is a central 
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simple F -algebra, see [10, Theorem 15.1]. The aim of this section is to investigate the 
ring structure of D2(F, ε, a, b), in particular to prove the first part of Theorem B, and to 
give explicit presentations of the gradings induced on the matrix algebra Ms(F ).

Denote Kb = F ⊕Fy⊕· · ·⊕Fys−1 ∼= F [Y ]/(Y s− b), an F -subalgebra of dimension s

of D2(F, ε, a, b). We have that D2(F, ε, a, b) = Kb⊕Kbx ⊕· · ·⊕Kbx
s−1. Let σ ∈ AutF (Kb)

such that σ(y) = εy. As xy = εyx, we see that xu = σ(u)x for any u ∈ Kb.

Proposition 3.1. NKb/F (u) = uσ(u) · · ·σs−1(u) for any u ∈ Kb.

Proof. Let u = a0 + a1y + · · · + as−1y
s−1, with a0, . . . , as−1 ∈ F , and let mu : Kb →

Kb, mu(v) = vu for any v ∈ Kb. The matrix of mu in the basis {1, y, . . . , ys−1} is

U =

⎡⎢⎢⎢⎢⎢⎣
a0 bas−1 bas−2 . . . ba1
a1 a0 bas−1 . . . ba2
a2 a1 a0 . . . ba3
. . . . . . . . . . . . . . .

as−1 as−2 as−3 . . . a0

⎤⎥⎥⎥⎥⎥⎦ .

If we consider the matrix

V =

⎡⎢⎢⎢⎢⎢⎣
1 y y2 . . . ys−1

1 εy ε2y2 . . . εs−1ys−1

1 ε2y ε4y2 . . . ε2(s−1)ys−1

. . . . . . . . . . . . . . .

1 εs−1y ε2(s−1)y2 . . . ε(s−1)2ys−1

⎤⎥⎥⎥⎥⎥⎦ ,

a direct computation shows that

V U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u uy uy2 . . . uys−1

σ(u) εσ(u)y ε2σ(u)y2 . . . εs−1σ(u)ys−1

σ2(u) ε2σ2(u)y ε4σ2(u)y2 . . . ε2(s−1)σ2(u)ys−1

. . . . . . . . . . . . . . .

σs−1(u) εs−1σs−1(u)y ε2(s−1)σs−1(u)y2 . . . ε(s−1)2σs−1(u)ys−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and equating the determinants, we see that det(V )det(U) = uσ(u) · · ·σs−1(u)det(V ). 
As det(V ) =

∏
0≤i<j≤s−1

(εjy − εiy) = ys(s−1)/2 ∏
0≤i<j≤s−1

(εj − εi) (the first equality 

follows from the Vandermonde determinant) is an invertible element of Kb (since y is 
invertible and the second factor is a product of nonzero elements of F ), we get that 
NKb/F (u) = det(U) = uσ(u) · · ·σs−1(u). �

We prove now the if implication in the first sentence of Theorem B.
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Proposition 3.2. If a ∈ NKb/F (Kb), then D2(F, ε, a, b) ∼= Ms(F ).

Proof. Let a = NKb/F (v) = vσ(v) · · ·σs−1(v) for some v ∈ Kb. Then v is invertible in 
Kb and aNKb/F (v−1) = 1. Now

(v−1x)s = v−1xv−1x · · · v−1x

= v−1σ(v−1)σ2(v−1) · · ·σs−1(v−1)xs

= NKb/F (v−1)a

= 1,

and (v−1x)y = εv−1yx = εy(v−1x), so replacing x by v−1x, we find that D2(F, ε, a, b) ∼=
D2(F, ε, 1, b) as F -algebras (however, this is not an isomorphism of graded algebras).

We will show that D2(F, ε, 1, b) ∼= Ms(F ). Let G be the subgroup of the automorphism 
group of the F -algebra Kb generated by σ, thus G = {Id, σ, . . . , σs−1}. Then G acts 
on Kb, and the subalgebra of invariants is F . Thus Kb is a left module algebra over the 
group Hopf algebra FG, or equivalently, a right (FG)∗-comodule algebra, with coaction 

given by z 
→
s−1∑
i=0

σi(z) ⊗ pi, where (pi)i=0,s−1 denotes the basis of (FG)∗ dual to the 

basis (σi)i=0,s−1 of FG. Here (FG)∗ denotes the dual Hopf algebra of FG. We claim 
that Kb/F is a right (FG)∗-Galois extension, i.e., the map

β : Kb ⊗F Kb → Kb ⊗F (FG)∗, β(z ⊗ u) =
s−1∑
i=0

zσi(u) ⊗ pi,

is bijective, see [11, Section 8.1]. As Kb⊗FKb and Kb⊗F (FG)∗ have the same dimension, 

it suffices to show that β is injective. Let ξ =
s−1∑
j=0

zj ⊗ yj ∈ Ker(β). As

β(ξ) =
s−1∑
i,j=0

zjσ
i(yj) ⊗ pi

=
s−1∑
i,j=0

εijyjzj ⊗ pi,

we get that 
s−1∑
j=0

εijyjzj = 0 for any i. Regarding these equations as a system in 

z0, . . . , zs−1, the matrix of coefficients is just the matrix V in the proof of Proposi-
tion 3.1, which we showed to be invertible. Consequently, z0 = . . . = zs−1 = 0 and 
ξ = 0.

