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Let R be a complete blocked triangular matrix algebra over an infinite field F.
Assume that R is not an upper triangular matrix algebra or a full matrix algebra.

Ž .We prove that the minimum number n s n R such that R can be generated as an
F-algebra by n idempotents, is given by

3 if m F 8,1
n R sŽ . ½ log m if m ) 8,u v2 1 1

where m is the number of 1 = 1 diagonal blocks of R. We also show that R can1
be generated as an F-algebra by two elements, and if m s 0, R can be generated1
by an idempotent and a nilpotent element. Q 1999 Academic Press

Key Words: idempotents; complete blocked triangular matrix algebras.

1. INTRODUCTION

mŽ .Denote by M F the direct sum of m copies of the full n = n matrixn
w xalgebra over a field F. Krupnik showed in 2 that the minimum number

Ž mŽ .. mŽ .n M F of idempotents needed to generate M F as an F-algebra overn n
an infinite field F is given by

2 if n s 2,mn M F sŽ .Ž .n ½ 3 if n G 3.

Also, for each finitely generated Banach algebra A there is a number n0
Ž .such that the algebra M A can be generated by three idempotentsn

Ž w x. w xwhenever n G n see 3 . In 1 it was shown that the minimum number0
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IDEMPOTENT GENERATORS 191

Ž Ž ..n U S of idempotents needed to generate the n = n upper triangularn
Ž .matrix algebra U S as an S-algebra over an arbitrary commutative ringn

S, is given by

log n q 1 if n s 2, 3, 4,u v2
n U S sŽ .Ž .n ½ log n if n G 5.u v2

Consider the subalgebra,

M F M F ??? M FŽ . Ž . Ž .r r =r r =r1 1 2 1 t

. . .0 . . .. . .
M F [ , 1Ž . Ž .. . .r , r , . . . , r1 2 t . . . M FŽ .r =rty 1 t. . .

0 ??? 0 M FŽ .r t

Ž . Ž Ž ..of the full matrix algebra M F s M F over a field F, wheren n=n
w x Ž .r q r q ??? qr s n. As in 4 , we call M F a complete blocked1 2 t r , r , . . . , r1 2 t

Ž .triangular matrix algebra. For X g M F we call the submatrix ofr , r , . . . , r1 2 k

Ž . Ž . Ž .X corresponding to the position of M F in 1 the i, j th block of Xr =ri j

Ž .and denote it by X . If i s j respectively, i / j , then we call X thew i, j x w i, j x
Ž .ith diagonal respectively, a non-diagonal block of X.

In this paper we show that if R is a complete blocked triangular matrix
algebra over an infinite field and if R is not an upper triangular matrix
algebra or a full matrix algebra, then

3 if m F 8,1
n R sŽ . ½ log m if m ) 8,u v2 1 1

where m is the number of 1 = 1 diagonal blocks of R. In fact, this result1
holds for any field with at least g q 1 elements, where g is the maximum
number of diagonal blocks of any specific size greater than or equal to 2.

We wish to point out that we cannot in general rearrange the diagonal
Ž .blocks in M F to group together the diagonal blocks of the samer , r , . . . , r1 2 t

size, since, for example, the complete blocked triangular matrix algebras

F F F F F
F F F F F

M F sŽ . 0 0 F F F2, 3

0 0 F F F
0 0 F F F
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and

F F F F F
F F F F F

M F sŽ . F F F F F3, 2

0 0 0 F F
0 0 0 F F

are not isomorphic. In fact, with TT denoting the Jacobson radical, we have
that

0 0 F F F
0 0 F F F

TT M F sŽ .Ž . 0 0 0 0 02, 3

0 0 0 0 0
0 0 0 0 0

and

0 0 0 F F
0 0 0 F F

TT M F s ,Ž .Ž . 0 0 0 F F3, 2

0 0 0 0 0
0 0 0 0 0

Ž Ž .. Ž .and so it is clear that TT M F is a left M F -module of rank 3,2, 3 2, 3
Ž Ž .. Ž .whereas TT M F is a left M F -module of rank 2.3, 2 3, 2

