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THE RECOVERY OF THE NON-DIAGONAL TILE IN A
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We show that it can happen that the tile in the non-diagonal position of a
2% 2 upper triangular tiled matrix ring cannot be recovered up to
aoacauEmS even if the base ring is finite.

In this note we provide an example regarding the impossibility of the recovery
(up to isomorphism) of one of the algebraic structures involved _= tiled :_msmz_,m_.
matrix rings even if the base ring is finite, and we mention a non-trivial .o,mmh.* of finite
rings, as base rings, for which the recovery is indeed possible. This ties in with recent

work on the recovery of some of the algebraic structures involved in various classes
of matrix rings.

We first sketch the background. Questions concerning the representability of
certain rings as full matrix rings have led to studying ways of finding the
corresponding base ring and determining whether or not the base ring is unique up to
isomorphism. It is well-known that if R and S are commutative rings, then the full
matrix rings My, (R) and M, (S) are isomorphic, since R and S are isomorphic to the
centres of My, (R) and M), (S) respectively. However, it was shown by Smith [15] that
there arc non-isomorphic simple Noetherian integral domains R and S (one of which
is the first Weyl algebra) for which M, (R) =M, (S). Therefore, even for
naturally-occurring Noetherian non-commutative rings R and S it is possible that
My, (R) = My, (S) but R # S, See also [10) and [16]. Thus it is not possible to recover
up to isomorphism the base ring R from the complete matrix ring #,, ().

A ring more closely related to commutative rings is the ring H :=Z [i, j, k] of

quaternions with integer coefficients. This ring was the inspiration of a series of
papers by Chatters. Let H), denote the localization of H at some odd prime p, and
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consider the following tiled subrings of M (H) and M, (Hp) respectively:

H pH Hp pH,
Vi I e
HH H, H,

Chatters showed in [2] that T" is isomorphic to a full 2 x 2 matrix ring over a suitable
ring, and he asked whether T is isomorphic to a full 2 X 2 matrix ring My (W) too,
and if so, what is W? The first question was answered in the affirmative
independently by Chatters (3] and Robson [14], thus making T into a "hidden" matrix
ring. The ring W can be chosen as the idealizer I(J):={re H; cJ} of aright
ideal J of H, but T does not determine the isomorphism-type of W, In fact, Chatters
showed in [3, Theorem 3.10] that there at least as many pairwise non-isomorphic
rings W with T= M, (W) as there are representations of p as a sum of fonr squares.
Furthermore, in [5, Proposition 5.7] Chatters showed that if W is any ring such that
T=Mp (W), then W is indeed isomorphic to one of the mentioned idealizers I ).
See also [11] for a thorough study of certain tiled subrings of full matrix rings, which,
despite appearing otherwise, are themselves full matrix rings.

In [4] Chatters showed that even in the prime Noetherian case it can happen
M, (R)=M, (S), with R# S. Chatters constructed an uncountable family of
pairwise non-isomorphic rings R; such that the corresponding matrix rings M, (R;)
are isomorphic to one another. We conclude from [3], [4], and [17] that examples are
known of non-isomorphic orders R and S in a finite-dimensional central simple
algebra such that M, (R) =M (S ). The examples in [3] and {4] are not maximal
orders and those in [17] are maximal orders, albeit relatively complicated. This led
Chatters in [6] to constructing many pairwise non-isomorphic maximal Z-orders
which have isomorphic full matrix rings. To be precise: given an n > 2, Chatters

constructed n pairwise non-isomorphic maximal Z-orders with isomorphic full n x n
matrix rings.

On a "positive” note it was shown in [8] that the underlying Boolean matrix
matrix B of a structural matrix ring M (B, R) over a semiprime Noetherian ring R can
be recovered up to conjugation. To be more precise, {8, Theorem 2.4] shows that the
underlying Boolean matrices B) and B of two isomorphic matrix rings M (B}, R) and
M (Bs, R) over a semiprime left Noetherian ring R are conjugated, that is one of them
can be obtained from the other by a permutation of the rows and columns, which is
equivalent to saying that the directed graphs associated with B; and B, are
isomorphic. In [8, Corollary 2.5] it was shown that semiprimeness can be dropped in
[8, Theorem 2.4] in case the underlying ring R is commutative, and at the end of [8] it
Was conjectured that semiprimeness can be dropped in general in [8, Theorem 2.4]. In

]

R
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[9] it was shown that semiprimeness can be dropped in (8, Theorem 2.4] if the
underlying Boolean matrix is complete blocked triangular. Moreover, it was shown in
this case that the underlying Boolean matrices are equal, that is the underlying
Boolean matrix of a complete blocked triangular matrix ring over a Noetherian ring is
unique. Complete blocked triangular matrix rings over division rings feature, for
example, in the representation of left Artinian Cl-prime rings in [12].