Now by [11, Theorem 8.3.3] there is an algebra isomorphism π : Kb ∗G → EndF (Kb), 
given by π(uσi)(v) = uσi(v) for any u, v ∈ Kb and 0 ≤ i ≤ s − 1. Here Kb ∗ G is 



166 C. Boboc et al. / Linear Algebra and its Applications 688 (2024) 157–178
the skew group ring associated with the action of G on Kb. On the other hand, it 
is clear that D2(F, ε, 1, b) ∼= Kb ∗ G, with x corresponding to σ. We conclude that 
D2(F, ε, 1, b) ∼= Ms(F ). �
Remark 3.3. The isomorphism between D2(F, ε, 1, b) and EndF (Kb) in the proof of the 
previous Proposition could have been proved directly by considering the linear map 
π̃ : D2(F, ε, 1, b) → EndF (Kb) defined by π̃(uxi)(v) = uσi(v) for any u, v ∈ Kb and 
any 0 ≤ i ≤ s − 1, and showing that this is an algebra morphism. Then π̃ is injective 
since D2(F, ε, 1, b) is a simple algebra, hence it is an isomorphism, since D2(F, ε, 1, b)
and EndF (Kb) have the same dimension. We preferred the approach using Hopf-Galois 
extensions since it shows that the algebra D2(F, ε, 1, b) is constructed over a Hopf-Galois 
extension in a similar fashion to the way a cyclic algebra is constructed over a Galois 
extension.

Remark 3.4. We can give an explicit description of the Cs × Cs - gradings induced on 
the matrix algebra Ms(F ) from gradings of the type D2(F, ε, a, b) with a, b ∈ F ∗ and 
a ∈ NKb/F (Kb). Indeed, let a = NKb/F (v) for some v = a0 + a1y + · · ·+ as−1y

s−1 ∈ Kb, 
where a0, . . . , as−1 ∈ F . By the proof of Proposition 3.2, there is an isomorphism of 
algebras (not of graded algebras) π′ : D2(F, ε, a, b) → D2(F, ε, 1, b) such that π′(y) = y

and π′(x) = vx. On the other hand, we have seen in Remark 3.3 that there is an algebra 
isomorphism π̃ : D2(F, ε, 1, b) → EndF (Kb), π̃(uxi)(w) = uσi(w) for any u, w ∈ Kb. 
Transfer by π̃π′ the Cs × Cs - grading of D2(F, ε, a, b) to a grading on EndF (Kb), and 
then to a Cs×Cs - grading on Ms(F ) by associating to an endomorphism of Kb its matrix 
in the basis {1, y, . . . , ys−1}. As (π̃π′)(y)(yj) = yj+1 for any 0 ≤ j ≤ s − 1, we get that 
the homogeneous component of degree ω in this grading of Ms(F ) is the 1-dimensional 
space spanned by the matrix

Y =

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 b

1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .

0 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎦ .

On the other hand,

(π̃π′)(x)(yj) = π̃(vx)(yj)

= vσ(yj)

= εjvyj

= εja0y
j + · · · + εjas−1−jy

s−1 + εjas−jb + · · · + εjas−1by
j−1

for any 1 ≤ j ≤ s − 1, and (π̃π′)(x)(1) = v, so the homogeneous component of degree ρ
of the same grading is the subspace spanned by the matrix
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X =

⎡⎢⎢⎢⎢⎢⎣
a0 εbas−1 ε2bas−2 . . . εs−1ba1
a1 εa0 ε2bas−1 . . . εs−1ba2
a2 εa1 ε2a0 . . . εs−1ba3
. . . . . . . . . . . . . . .

as−1 εas−2 ε2as−3 . . . εs−1a0

⎤⎥⎥⎥⎥⎥⎦ .

We conclude that the homogeneous component of degree ωiρj in the induced Cs × Cs -
grading on Ms(F ) is FY iXj .

In the case where a = 1, we can take v = 1, so a0 = 1, a1 = . . . = as−1 = 0, and so 
we have the matrices

Y =

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 b

1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .

0 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 . . . 0
0 ε 0 . . . 0
0 0 ε2 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . εs−1

⎤⎥⎥⎥⎥⎥⎦ . (3.1)

Therefore we obtain a family of Cs × Cs - gradings on Ms(F ) parametrized by b ∈ F ∗. 
For b = 1, the corresponding grading is the ε-grading considered in [1, Section 4].

We end the remark by going back to Remark 2.4, and showing that in the case 
where F contains a primitive s-th root of unity ε, an explicit form of the Cs-grading 
on Ms(F ) induced from D1(K/F, σ, 1) can be obtained as a coarsening of the Cs ×
Cs - grading described above. Indeed, there is b ∈ F such that K ∼= Kb, there is an 
algebra isomorphism D1(Kb/F, σ, 1) ∼= D2(F, ε, 1, b), and the algebra isomorphism π :
D1(K/F, σ, 1) → EndF (K) in Remark 2.4 is just the isomorphism π̃ : D2(F, ε, 1, b) →
EndF (Kb) discussed above. The Cs-grading induced on Ms(F ) has the subspace spanned 
by Xi, Y Xi, . . . , Y s−1Xi as homogeneous component of degree ωi for any 0 ≤ i ≤ s − 1, 
where X and Y are the matrices in equation (3.1).