Ž .For an F-algebra R we denote by m R the minimum number of
Ž .elements needed to generate R as an F-algebra. Thus if m R s m, then

R is a quotient of the polynomial F-algebra in m non-commuting vari-
Ž .ables. In the second section of this paper we determine m R , where R is a

direct sum of full matrix algebras over a field, and in the final section we
Ž . Ž .determine m R and n R , for a complete blocked triangular matrix

algebra R.

k m jŽ .2. GENERATORS FOR [ M Fnjs1 j

In the remainder of this paper, we denote by F a field that is not
Ž mŽ ..necessarily infinite. In the first result we determine m M F .n
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� 4For n G 2 and a g F _ 0 denote by P , Q , and R the followingn, a n n
Ž .idempotents in M F ,n

P [ a y 1 e q e q eŽ . Ý Ýn , a 1, 2 2 ky1, 2 ky1 2 ky1, 2 k
1F2 ky1Fn 2F2 kFn

1 a
0 0

s ;1 1. .. .. .

Q [ e q eÝ Ýn 2 k , 2 k 2 k , 2 kq1
2F2 kFn 3F2 kq1Fn

0 0
1 1

s ;0 0. .. .. .

0 0 ??? 0 0
. . . .. . . .. . . .R [ e q e s .n n , 1 n , n
0 0 ??? 0 0
1 0 ??? 0 1

Ž .Here e denotes the i, j th matrix unit, i.e., the matrix with 1 ini, j
Ž .position i, j and zeros elsewhere.

� 4 mŽ .For a , . . . , a in F _ 0 we define the following idempotents in M F :1 m n

P a1 , . . . , a m [ P , . . . , P , Qm [ Q , . . . , Q andŽ .Ž .n n , a n , a n n n1 m

Rm [ R , . . . , R .Ž .n n n

< < Ž mŽ ..THEOREM 2.1. Assume F G m q 1 and n ) 1. Then m M F s 2.n
Ž mŽ .Thus the multiplicatï e identity and two other elements generate M F as ann

.F-algebra. More specific, if a , . . . , a are distinct non-zero elements of F,1 m
a1, . . . , a m m m mŽ .then P q Q and R generate M F as an F-algebra. Also,n n n n

mŽ .M F can be generated by an idempotent and a nilpotent element.n

mŽ . mŽ .Proof. Because M F is not commutative, M F cannot be gener-n n
ated by a single element. To show that P a1, . . . , a m q Qm and Rm generaten n n

mŽ . Ž . w xM F , simply use the argument in part 3 of Theorem 5 in 2 . Finally, ifn
mŽ . a1, . . . , a m mwe denote by I the multiplicative identity of M F , then P q Qn n n

y I is nilpotent.

Let n and m for j s 1, . . . , k be positive integers with n - n - ???j j 1 2
Ž k m jŽ ..- n . In the following two results we determine m [ M F . First wek njs1 j

k m jŽ . m iŽ .establish some notation. We denote by p : [ M F ª M F then n njs1i j i
k m jŽ . m iŽ .projection map from [ M F onto M F , by i the injection in then n njs1 j i i
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k m jŽ . k m jŽ .opposite direction, and by id: [ M F ª [ M F the identityn njs1 js1j j

map.

LEMMA 2.2. Define g g Z as

� 4max m , . . . , m if n ) 1,1 k 1g [ ½ � 4max m , . . . , m if k ) 1 and n s 1.2 k 1

< < � 4Assume that F G g q 1. Let a g F _ 0 for 1 F i F g such that a / ai i i1 2

if i / i .1 2

Ž .a Assume that n ) 1.1
k m jŽ .Define P, Q, R g [ M F asnjs1 j

P [ P a1 , . . . , a m1 , . . . , P a1 , . . . , a m k ,Ž .n n1 k

Q [ Qm1 , . . . , Qm k ,Ž .n n1 k

R [ Rm1 , . . . , Rm k .Ž .n n1 k

k m jŽ .Then P q Q and R generate [ M F as an F-algebra.njs1 j

Ž . mb Assume that n s 1 and k G 2. Denote by 0 the additï e identity1 n
mŽ . k m jŽ .of M F . Define P, Q, R g [ M F asn njs1 j