Abrams, Haefner and Del Rio showed in [1] that the conjecture mentioned
above is indeed true. They call a ring R with the property that the integer max ({n |
there exist nonzero right ideals K/, K5, -, Ky with R=K, @ - ® K,,}) exists, a ring
with finite summand length. These rings arc abundant and include, for example, rings
with Goldie dimension and hence Noetherian rings. In [1, Theorem 1.12] they then
proved the following much stronger version of the mentioned conjecture in [8]: if R is
a ring with finite summand length, and P and P’ are finite preordered sets such that
the incidence rings / (P, R) and / (P, R) are isomorphic, then P and P are isomorphic
as preordered sets.

Although the above summary of results on the recovery of some of the
underlying algebraic structures in matrix rings is not complete, it gives the reader a
flavour of the type of problems. So much for background.

R R
We note now that a 2 x 2 upper triangular matrix ring

0 R
a complete blocked triangular matrix ring in the sense that each block has size 1.
Hence, considering a holistic picture of the known results, the question of the
possible recovery of the tile in the non-diagoral position of a 2 x 2 upper triangular
tiled matrix ring over a left Noetherian ring arises. To be more precise: if R is a lefi
Noetherian ring and T and T, are two-sided ideals of R such that the tiled triangular
matrix rings.

is a special case of

0 R 0 R

are isomorphic, does it necessarily follow that 7| and T, are isomorphic as
R-bimodules, i.e. can the tile in the non-diagonal position be recovered?
We note that if no kind of finiteness condition is imposed on the base ring R,

then there is no hope of recovery of the tile. In fact, in (8, Example 1.1] a ring R was
constructed such that
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R O} |R R i

O R| |OR
Moreover, we now show that it can happen that even if R is finite, then the tile
cannot be recovered.
EXAMPLE. Consider the structural matrix ring
R 0O R 1 01
M (B,R)=|0 R R|associated with the Boolean matrix 2500 1

0 0R 001

and any ring R. This structural matrix ring will now act as the base Ting in a tiled
triangular matrix ring. Consider the two-sided ideals

000 0 0R
T):=|0 0 RlandT>:={0 0 0
000 000
of M (B, R) and the corresponding tiled triangular matrix rings.

M (B, R) T M (B, R) Ts
and . A1 I
0 M (B, R) 0 M (B, R)

These two tiled triangular matrix rings are isomorphic to the structural matrix rings
M (B, R) and M (B, R) respectively, where

(101000 101001
011001 0OL1000
001000 001000
By = and B, = A
0001 01 0001 01
00001 1 00001 I
00000 I 000000 1
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The permutation (12) € S6, with Sg the cyclic group on six elements, shows that the
directed graphs associated with By and By are isomorphic, and so
M (B}, R) =M (B», R). Hence

M (B,R) T, M@B.R T

= .

0 M(B,R)|. 0 M (B, R)

However, it is straightforward to verify that T} and T> are not isomorphic as left
M (B, R)-modules. Indeed, if y : T; — T is a left M (B, R)-isomorphism and

000 [0o0x

¢(l0 O 1||=|0 0 O

000 000

for some x € R, then

00 x 00 0]fooo]) [ooo] (fooo
00 0l=¢|l0 1 Ofj0 0 1]||=|0 1 O|@[{0 O I
000 000Jlooo] [000f [[000
[0 0 0][0 0 x
=|o 1 oflo 0 0
10 0 0]lo 0o

[0 0 0]

=0 0 of.

? : o

Since x #0, it follows that Ty and T, are not isomorphic as left M (B, R)-modules,
which concludes the example.

Two crucial features of the above example is the fact that the base ring

R OR
M(B,R)=[0 R R

nne
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in the tiled triangular matrix rings

M@®BR T M@®BR T
and
0 M (B,R) 0 M (B,R)

is non-commutative, and, moreover, that it has two two-sided ideals (which are
non-isomorphic as M (B, R)-bimodules) which have the same cardinality. We
conclude that, contrary to the mentioned example, any class of finite commutative
rings with the property that all the ideals in a ring A in such a class have different
cardinalities, will be such that the tile 7, with T a two-sided ideal of A. in the non-
diagonal position of the 2 x 2 tiled triangular matrix ring

AT

0 A
can indeed be recovered.
: A :o:-:?m_ class of such rings is the class of finite commutative chain rings or
finite special principal ideal rings (PIR’s). Such a ring A has a unique prime ideal (6)

m_.a this Ewm_ is nilpotent. (Therefore a special PIR is a local ring). If & is the
nilpotency index of (8) (which is the nilpotency index of ), then every nonzero

element in A can be written in the form km-. where x is invertible in R, 0< / <k, [ is
==_E=o and x is unique modulo @»L. Furthermore, every ideal of R is of the form
@), 0=/ <k Concrete examples of these rings are the rings Zy" of integers modulo
p" (p a prime), the Galois fields GF (p") and the Galois rings GR (p",1)=Zy

[x]/ (g (x)) of characteristic __o.,.q and rank r, where g (x) is monic of degree r and

m....&_.JQc_o modulo the prime p. (See, for example, [7] and [13] for further examples
of finite commutative chain rings.)
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