Now we consider the converse of Proposition 3.2. In the case where the polynomial 
g = Y s − b is irreducible over F , the converse holds, since Kb

∼= F [Y ]/(Y s − b) is a field 
which is a cyclic Galois extension of F . In the general case, by [9, Theorem 6.2, page 
289], there exist c ∈ F ∗ and a divisor d of s, say s = dr for a positive integer r, such 
that Y d − c is irreducible and b = cr. Let λ = ε−d, which is a primitive r-th root of 
unity, and gi = Y d − λi−1c for any 1 ≤ i ≤ r. Since λr = 1, there is no harm if we take 
i modulo r; we will regard i in this way in the rest of this section. Then g = g1 · · · gr
is the irreducible decomposition of g, and F [Y ]/(gi), 1 ≤ i ≤ r, are all isomorphic 
cyclic Galois extensions of degree d of F . Let πi : F [Y ] → F [Y ]/(gi) be the natural 
projection. By the Chinese remainder lemma, there is an isomorphism of F -algebras 
ϕ : F [Y ]/(Y s − b) → F [Y ]/(g1) × · · · × F [Y ]/(gr), ϕ(f̂) = (π1(f), . . . , πr(f)), where f̂
denotes the class of f ∈ F [Y ] in F [Y ]/(Y s − b).

Denote K ′
b = F [Y ]/(g1) ×· · ·×F [Y ]/(gr), and for any i let Ki be the natural image of 

F [Y ]/(gi) and yi be the image of πi(Y ) in K ′
b. Thus K ′

b = K1 ⊕· · ·⊕Kr, and Ki has the 
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basis yi, . . . , ydi , with relation yd+1
i = λi−1cyi; Ki is a field with identity 1Ki

= 1
λi−1cy

d
i , 

and it is a cyclic Galois extension of F of degree d. The family 1K1 = 1
cy

d
1 , 1K2 =

1
λcy

d
2 , . . . , 1Kr

= 1
λr−1cy

d
r is a complete system of orthogonal idempotents of K ′

b.
Denote by σ the algebra automorphism of F [Y ] such that σ(Y ) = εY , which induces 

the automorphism σ of Kb = F [Y ]/(Y s− b); thus σ(f̂) = σ̂(f) for any f ∈ F [Y ]. We see 
that σ(gi) = λ−1gi+1 for any i.

Lemma 3.5. For each 1 ≤ i ≤ r let hi = 1
cr−1

∏
1≤j≤r
j �=i

( 1
λi−1−λj−1 gj). Then πi(hi) = 1 and 

πj(hi) = 0 for any j �= i.

Proof. Let P (Z) =
∏

0≤j≤r−1
j �=i−1

(Z−λjc) ∈ F [Z]. Then P (λi−1c) = cr−1 ∏
0≤j≤r−1
j �=i−1

(λi−1−λj), 

so P (Z) = (Z − λi−1c)Q(Z) + cr−1 ∏
0≤j≤r−1
j �=i−1

(λi−1 − λj) for some Q ∈ F [Z]. For Z = Y d

and after dividing by cr−1 ∏
0≤j≤r−1
j �=i−1

(λi−1 − λj) we obtain hi = giH(Y ) + 1 for some 

H ∈ F [Y ], which shows that πi(hi) = 1. It is clear that πj(hi) = 0 for any j �= i. �
Lemma 3.6. σ(hi) = hi+1 for any i.

Proof. We have that

σ(hi) = 1
cr−1 ∏

1≤j≤r
j �=i

(λi−1 − λj−1)
∏

1≤j≤r
j �=i

σ(gj)

= 1
cr−1 ∏

1≤j≤r
j �=i

(λi−1 − λj−1) · λ−(r−1)
∏

1≤j≤r
j �=i+1

gj

= 1
cr−1 ∏

1≤j≤r
j �=i

(λi − λj)
∏

1≤j≤r
j �=i+1

gj

= 1
cr−1 ∏

1≤j≤r
j �=i+1

(λi − λj−1)
∏

1≤j≤r
j �=i+1

gj

= hi+1. �
The automorphism σ of Kb induces an automorphism σ̃ = ϕσϕ−1 of K ′

b. Taking into 
account Lemma 3.5 and Lemma 3.6, we see that

σ̃(yi) = σ̃(π1(Y hi), . . . , πr(Y hi+1))
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= ϕσ(Ŷ hi)

= ϕ( ̂σ(Y hi))

= ϕ( ̂εY hi+1)

= ε(π1(Y hi+1), . . . , πr(Y hi+1))

= εyi+1.

Then σ̃( 1
λi−1cy

d
i ) = 1

λicy
d
i+1, and σ̃ induces an F -isomorphism between Ki and Ki+1. 

We conclude that we have algebra isomorphisms D2(F, ε, a, b) ∼= Kb[X, σ]/(Xs − a) ∼=
K ′

b[X, ̃σ]/(Xs − a), and the latter one has a presentation with generators y1, . . . , yr, x, 
subject to the relations

yiyj = 0 for i �= j, yd+1
i = λi−1cyi,

1
c
yd1 + 1

λc
yd2 + · · · + 1

λr−1c
ydr = 1,

xyi = εyi+1x, x
s = a.

Let us note that σ̃r(yi) = εryi for any i, so the restriction of σ̃r to Ki is an F -
automorphism of order d, thus a generator of the Galois group Gal(Ki/F ).

At this point, since F embeds differently into K1, . . . , Kr and K ′
b, we will regard 

NK1/F , . . . , NKr/F and NK′
b/F

as taking values in K1, . . . , Kr and K ′
b, respectively, rather 

than in F .

Lemma 3.7. Let v = v1 + · · · + vr ∈ K ′
b, where v1 ∈ K1, . . . , vr ∈ Kr. Then

NK′
b/F

(v) = NK1/F (v1σ̃(vr) · · · σ̃r−1(v2)) + σ̃(NK1/F (v1σ̃(vr) · · · σ̃r−1(v2)))

+ · · · + σ̃r−1(NK1/F (v1σ̃(vr) · · · σ̃r−1(v2))).