P [ 0 m1 , P a1 , . . . , a m2 , . . . , P a1 , . . . , a m k ,Ž .n n n1 2 k

Q [ 0 m1 , Qm2 , . . . , Qm k ,Ž .n n n1 2 k

R [ 0 m1 , Rm2 , . . . , Rm k .Ž .n n n1 2 k

k m jŽ .Let A , . . . , A be elements of [ M F such that:1 l njs1 j

Ž . Ž . Ž . m1Ž . Ž m1.i p A , . . . , p A generate M F s F as an F-algebra;n 1 n l n1 1 1

Ž . �Ž .Ž . Ž .Ž .4ii P q Q, R g id y i p A , . . . , id y i p A .n n 1 n n l1 1 1 1

k m jŽ .Then A , . . . , A generate [ M F as an F-algebra.1 l njs1 j

Ž . Ž .Proof. We only prove b . A similar argument will work for a . Denote
k m jŽ .by S the subalgebra of [ M F generated by A , . . . , A , and by I then 1 ljs1 j

k m jŽ . Ž m kŽ ..identity element of [ M F . We first show that i M F : S. Byn n njs1 j k k

Ž . Ž .Ž .ii , P q Q s id y i p A for some A , 1 F r F l. Therefore the con-n n r r1 1

Ž .nky1struction of P and Q implies that p A y I equalsn rk

0 ??? 0 a0 . . . 0 a m1 k

0 ??? 0 0 0 ??? 0 0, . . . ,. . . . . .. . . . . .. . . . . .� 0
0 ??? 0 0 0 ??? 0 0

s a e , . . . , a e ,Ž .1 1, n m 1, nk k k
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Ž .nky1and p A y I s 0 for 1 - i - k. We now construct a matrix B in Sn ri

Ž . Ž . Ž .nky1such that p B s 0 and p B s p A y I if 1 - i F k. To thisn n n r1 i i

Ž .nk Ž .nkend, note that p A y I s 0 for 1 - i F k. Say, p A y I sn r n ri 1

Ž .a , . . . , a , with a , . . . , a g F. For all i with a / 0 let b be arbitrary1 m 1 m i i1 1

in F, and let b s 0 if a s 0. For s s 1, . . . , m , leti i 1

ay1 b if a / 0,s s sc ss ½ 0 if a s 0.s

Ž . Ž . m1Since p A , . . . , p A generate F , there is a matrix C in S withn 1 n l1 1

Ž . Ž . ŽŽ .nk . Ž . ŽŽp C s c , . . . , c . Then p A y I C s b , . . . , b and p An 1 m n r 1 m n r1 1 1 1 i

.nk . Ž .nkyI C s 0 for 1 - i F k. Since A y I C g S and since b are arbi-r i
k m jŽ .trary in F if a / 0, it follows that if A is any matrix in [ M F withi njs1 j

Ž .nkzeros in the positions where A y I has zeros, then A g S. Thereforer
Ž . n ky 1 Ž . n ky 1i p A y I g S. Consequently, with B [ A y In n r r1 1

Ž .nky1 Ž . Ž . Žyi p A y I , we have B g S, p B s 0, and p B s p A yn n r n n n r1 1 1 i i

.nky1 Ž . Ž .I if 1 - i F k. Hence, p B s 0 if 1 F i - k, and p B sn ni k
Ž .a e , . . . , a e .1 1, n m 1, nk k k

Ž . Ž . m kŽ .By ii and Theorem 2.1 we have p S s M F , and so if a is ann nk k

arbitrary element of F and 1 F u, ¨ F n , then there are matrices D andk 1
Ž . Ž y1 . Ž . Ž .D in S with p D s aa e , 0, . . . , 0 and p D s e , 0, . . . , 0 .2 n 1 1 u, 1 n 2 n , ¨k k k

Ž . Ž . Ž .Hence p D BD s 0 if 1 F i - k and p D BD s ae , 0, . . . , 0 .n 1 2 n 1 2 u, ¨i k

