THE RECOVERY OF THE NON-DIAGONAL TILE IN A TRIPLE TRINGLEULAR MATRIX RING

By D.B. Xiao and W.Z. Yang

INDIAN JOURNAL OF MATHEMATICS

Vol. 42 No. 2, 2001-2002

EDITORIAL BOARD

SR. K.R. Ananthakrishnan.

University of Madras

Other members of the Council: P. Subramanian, A. Ramakrishnan, N. Ramakrishnan.

Secretary:

Dr. G. Ramakrishnan.

Treasurer:

Shri S. Subramaniah.
was not considered a component can be dropped in general. In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.

In [8] Theorem 2.1.13, we see that the resulting linear span of the first M rows of the coefficient matrix G is also a component. In particular, if G is a component, then the resulting linear span of the first M rows of the coefficient matrix G is also a component.
The Recoveries of the Non-Diagonal Tile in A...
THE RECOVERY OF THE NON-DIAGONAL TIEL IN A...