Proof. For each i we have σ̃i(v) = σ̃i(v1) + · · ·+ σ̃i(vr), and σ̃i(v1) ∈ Ki+1, . . . , ̃σi(vr) ∈
Ki+r (remember that we look at the indices i modulo r). As KiKj = 0 for i �= j, a product 
of elements in K ′

b is the sum of the products of the components in K1, respectively 
K2, . . . , Kr, of those elements. Thus the component in K1 of vσ̃(v) · · · σ̃s−1(v), denote it 
by L, is

L = (v1σ̃
r(v1) · · · σ̃r(d−1)(v1)) · (σ̃(vr)σ̃r+1(vr) · · · σ̃r(d−1)+1(vr)) ·

· · · · (σ̃r−1(v2)σ̃2r−1(v2) · · · σ̃r(d−1)+r−1(v2))

= NK1/F (v1σ̃(vr) · · · σ̃r−1(v2)).

On the other hand, NK′
b/F

(v) = α · 1K′
b

= α · 1K1 + · · · + α · 1Kr
for some α ∈ F , 

so L = α · 1K1 , and then α · 1K2 = α · σ̃(1K1) = σ̃(L), and so on, which shows that 
NK′/F (v) = L + σ̃(L) + · · · + σ̃r−1(L). �
b
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Corollary 3.8. Let α ∈ F ∗. Then there exists v ∈ K ′
b such that NK′

b/F
(v) = α ·1K′

b
if and 

only if there exists u ∈ K1 such that NK1/F (u) = α · 1K1 .

Proof. If NK′
b/F

(v) = α ·1K′
b

for some v = v1+ · · ·+vr, with vi ∈ Ki, then by Lemma 3.7
we have NK1/F (u) = α · 1K1 , where u = v1σ̃(vr) · · · σ̃r−1(v2) ∈ K1.

Conversely, if NK1/F (u) = α·1K1 for some u ∈ K1, let v = u +1K2+· · ·+1Kr
∈ K ′

b. The 
same lemma shows that NK′

b/F
(v) = L + σ̃(L) + · · · + σ̃r−1(L), where L = NK1/F (u) =

α · 1K1 . Now we get that NK′
b/F

(v) = α · 1K′
b
. �

Lemma 3.9. Let z = u0+u1x +· · ·+us−1x
s−1 be a non-zero element of K ′

b[X, ̃σ]/(Xs−a)
such that u0, u1, . . . , us−1 ∈ K1. Then the set B(z) = {yji xi−1z | 1 ≤ i ≤ r, 0 ≤ j ≤ d −1}
is linearly independent over F .

Proof. Let 
∑

1≤i≤r
0≤j≤d−1

αijy
j
i x

i−1z = 0 for some αij ∈ F . Then 
∑

1≤i≤r

( ∑
0≤j≤d−1

αijy
j
i

)
xi−1z

= 0, 
∑

0≤j≤d−1
αijy

j
i ∈ Ki and xi−1z = σ̃i−1(u0)xi−1+σ̃i−1(u1)xi+· · ·+σ̃i−1(us−1)xs+i−2

is a linear combination of 1, x, . . . , xs−1 with all coefficients in Ki. As K1, . . . , Kr are 

in a direct sum, we must have 

( ∑
0≤j≤d−1

αijy
j
i

)
xi−1z = 0 for any i, which means that ( ∑

0≤j≤d−1
αijy

j
i

)
σ̃i−1(uk) = 0 for any i and k. Fix some i. Since not all σ̃i−1(uk) are 

zero and Ki is a field, 
∑

0≤j≤d−1
αijy

j
i must be zero, and so αij = 0 for any j. �

Proposition 3.10. If K ′
b[X, ̃σ]/(Xs − a) has a left ideal of dimension s, then there exists 

u ∈ K1 such that NK1/F (u) = a · 1K1 .

Proof. Let I be a left ideal of dimension s in K ′
b[X, ̃σ]/(Xs − a), and let w ∈ I, w �= 0. 

Since w = 1K1 · w + · · · + 1Kr
· w, there is 1 ≤ m ≤ r such that 1Km

· w �= 0. 
Since x is invertible, we also have xr−m+11Km

· w ∈ I \ {0}. Since xr−m+11Km
=

σ̃r−m+1(1Km
)xr−m+1 = 1K1x

r−m+1 it follows that z = 1K1 · (xr−m+1w) ∈ I \ {0}, 
which shows that z = u0 + u1x + · · · + us−1x

s−1 for some u0, u1, . . . , us−1 ∈ K1, not all 
zero. By Lemma 3.9, B(z) is a linear independent set with s elements, thus it is a basis 
of I. Hence xrz is a linear combination over F of the elements of B(z). As

xrz = σ̃r(u0)xr + σ̃r(u1)xr+1 + · · · + σ̃r(us−1)xr+s−1

= aσ̃r(us−r) + · · · + aσ̃r(us−1)xr−1 + σ̃r(u0)xr + · · · + σ̃r(us−1−r)xs−1,

we see that the coefficient of each xt in xrz lies in K1, so then xrz is a linear combination 
over F of only the elements z, y1z, . . . , y

d−1
1 z of B(z). This means that xrz = uz for some 

u ∈ K1. Obviously, u �= 0, since z �= 0 and x is invertible.
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Pick some 0 ≤ i0 ≤ s − 1 such that ui0 �= 0, and let 0 ≤ i ≤ r − 1 which is congruent 
to i0 modulo r. Since

uz = uu0 + · · · + uur−1x
r−1 + uurx

r + · · · + uus−1x
s−1,

if we equate the coefficients of xi, xi+r, . . . , xi+(d−1)r in the equality xrz = uz (by taking 
into account the standard representation as a linear combination of 1, x, . . . , xs−1 with 
coefficients in K1), we obtain

uui = aσ̃r(ui+(d−1)r)

uui+r = σ̃r(ui)

uui+2r = σ̃r(ui+r)

. . . . . . . . .

uui+(d−2)r = σ̃r(ui+(d−3)r)

uui+(d−1)r = σ̃r(ui+(d−2)r).