Ž m kŽ .. ŽSince a, u, and ¨ are arbitrary, i M F : S. Now consider A yn n rk k
.nky 1y1I and repeat the above argument to eventually obtain that

m m2 kŽ Ž .. Ž Ž .. Ž .i M F q ??? qi M F : S. Finally, i completes the proof.n n n n2 2 k k

� 4 < <THEOREM 2.3. Let g [ max m , . . . , m and assume that F G g q 1.1 k
Then

1 if n s 1 and thus k s 1 and m s m ) 1,Ž . Ž .k k 1k m jm [ M F sŽ .ž /js1 n j ½ 2 if n ) 1.k

k m jŽ . Ž .Also, if n ) 1, then [ M F can be generated as an F-algebra by an1 njs1 j

idempotent and a nilpotent element.

Proof. Note that if a is an element in F m with distinct non-zero
components, then it follows from the Vandermonde determinant that
a , a 2, . . . , a m are linearly independent over F. For the case n ) 1, usek
Lemma 2.2 and the fact that a single element cannot generate a non-com-

Ž k m jŽ ..mutative algebra, to determine m [ M F . Note that if n ) 1, thenn 1js1 j

P q Q y I is nilpotent and R is idempotent, where P, Q, and R are
Ž .defined as in Lemma 2.2 a . Also, from Lemma 2.2 it follows that P q Q

k m jŽ .y I and R generate [ M F .njs1 j
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Ž .3. GENERATORS FOR M Fr , r , . . . , r1 2 t

Ž Ž ..In the first result we obtain a lower bound for n M F .r , . . . , r1 t

THEOREM 3.1. Let m be the number of 1 = 1 diagonal blocks of1
Ž . Ž .M F , and assume that M F is not an upper triangular or fullr , . . . ,r r , . . . , r1 t 1 t

matrix algebra. Then

3 if m F 8,1
n R GŽ . ½ log m if m ) 8.u v2 1 1

w xProof. By 5 , every algebra generated by two idempotents satisfies the
standard polynomial identity

sgn s x x x x s 0,Ž .Ý s Ž1. s Ž2. s Ž3. s Ž4.
sgS4

of degree 4, where x , x , x , and x are non-commutating indetermi-1 2 3 4
Ž .nates. However, M f does not satisfy the mentioned polynomialr , . . . , r1 t

identity, which can be seen by using e , e , e , and e .1, 1 1, 2 2, 2 2, 3

w x Ž m1.Assume that m G 1. From Theorem 2 in 1 we have that n F G1
u v Ž .log m . Since there is an F-algebra epimorphism from M F onto2 1 r , . . . , r1 tm1 Ž Ž .. � u v4F , n M f G max 3, log m .r , . . . , r 2 11 t

Ž . Ž . nFor A g M F we denote by D A g F the main diagonal of A, andn 1
Ž . ny1 Žby D A g F the superdiagonal diagonal right above the main diago-2

.nal of A. If we do not refer to a specific matrix, then we only write D1
and D , respectively.2

Ž . 2Recall that r q ??? qr s n in M F . Let N be the vector space1 t r , . . . , r1 t

Ž . 2over F generated by e g M F , where i q 2 F j F n; i.e., Ni, j r , . . . , r1 t
Ž .comprises all the matrices in M F with zeros on and below D . Inr , . . . , r 21 t

Ž .the following result we show that if S is a subalgebra of M F and ifr , . . . , r1 t
Ž . 2the natural F-linear map from S to M F rN is onto, then S sr , . . . , r1 t

Ž .M F .r , . . . , r1 t

LEMMA 3.2. Let R be a ring with subring S and let N be a subgroup of
Ž . lR, q such that x s 0 for all x g N, for some fixed positï e integer l. Also

2 2 Ž .assume that N = N , where N is the subgroup of R, q generated by
� < 4xy x, y g N . Then S s R if the natural group homomorphism from S to
RrN 2 is onto.

w xProof. The proof is similar to the proof of Lemma 4 in 1 .