Since u ∈ K1 \ {0}, it is invertible, and as ui0 �= 0 and i0 = i + tr for some t, we get that 
all ui, ui+r, . . . , ui+(d−1)r are non-zero. Now in the sequence of equalities above keep the 
last equation as it is, apply σ̃r to the penultimate equation, and so on, up to σ̃(d−2)r to 
the second equation and σ̃(d−1)r to the first one, and obtain

uui+(d−1)r = σ̃r(ui+(d−2)r)

σ̃r(u)σ̃r(ui+(d−2)r) = σ̃2r(ui+(d−3)r)

. . . . . . . . .

σ̃(d−3)r(u)σ̃(d−3)r(ui+2r) = σ̃(d−2)r(ui+r)

σ̃(d−2)r(u)σ̃(d−2)r(ui+r) = σ̃(d−1)r(ui)

σ̃(d−1)r(u)σ̃(d−1)r(ui) = aσ̃dr(ui+(d−1)r).

If we multiply these equations, take into account that σ̃dr is the identity map, and 
cancel the matching factors, we find that uσ̃r(u)σ̃2r(u) · · · σ̃(d−1)r(u) = a · 1K1 , i.e., 
NK1/F (u) = a · 1K1 . �

Now an immediate consequence of Corollary 3.8 and Proposition 3.10 is the converse 
of Proposition 3.2.

Proposition 3.11. If D2(F, ε, a, b) ∼= Ms(F ), then a ∈ NKb/F (Kb).

Note that by reversing the roles of x and y in the generating relations of D2(F, ε, a, b), 
we get that D2(F, ε, a, b) ∼= D2(F, ε−1, b, a) (as algebras). Then an immediate conse-
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quence of Proposition 3.11 is that for a, b ∈ F ∗, we have a ∈ NKb/F (Kb) if and only if 
b ∈ NKa/F (Ka).

4. Classification of the graded algebras D2(F, ε, a, b)

In this section we classify the Cs×Cs - graded algebras of type D2(F, ε, a, b). We look 
first at isomorphism types.

Proposition 4.1. Let ε and μ be primitive s-th roots of unity in F , and let a, b, c, d ∈ F ∗. 
Then D2(F, ε, a, b) ∼= D2(F, μ, c, d) as Cs ×Cs - graded algebras if and only if μ = ε and 
a/c, b/d ∈ (F ∗)s.

Proof. Let f : D2(F, ε, a, b) → D2(F, μ, c, d) be an isomorphism of graded algebras. As 
x ∈ D2(F, ε, a, b)ρ, we get that f(x) ∈ D2(F, μ, c, d)ρ, so f(x) = αx for some α ∈ F ∗. 
Similarly, f(y) = βy for some β ∈ F ∗. Apply f to the relation xy = εyx in D2(F, ε, a, b), 
and get that αβxy = αβεyx in D2(F, μ, c, d). This shows that ε = μ. Next apply f
to xs = a, and get that αsxs = a, or αsc = a, which shows that a/c ∈ (F ∗)s. Similarly, 
b/d ∈ (F ∗)s.

For the converse, we see that if a/c = αs and b/d = βs with α, β ∈ F ∗, then the 
algebra map f : D2(F, ε, a, b) → D2(F, μ, c, d) such that f(x) = αx and f(y) = βy is an 
isomorphism of graded algebras. �
Corollary 4.2. The isomorphism types of Cs × Cs - graded algebras of type D2(F, ε, a, b)
are in bijection to the set U(Zs) × F ∗/(F ∗)s × F ∗/(F ∗)s.

Next we classify the considered class of algebras up to equivalence. Let us first intro-
duce a group action • whose orbits will classify the equivalence classes. We denote by z
the class of an element z ∈ F ∗ modulo (F ∗)s. Also, we denote by ̂i the class of an integer 
i modulo s.

Lemma 4.3. The group SL2(Zs) acts on the set F ∗/(F ∗)s × F ∗/(F ∗)s by

[
î ĵ

k̂ �̂

]
• (a, b) = ((−1)(s−1)ijaibj , (−1)(s−1)k�akb�).

Proof. We first show that the action is well defined. It is clear by the definition that the 
definition depends only on the classes of a and b modulo (F ∗)s, so it suffices to show that 
for integers i and j, (−1)(s−1)ij depends only on the classes of i and j modulo s. For this, 
we see that if p, q ∈ Z, then (−1)(s−1)(i+ps)(j+qs) = (−1)(s−1)ij · (−1)(s−1)s(pj+iq+pqs) =
(−1)(s−1)ij since s(s − 1) is even.
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Now if 
[
î ĵ

k̂ �̂

]
, 

[
î′ ĵ′

k̂′ �̂′

]
∈ SL2(Zs), then

[
î ĵ

k̂ �̂

]
•
([

î′ ĵ′

k̂′ �̂′

]
• (a, b)

)
=

[
î ĵ

k̂ �̂

]
•
(
(−1)(s−1)i′j′ai′bj′ , (−1)(s−1)k′�′ak′b�′

)
=

(
(−1)(s−1)(ij+i′j′i+k′�′j)aii′+jk′bij′+j�′ , (−1)(s−1)(k�+i′j′k+k′�′�)aki′+�k′bkj′+��′

)
,

while ([
î ĵ

k̂ �̂

]
·
[
î′ ĵ′

k̂′ �̂′

])
• (a, b) =

[
̂ii′ + jk′ ̂ij′ + j�′

̂ki′ + �k′ ̂kj′ + ��′

]
• (a, b)

=
(
(−1)(s−1)(ii′+jk′)(ij′+j�′)aii′+jk′bij′+j�′ , (−1)(s−1)(ki′+�k′)(kj′+��′)aki′+�k′bkj′+��′

)
.

We have that

(s− 1)(ii′ + jk′)(ij′ + j�′) − (s− 1)(ij + i′j′i + k′�′j)

= (s− 1)(i2i′j′ + j2k′�′ + ijk′j′ + iji′�′ − ij − i′j′i− k′�′j)

= (s− 1)i′j′(i2 − i) + (s− 1)k′�′(j2 − j) + 2(s− 1)ijk′j′ + (s− 1)ij(i′�′ − k′j′ − 1),

which is even, as so are i2− i and j2− j, and the last term is also even, since i′�′−k′j′ =
Ns + 1 for some integer N , and then (s − 1)ij(i′�′ − k′j′ − 1) = s(s − 1)ijN . Thus the 
first components of the two elements in F ∗/(F ∗)s × F ∗/(F ∗)s are equal, and similarly 
their second components coincide. We conclude that the action is indeed associative. �
Proposition 4.4. Let ε and μ be primitive s-th roots of unity in F , and let a, b, c, d ∈ F ∗. 
Then D2(F, ε, a, b) ≡ D2(F, μ, c, d) as Cs × Cs - graded algebras if and only if there is [
î ĵ

k̂ �̂

]
∈ GL2(Zs) such that

μ = εi�−jk, (−1)(s−1)ijaibjc−1 ∈ (F ∗)s, (−1)(s−1)k�akb�d−1 ∈ (F ∗)s. (4.1)

Proof. Suppose that D2(F, ε, a, b) ≡ D2(F, μ, c, d). Therefore there is an automorphism θ

of Cs × Cs such that D2(F, μ, c, d) ∼= D2(F, ε, a, b)θ. The automorphism θ is such that 
θ−1 is of the form θ−1(ρ) = ρiωj and θ−1(ω) = ρkω� for some integers i, j, k, � such that [
î ĵ

k̂ �̂

]
∈ GL2(Zs).

Let f : D2(F, μ, c, d) → D2(F, ε, a, b)θ be an isomorphism of graded algebras. Then 
f(x) = αxiyj and f(y) = βxky� for some α, β ∈ F ∗. Apply f to xy = μyx and get 
αβxiyjxky� = αβμxky�xiyj in D2(F, ε, a, b), which implies that εij+�(i+k) = μεk�+j(i+k), 
or μ = εi�−jk.
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Next, if we apply f to xs = c, we see that αs(xiyj)s = c. Using xy = εyx to move all 
the y’s at the beginning, we find αsεij+2ij+···+sijysjxsi = c, or αsεijs(s+1)/2aibj = c.

We have that εs(s+1)/2 = (−1)s−1. Indeed, if s is odd, then εs(s+1)/2 = (εs)(s+1)/2 =
1 = (−1)s−1, while if s is even (in this case the characteristic of F cannot be 2), say 
s = 2t for some integer t, then εs(s+1)/2 = εt(2t+1) = εt. As (εt)2 = εs = 1 and εt �= 1, 
we get that εt = −1 = (−1)s−1. Thus we have (−1)(s−1)ijaibjc−1 = α−s ∈ (F ∗)s.

In a similar way, applying f to ys = b we obtain (−1)(s−1)k�akb�d−1 = β−s ∈ (F ∗)s.

Conversely, if the relations (4.1) are satisfied for some 

[
î ĵ

k̂ �̂

]
∈ GL2(Zs), say that 

(−1)(s−1)ijaibjc−1 = α−s and (−1)(s−1)k�akb�d−1 = β−s, where α, β ∈ F , then it is 
straightforward to check that f : D2(F, μ, c, d) ∼= D2(F, ε, a, b)θ given by f(x) = αxiyj

and f(y) = βxky� is an isomorphism of graded algebras, where θ is the automorphism 

of Cs × Cs associated with 

[
î ĵ

k̂ �̂

]
as above. �

Corollary 4.5. Fix some primitive s-th root of unity, ε, in F . The following assertions 
hold.

(i) For any primitive s-th root of unity μ, and any c, d ∈ F ∗, there exist a, b ∈ F ∗ such 
that D2(F, μ, c, d) ≡ D2(F, ε, a, b).

(ii) If a, b, c, d ∈ F ∗, then D2(F, ε, a, b) ≡ D2(F, ε, c, d) if and only if there exists [
î ĵ

k̂ �̂

]
∈ SL2(Zs) such that (c, d) =

[
î ĵ

k̂ �̂

]
• (a, b).

Proof. (i) We have μ = εr for some r̂ ∈ U(Zs). Let t̂ be the inverse of r̂ in Zs. If a = ct

and b = d, then arc−1 = ctr−1 ∈ (F ∗)s and bd−1 = 1 ∈ (F ∗)s, and so the relations in 

(4.1) are satisfied for the matrix 

[
î ĵ

k̂ �̂

]
=

[
r̂ 0̂
0̂ 1̂

]
.

(ii) By Proposition 4.4 we have that D2(F, ε, a, b) ≡ D2(F, ε, c, d) if and only if there 

exists 
[
î ĵ

k̂ �̂

]
∈ GL2(Zs) such that ε = εi�−jk, which means that 

[
î ĵ

k̂ �̂

]
∈ SL2(Zs), 

and (−1)(s−1)ijaibjc−1, (−1)(s−1)k�akb�d−1 ∈ (F ∗)s. Hence, (c, d) =
[
î ĵ

k̂ �̂

]
• (a, b). �

Corollary 4.6. The equivalence classes of Cs × Cs - graded algebras of the type 
D2(F, ε, a, b), where ε is an arbitrary s-th root of unity in F , and a, b ∈ F ∗, are in bijec-
tion to the orbits of the action • of the group SL2(Zs) on the set F ∗/(F ∗)s ×F ∗/(F ∗)s.