In the following result we specialize Lemma 3.2 to obtain a criterion for
Ž . Ž .a subalgebra of M F to be equal to M F .r , . . . , r r , . . . , r1 t 1 t
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Ž .THEOREM 3.3. Let S be a subalgebra of M F , with t ) 1, suchr , . . . , r1 t
t Ž .that the projection from S to [ M F is onto. If for each integer i, withrjs1 j

1 F i F t y 1, there is a matrix A in S such that the entry in the bottom left
corner of A is non-zero and all the entries in the last row of A and allw i, iq1x w i, i x

Ž .the entries in the first column of A are zero, then S s M F .w iq1, iq1x r , . . . , r1 t

t Ž .Proof. Since the projection from S to [ M F is onto, there is arjs1 j

matrix B in S such that the entry in the bottom right corner of B is 1w i, j x
and all the other entries in all the diagonal blocks of B are 0. From the
assumption on A it is clear that all the diagonal blocks of B2A are zero

Ž 2 .and that the entry in the bottom left corner of B A is the onlyw i, iq1x
Ž 2 . 2non-zero entry in D B A . In particular, B A is strictly upper triangular2

Ž 2 .and D B A has precisely one non-zero entry, viz. in the bottom left2
Ž 2 .corner of B A .w i, iq1x

t Ž .Again, since the projection from S to [ M F is onto, thus it followsrjs1 j

that for any position in any diagonal block or any position on D there is a2
matrix in S with a non-zero entry in that particular position and 0
elsewhere in the diagonal blocks and on D . The desired result now2
follows from the paragraph preceding Lemma 3.2.

Ž .COROLLARY 3.4. Let S be a subalgebra of M F . Assume thatr , . . . , r1 t
t Ž .t ) 1 and that the projection from S to [ M F is onto. Also assumerjs1 j

Ž .that there is a matrix A in S for each integer i with 1 F i F t y 1 such that I
Ž .or II holds:

Ž . Ž .I There is a non-zero entry in position r, s in A , for some rw i, iq1x
and s, and the rth row of A and sth column of A are zero.w i, i x w iq1, iq1x

Ž . Ž .II There is a non-zero entry in position r, 1 of A , for some r. Ifw i, iq1x
this non-zero entry is in the bottom left corner of A , then the first entry isw i, iq1x
the only possible non-zero entry in the first column of A . Otherwise allw iq1, iq1x
entries in the first column of A are equal to zero. In both cases the lastw iq1, iq1x
entry is the only possible non-zero entry in the rth row of A . There is also aw i, i x
matrix B in S such that the entry in the bottom right corner of B or the entryw i, i x
in the top left corner of B is non-zero, but not both are non-zero. Allw iq1, iq1x
other entries in the last row of B and first column of B are zero.w i, i x w iq1, iq1x
The entry on the superdiagonal next to the last row of B is also zero.w i, i x

Ž .Proof. Under the above hypothesis, S s M F . Let 1 F i F t y 1,r , . . . , r1 t

and assume that the ith diagonal block is l = l.
Ž .We first consider case I . There is a matrix C in S with 1 in position

Ž .l, r of C and 0 elsewhere in all the diagonal blocks, and there is aw i, i x
Ž .matrix D in S with 1 in position s, 1 of D and 0 elsewhere in allw iq1, iq1x
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Ž .the diagonal blocks. Then CAD, with A as in I , has the properties of the
matrix A in the formulation of Theorem 3.3

Ž . Ž .Now for case II . If r s l, then BA y AB, with A as in II , has the
properties of the matrix A in Theorem 3.3. If r / l, then with C as in the

Ž .previous paragraph and A as in II , CA has a non-zero entry in the
Ž .bottom left corner of CA , the last entry is the only possiblew i, iq1x

Ž .non-zero entry in the last row of CA and all the entries in the firstw i, i x
Ž .column of cA are 0. Then BCA y CAB has the properties of thew iq1, iq1x

matrix A in Theorem 3.3.

Ž Ž ..In the next result we use Theorem 3.3 to show that n M F s 3r , . . . , r1 t

Ž .if M F has no 1 = 1 diagonal blocks. Since this special case is tech-r , . . . , r1 t

nically a lot less demanding, we consider it separately.
Ž . Ž .Let A g M F with components i and i q 1 of D A equal to ar , . . . , r 11 t

Ž .and c, respectively, and component i of D A equal to b. Then we2
Ž .denote by A the tuple a, b, c .) i

< <THEOREM 3.5. Assume that F G g q 1, where g is a positï e integer
Ž .such that M F has at most g diagonal r = r blocks on the mainr , . . . , r i i1 t

diagonal for 1 F i F t. Also assume that r ) 1 for 1 F i F t. Theni
Ž Ž ..n M F s 3.r , . . . , r1 t

w1x w2x w3x Ž .Proof. We define idempotents U , U , and U of M F andr , . . . , r1 t

Ž . w1x w2x w3xdenote by S the subalgebra of M F generated by U , U , and U .r , . . . , r1 t

¡ w3xR on Ur w j , j xjw3x ~Let U s
w3x¢0 on U if i / j.w i , j x

Recall that P , Q , and R were defined in Section 2. Constructn, a n n

idempotents U w1x and U w2x with the following properties:

Ž . w i x � 4a U s P or Q for some a g F _ 0 , i s 1, 2, and j s 1,w j, j x r , a rj j

2, . . . , t.
Ž . w1x w2xb U q U s P q Q for j s 1, 2, . . . , t.w j, j x w j, j x r , a rj j

Ž .c The a ’s are distinct for diagonal blocks of the same size.
Ž .d If the ith component of the superdiagonal of matrices in

Ž . � w1x w2x4 �Ž . ŽM F is not part of a diagonal block, then U U s 1, 1, 0 , 0,r , . . . , r ) i ) i1 t

.40, 1 .
t Ž .From Lemma 2.2 it follows that the projection from S to [ M F isrjs1 j

Ž w1x w2x .onto. Since all the components of D U q U y I are non-zero, where2
I is the multiplicative identity, we have from Theorem 3.3 that S s

Ž .M F .r , . . . , r1 t
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In the next result we determine the result corresponding to Theorem 2.3
Ž .for M F .r , . . . , r1 t

< <THEOREM 3.6. Assume that F G g q 1, where g is a positï e integer
Ž .such that M F has at most g diagonal r = r blocks if r G 2. Alsor , . . . , r i i i1 t

Ž . m Ž Ž ..assume that M F is not equal to F , m G 1. Then m M F s 2.r , . . . , r r , . . . , r1 t 1 t

Ž .Also, if there are no 1 = 1 diagonal blocks, then M F can ber , . . . , r1 t
Ž .generated as an F-algebra by an idempotent and a nilpotent element.

Proof. This follows from Lemma 2.2, Theorem 2.3, the proof of Theo-
rem 2.3, Theorem 3.3, and the proof of Theorem 3.5.

Now we are in a position to use Corollary 3.4 to prove the main result.

< <THEOREM 3.7. Assume that F G g q 1, where g is a positï e integer
Ž .such that M F has at most g diagonal r = r blocks if r G 2, forr , . . . , r i i i1 t

Ž .1 F i F t. Also assume that M F is not an upper triangular matrixr , . . . , r1 t

algebra or a full matrix algebra. Then

3 if m F 8,1
n M F sŽ .Ž .r , . . . , r1 t ½ log m if m ) 8,u v2 1 1

where m is the number of 1 = 1 diagonal blocks of R.1

Ž .Proof. From Theorem 3.5 we may assume that M F has at leastr , . . . , r1 t

one 1 = 1 diagonal block.
w x Ž Ž .. Ž .Recall from 1 that n U F , where U F is the m = m upperm m

triangular matrix algebra, is given by

log m q 1 if m s 2, 3, 4,u v2
n U F sŽ .Ž .m ½ log m if m G 5.u v2

w x Žm.In 1 it was shown that it is possible to construct idempotents U , . . . ,1
Žm. Ž Žm. Žm. . Ž .U or U , . . . , U if m s 2, 3, 4 in U F in such a wayu log m v 1 u log m vq1 m2 2

that:

Ž . Ž Žm. Ž Žm. . Ž Ž Žm.. Ž Žm. .i D U , . . . , D U or D U , . . . , D U if m1 1 1 u log m v 1 1 1 u log m vq12 2
. ms 2, 3, 4 generate F .