Now we look at all possible Cs × Cs - gradings induced on the algebra Ms(F ) from 
graded algebras of type D2(F, ε, a, b).
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Let E(F, s) be the subset of F ∗/(F ∗)s × F ∗/(F ∗)s consisting of all pairs (a, b) with 
the property that a ∈ NKb/F (Kb), or equivalently, that b ∈ NKa/F (Ka); we have seen 
in Section 3 that this is the same as D2(F, ε, a, b) ∼= Ms(F ), where ε is any primitive 
s-th root of unity. Clearly this property depends only on the classes a, b of a, b modulo 
(F ∗)s, and it does not depend on the choice of ε.

Also, we see that E(F, s) is an SL2(Zp)-subset of F ∗/(F ∗)s × F ∗/(F ∗)s. Indeed, let 
(a, b) ∈ E(F, s), thus D2(F, ε, a, b) ∼= Ms(F ) if ε is a primitive s-th root of unity. Then if 

(c, d) =
[
î ĵ

k̂ �̂

]
• (a, b) for some 

[
î ĵ

k̂ �̂

]
∈ SL2(Zs), then D2(F, ε, a, b) ≡ D2(F, ε, c, d), 

in particular D2(F, ε, c, d) ∼= Ms(F ), so (c, d) ∈ E(F, s). Now an immediate consequence 
of Corollaries 4.2 and 4.6 is

Corollary 4.7.

(1) The isomorphism types of Cs ×Cs - graded algebras induced on Ms(F ) from graded 
algebras of type D2(F, ε, a, b) are in bijection to the set U(Zs) × E(F, s).

(2) The equivalence classes of Cs ×Cs - graded algebras induced on Ms(F ) from graded 
algebras of type D2(F, ε, a, b) are in bijection to the orbits of the action • of the 
group SL2(Zs) on the set E(F, s).

5. Gradings on matrices of prime size

The aim of this section is to classify all gradings on the algebra Mp(F ) by all possible 
groups, where F is an arbitrary field and p is a prime number. We first recall a general 
construction.

If A = ⊕
g∈G

Ag is a G-graded algebra, n is a positive integer and σ1, . . . , σn ∈ G, then 

there is a G-grading on the matrix algebra Mn(A) whose homogeneous component of 
degree g is

⎡⎢⎢⎢⎣
Aσ1gσ

−1
1

Aσ1gσ
−1
2

. . . Aσ1gσ
−1
n

Aσ2gσ
−1
1

Aσ2gσ
−1
2

. . . Aσ2gσ
−1
n

. . . . . . . . . . . .

Aσngσ
−1
1

Aσngσ
−1
2

. . . Aσngσ
−1
n

⎤⎥⎥⎥⎦ .

We denote this G-graded algebra by Mn(A)(σ1, . . . , σn).
We also recall that a grading on the matrix algebra Mn(F ) is called a good grading if all 

matrix units eij , with 1 ≤ i, j ≤ n, are homogeneous elements. A G-grading on Mn(F ) is 
good if and only if it is isomorphic to Mn(F )(σ1, . . . , σn) for some σ1, . . . , σn ∈ G, where 
F is regarded as a G-graded algebra with the trivial grading, see [12, Propositions 2.10.5 
and 9.2.5]. The isomorphism types of good G-gradings on Mn(F ) are determined in [4].
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Theorem 5.1. Let F be a field and let p be a prime number. If G is a group, then any 
G-grading on the algebra Mp(F ) is isomorphic to one of the following three types:

(I) A good G-grading.
(II) D1(K/F, σ, 1)θ for a Galois extension K/F of degree p, a generator σ of Gal(K/F ), 

and a group embedding θ : Cp → G. The support of such a grading is θ(Cp) ∼= Cp. 
For a fixed embedding θ, the equivalence classes of such gradings are in bijection 
to the set of isomorphism types of Galois extensions of degree p of F .

(III) D2(F, ε, a, b)θ for a p-th root of unity ε �= 1, elements a, b ∈ F ∗ such that (a, b) ∈
E(F, p), and a group embedding θ : Cp × Cp → G. The support of such a grading 
is θ(Cp × Cp) ∼= Cp × Cp. For a fixed embedding θ, the equivalence classes of such 
gradings D2(F, ε, a, b)θ are in bijection to the orbits of the SL2(Zp)-action on the 
set E(F, p). Gradings of this type do not occur if F does not contain non-trivial 
p-th roots of unity.

Proof. Let R = Mp(F ) with a G-grading, where G is an arbitrary group with neutral 
element e. R is a graded simple and graded artinian algebra. Let V be a simple object 
in the category of graded left R-modules. Then Δ = EndR(V ) is a G-graded algebra, 
whose homogeneous component of degree d is

Δd = {δ ∈ EndR(V ) | δ(Vg) ⊂ Vgd for any g ∈ G}

for any d ∈ G. As V is graded simple, Δ is a graded division algebra. Now V is a G-
graded right Δ-module with the usual right action v · δ = δ(v) for any v ∈ V, δ ∈ Δ, and 
End(VΔ) has a G-grading in a similar way; the homogeneous component of degree d is 
{u ∈ End(VΔ) | u(Vg) ⊂ Vdg for any g ∈ G}. By [12, Corollary 4.6.6] or [6, Theorem 2.6]
the map ϕ : R → EndΔ(V ), ϕ(r)(v) = rv for any r ∈ R and v ∈ V , is an isomorphism 
of G-graded algebras. As Δ is a graded division algebra, V has a finite basis over Δ. 
Denoting by n the number of basis elements and by σ1, . . . , σn their degrees, we obtain 
that R ∼= End(VΔ) ∼= Mn(Δ)(σ1, . . . , σn), where the second isomorphism follows from 
[12, Proposition 2.10.5].