Ž . Žm.ii If m ) 2, then U is a diagonal matrix with 1, 0, 1, 0, . . . on3
the main diagonal.

Ž .iii The ith component, for all i with 1 F i F m y 1, of at least one
Ž Žm.. Ž Žm..of D U or D U is non-zero.2 1 2 2

Now assume that we have idempotents U Žm. with the above stated threei
Ž . Žm.properties. From Corollary 3.4 II we have that the idempotents Ui

Ž .generate U F if m ) 2.m
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Let

3 if m F 8,1
l s ½ log m if m ) 8.u v2 1 1

Ž Ž ..From Theorem 3.1, n M F G l. We now construct idempotentsr , . . . , r1 t
w1x w l x Ž . Ž .V , . . . , V in M F that generate M F . Let TT be ther , . . . , r r , . . . , r1 t 1 t

Ž .nilpotent ideal in M F consisting of all elements with all diagonalr , . . . , r1 t

Ž Ž ..blocks equal to zero thus TT is the Jacobson radical of M F . Thenr , . . . , r1 t

Ž . 2since idempotents in M F rTT can be lifted to idempotents inr , . . . , r1 t
Ž . w i xM F , it is sufficient to construct the elements V so that theirr , . . ., r1 t

Ž . 2images in M F rTT are idempotent.r , . . . , r1 t

Denote by S the subalgebra generated by idempotents V w1x, . . . , V w l x with
the following properties:

Ž .a If m s 1, then the 1 = 1 diagonal block of all the idempotents1
Ž Žm1..are equal to 0. Otherwise, we place D U on the 1 = 1 diagonal blocks1 i

w i x u v Ž u v .of V for 1 F i F log m or log m q 1 if m s 2, 3, 4 , and we place2 1 2 1
Ž . w3x1, 0, 1, 0, 1, . . . on the 1 = 1 diagonal blocks of V even if m s 2.1

Ž . w i x � 4b V s P or Q for some a g F _ 0 if r G 2, i s 1, 2.w j, j x r , a r jj j

Ž . w1x w2xc V q V s P q Q if r G 2, and the a ’s are distinct forw j, j x w j, j x r , a r jj j

diagonal blocks of the same size.
Ž . Ž .d Assume that the ith position on the super diagonal of M Fr , . . . , r1 t

is not part of a diagonal block. Then if this position is next to a 1 = 1
Ž w1x.diagonal block and above a 1 = 1 diagonal block, at least one of D V2

Ž w2x. Ž .or D V is non-zero. If this position on the superdiagonal is next to a2
1 = 1 diagonal block and above a diagonal block of size at least 2 = 2, it is
zero if the 1 = 1 diagonal block to the left of this position is 0 in both V w1x

w2x w1x w2x � w1x w2x4 �Ž . Ž .4and V or 1 in both V and V , otherwise V , V s 1, 1, 0 , 0, 0, 1 .) i ) i
Ž .If this position on the superdiagonal is next to a diagonal block of size at

least 2 = 2 and above a diagonal block of size at least 2 = 2, then
� w1x w2x4 �Ž . Ž .4V , V s 1, 1, 0 , 0, 0, 1 . Finally, if this partition is next to a diagonal) i ) i
block of size at least 2 = 2 and above a 1 = 1 diagonal block, the ith

Ž w1x. Ž w2x.components of D V and D V are both zero.2 2

Ž . w3x w3xe We construct V in the following way. On V we place R ifw j, j x r j

r G 2. Now suppose that the ith position on the superdiagonal is next toj
w3x Ž .the jth diagonal block, r G 2 and r s 1. Then V s 1, 1, 0 orj jq1 ) i

Ž . w3x Ž .1, y1, 1 . In the case where V s 1, y1, 1 , the first row of block) i
Ž .j, j q 1 is equal to 1. Now suppose that the ith position on the super-
diagonal is next to the jth diagonal block, that r s 1, r G 2, and thatj jq1

the jth diagonal block is equal to 0 in both V w1x and V w2x, or equal to 1 in
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w1x w2x w3x Ž . Ž .both V and V . In this situation V s 1, 1, 0 or 0, 1, 0 , and the last) i
Ž . w3x Ž .entry in the block j, j q 1 is equal to 1 if V s 0, 1, 0 . All other entries) i

in V w3x in superdiagonal blocks are zero.