If we equate the dimensions, we get p2 = n2dim(Δ), so either n = p and dim(Δ) = 1, 
or n = 1 and dim(Δ) = p2.

In the first case we have Δ = F , and then R ∼= Mp(F )(σ1, . . . , σp), which is a good 
grading on Mp(F ).

In the latter case, R ∼= Δ, so we have to describe all possible graded division algebra 
structures on the matrix algebra Mp(F ). We note that for a G-graded division algebra 
Δ = ⊕

g∈G
Δg the following hold:

(i) Δe is a division algebra over F .
(ii) supp(Δ) is a subgroup of G.
(iii) If x ∈ Δg \ {0}, then Δg = xΔe = Δex; in particular, dim Δg = dim Δe.
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As a consequence, p2 = dim(Δ) = |supp(Δ)| · dim(Δe), and we have three possible 
cases.

Case 1. |supp(Δ)| = 1 and dim(Δe) = p2. Then Δ = Δe is a division algebra, a contra-
diction with Δ = Mp(F ).

Case 2. supp(Δ) = p and dim(Δe) = p. Pick z ∈ Δe\F . Since Δe has prime dimension p, 
it must be equal to the field obtained by adjoining z to F . Thus Δe is a field. Let 
supp(Δ) = 〈g〉, and pick a non-zero x in Δg. Then Δgi = Δex

i for any 0 ≤ i ≤ p − 1, 
so Δ = Δe ⊕ Δex ⊕ · · · ⊕ Δex

p−1.
Let σ : Δe → Δe, σ(z) = xzx−1 for any z ∈ Δe, which is clearly an F -automorphism 

of Δe. Then σ �= Id, since otherwise xz = zx for any z ∈ Δe, and Δ would be com-
mutative; a contradiction. On the other hand, the fixed subfield Δσ

e = {z ∈ Δe|zx =
xz} ⊂ Cen(Δ) = F , showing that Δ〈σ〉

e = F , where 〈σ〉 is the subgroup of the finite 
group Gal(Δe/F ) generated by σ. By Artin’s Theorem ([9, Theorem 1.8, page 264]) we 
get that Δe/F is a Galois extension and its Galois group is 〈σ〉. Thus Δe/F is a cyclic 
Galois extension of degree p and σ has order p.

Since σp = Id, xp commutes with any element in Δe. As it also commutes with x, we 
must have xp ∈ Cen(Δ) = F . Now if we denote a = xp, and Δe = K, a Galois extension 
of degree p of F , we have that Δ is isomorphic as an algebra to the cyclic algebra 
(K/F, σ, a). As Δ ∼= Mp(F ), a must lie in NK/F (K∗), and then by Proposition 2.1, 
D1(K/F, σ, a) ∼= D1(K/F, σ, 1) as Cs-graded algebras. Hence we have an isomorphism 
of G-graded algebras Δ ∼= D1(K/F, σ, 1)θ, where θ : Cp → G is the group embedding 
defined by θ(ω) = g.

The equivalence classes of such gradings follow from Corollary 2.3.
Case 3. supp(Δ) = p2 and dim(Δe) = 1, so Δe = F . It is not possible that supp(Δ) is 

cyclic. Indeed, if supp(Δ) = 〈g〉 ∼= Cp2 , pick x ∈ Δg \ {0}, and then Δgi = Fxi for any 
0 ≤ i ≤ p2−1, showing that Δ is commutative; a contradiction. Thus supp(Δ) ∼= Cp×Cp. 
Let G = 〈g〉 × 〈h〉 with g and h of order p. Pick some nonzero y ∈ Δg and x ∈ Δh. As 
each nonzero homogeneous component of Δ has dimension 1, we have Δgihj = Fyixj

for any 0 ≤ i, j ≤ p − 1. Now xy ∈ Δgh, so xy = εyx for some ε ∈ F ∗. If ε = 1, it 
follows that Δ is commutative; a contradiction. Thus ε �= 1. Since xp ∈ Δgp = Δe = F , 
we have xpy = yxp. As xy = εyx, we get xpy = εpyxp, showing that εp = 1, so ε is a 
primitive p-th root of unity in F . In the case F does not contain such roots, we get that 
gradings of this type do not exist. Now xp, yp ∈ Δe = F , and denote xp = a, yp = b, 
where a, b ∈ F ∗. These show that Δ ∼= D2(F, ε, a, b)θ, where θ : Cp × Cp → G is the 
group embedding defined by θ(ω) = g and θ1(ρ) = h. Moreover, (a, b) ∈ E(F, p), since 
D2(F, ε, a, b) ∼= Mp(F ).

If H ∼= Cp × Cp is a subgroup of G, θ1, θ2 : Cp × Cp → H are group isomorphisms 
(i.e., embeddings of Cp×Cp into the same subgroup H of G), and (a, b), (c, d) ∈ E(F, p), 
then by Corollary 4.5 we know that D2(F, ε, a, b)θ1 ≡ D2(F, ε, c, d)θ2 if and only if (a, b)
and (c, d) lie in the same orbit with respect to the action • of SL2(Zp), which concludes 
the proof. �
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