Ž . w i xf The only non-zero entries in V for i G 4 are the 1 = 1 diagonal
blocks.

First note that from Lemma 2.2 it follows that the projection from S to
t Ž .[ M F is onto. To complete the proof, we use Corollary 3.4. Assumerjs1 j

that the ith component of the superdiagonal is not part of a diagonal
block.

Ž .If this position on the superdiagonal is next to a 1 = 1 diagonal block
and above a 1 = 1 diagonal block, we let A s V w1x if the ith component of

Ž w1x. w2x w3x Ž .D V is non-zero, A s V otherwise, and B s V in Corollary 3.4 II .2
Now assume that this position on the superdiagonal is next to a 1 = 1

� w1x w2x4diagonal block and above a block of size at least 2 = 2. If V , V s) i ) i
�Ž . Ž 4 � 4 � w1x w2x4 Ž .1, 1, 0 , 0, 0, 10 , A, B s V , V in Corollary 3.4 II . Next we assume

� w1x w2x4 �Ž . Ž .4that V , V s 1, 0, 1 , 1, 0, 0 . Let m be a positive integer such that) i ) i
Ž w1x w2x.m Ž w1x w2x.m w3x Ž w1x w2x.mV V s 0. In this case A s V V V and B s V Vw jq1, jq1x

Ž . � w1x w2x4 �Ž . Ž .4in Corollary 3.4 II . Finally, if V , V s 0, 0, 1 , 0, 0, 0 , we replace) i ) i
V w1x, V w2x by I y V w1x, I y V w2x in the previous argument.

Ž .If this position on the superdiagonal is next to and above a diagonal
w1x w2x Ž .block of size at least 2 = 2, we let A s V q V y I in Corollary 3.4 I .

Ž .Finally assume that this position on the superdiagonal is next to the
jth diagonal block, that r G 2 and that r s 1. Here we use Corollaryj jq1

Ž . w1x3.4 I . Without loss of generality assume that V s P . First note thatw j, j x r , aj

Ž w1x w2x.m Ž .V V s 0 for m large enough, and that the j q 1, j q 1 th blockw j, j x
Ž w1x w2x.m Ž .of V V are equal to 1 if and only if the j q 1, j q 1 th blocks of

both V w1x and V w2x are equal to 1. Using this observation we might as well
Ž . Ž w1x w2x. iassume that the j q 1, j q 1 th block of V V , for i G 1, is equal to

ep0. Thus by using the matrices V w1xV w2x, V w1xV w2xV w1x, V w1xV w2xV w1xV w2x, . . . ,
we can obtain a matrix C with a 1 in the last position of the first row of

Ž . Ž . Ž . Ž .block j, j and all other entries in blocks j, j , j, j q 1 , j q 1, j q 1
equal to zero. Also, by using the matrices CV w3xV w1x, CV w3xV w1xV w2x,
CV w3xV w1xV w2xV w1x, CV w3xV w1xV w2xV w1xV w2x, . . . , we can obtain matrices with any

Ž .desired first row in block j, j , and all the other entries in blocks
Ž . Ž . Ž .j, j , j, j q 1 , j q 1, j q 1 equal to 0. Denote by D a matrix with the

Ž .first and last entry in the first row of block j, j equal to 1 and all other
Ž . Ž . Ž .entries in blocks j, j , j, j q 1 , j q 1, j q 1 equal to zero. We set A

w3xequal to CV y D.

Ž w x .EXAMPLE 3.8. Also see the example at the end of 1 . In this example
Ž .we construct four idempotent generators for M F ,1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 1, 2, 3, 1, 1, 1
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where F is a field with at least four elements. Let a, b, c be three distinct
non-zero elements in F. Define the idempotents V w1x, V w2x, V w3x, V w4x as

Ž .follows entries not indicated are equal to 0 :
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w4x Ž .On the 1 = 1 diagonal blocks of V we place 1, 1, 1, 1, 1, 1, 1, 1, 0, 0 .
All other components of V w4x are equal to zero.
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