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Let R be a complete blocked triangular matrix algebra over an infinite field F.
Assume that R is not an upper triangular matrix algebra or a full matrix algebra.
We prove that the minimum number » = »(R) such that R can be generated as an
F-algebra by v idempotents, is given by

3 if m, <8,
P(R) =\ liog, my]  if m, > 8,

where m; is the number of 1 X 1 diagonal blocks of R. We also show that R can
be generated as an F-algebra by two elements, and if m, = 0, R can be generated
by an idempotent and a nilpotent element.  © 1999 Academic Press
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1. INTRODUCTION

Denote by M”(F) the direct sum of m copies of the full n X n matrix
algebra over a field F. Krupnik showed in [2] that the minimum number
v(M(F)) of idempotents needed to generate M”'(F) as an F-algebra over
an infinite field F is given by

o) = (3 {2

Also, for each finitely generated Banach algebra A there is a number n,
such that the algebra M, (A4) can be generated by three idempotents
whenever n > n, (see [3]). In [1] it was shown that the minimum number
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IDEMPOTENT GENERATORS 191

v(U,(S)) of idempotents needed to generate the n X n upper triangular
matrix algebra U, (S) as an S-algebra over an arbitrary commutative ring
S, is given by

log,n] +1 ifn=234,
log, n] if n > 5.

o) - |

Consider the subalgebra,

Mrl(F) Mr1><r2(F) Mr1><rt(F)
0 ' " :
M’lyrz ..... r,(F) = : - l - . M;~r71>-<r,(F) ! (1)
0 0 M(F)

of the full matrix algebra M, (F) (= M,,,.,(F)) over a field F, where
ry+r,+ - 4r,=n. Asin [4], we call M, . (F) a complete blocked
triangular matrix algebra. For X € M, , ~, (F) we call the submatrix of
X corresponding to the position of M, ., (F) in (1) the (i, j)th block of X
and denote it by X; ;. If i = (respectivély, i # j), then we call X|; ;; the
ith diagonal (respectively, a non-diagonal) block of X.

In this paper we show that if R is a complete blocked triangular matrix
algebra over an infinite field and if R is not an upper triangular matrix
algebra or a full matrix algebra, then

)|

R 3 if m; <8,
v(R) = [log, m,] if m, > 8,
where m, is the number of 1 X 1 diagonal blocks of R. In fact, this result
holds for any field with at least g + 1 elements, where g is the maximum
number of diagonal blocks of any specific size greater than or equal to 2.

We wish to point out that we cannot in general rearrange the diagonal
blocks in M, , ~,(F) to group together the diagonal blocks of the same
size, since, for example, the complete blocked triangular matrix algebras

Mz,a(F) =

oo oMY
oo oMY
S leS B B e |
S leS B B e |
RS B les
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and

Ma,z(F) =

coMmMmMm
coMmMmMm
coMmMmMm
e el e
SR el e

are not isomorphic. In fact, with .7~ denoting the Jacobson radical, we have
that

0 0 F F F
0 0 F F F
IM,45(F))=10 0 0 0 0
0 0 0 0 O
0 0 0 0 O
and
0 0 0 F F
0 0 0 F F
IM; ,(F))=10 0 0 F F|,
0 0 0 0 O
0 0 0 0 O

and so it is clear that S(M, ;(F)) is a left M, ;(F)-module of rank 3,
whereas 7IM, ,(F)) is a left M, ,(F)-module of rank 2.

For an F-algebra R we denote by w(R) the minimum number of
elements needed to generate R as an F-algebra. Thus if uw(R) = u, then
R is a quotient of the polynomial F-algebra in w non-commuting vari-
ables. In the second section of this paper we determine w(R), where R is a
direct sum of full matrix algebras over a field, and in the final section we
determine w(R) and »(R), for a complete blocked triangular matrix
algebra R.

2. GENERATORS FOR @, M}“(F)

In the remainder of this paper, we denote by F a field that is not
necessarily infinite. In the first result we determine w(M”(F)).
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For n > 2 and « € F\{0} denote by P,
idempotents in M (F),

P, ,=(a—1)e , + Y emrakrt X €1
1<2k—1<n 2<2k<n

Q,, and R, the following

n,a’

1 «
0 O
1

0, = Z €rk,2k T Z €2k,2k+1

2<2k<n 3<2k+1<n
0 O
1 1

= 0 0 ’
0 O 0 O
Rn:=enl+enn_ : : : :
' ' o o - 0 O
10 - 0 1

Here ¢, . denotes the (i, j)th matrix unit, i.e., the matrix with 1 in
position (1 ]) and zeros elsewhere.
For ay,..., «,, in F\{0} we define the following idempotents in M”'(F):

Prv@mi= (P, oo Py ), or=(9,,...,0,) and

R" = (R,,....R)).

THEOREM 2.1. Assume |Fl>m + 1 and n > 1. Then u(M"(F)) = 2.
(Thus the multiplicative identity and two other elements generate M?(F) as an
F-algebra.) More specific, if ay, ..., a,, are distinct non-zero elements of F,
then Pfv%n + Q™ and R generate M (F) as an F-algebra. Also,
M (F) can be generated by an idempotent and a nilpotent element.

Proof. Because M”'(F) is not commutative, M"(F) cannot be gener-
ated by a single element. To show that P v % + Q" and R generate
M(F), simply use the argument in part (3) of Theorem 5 in [2]. Finally, if
we denote by 7 the multiplicative identity of M'(F), then Py + QM
— I is nilpotent. |

Let n; and m; for j = 1,..., k be positive integers with n; <n, <
< ny. In the followmg two results we determine u( €Bk M’"J(F)) First we
establish some notation. We denote by =, : EB" M’”/(F) - M, (F) the
projection map from 69 M’”J(F) onto M’” (F) by ,, the |nject|0n in the
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opposite direction, and by id: ea].’;lm,;jf(F) - EDJ."ZlN/I];”/(F) the identity
map.
LEMMA 2.2. Define g € Z as
max{m,,...,m;} ifn, > 1,
&= max{m,,...,m,} ifk>landn, = 1.
Assume that |F| > g + 1. Let a; € F\{0} for 1 <i < g such that o F oy,
ifi, #i,.
(@) Assume that n, > 1.

Define P,Q, R € GBJ.kle,'Zf(F) as

Pi= (P, PR o),

R=(R,...,R).
Then P + Q and R generate EBjkzl M,’ZJ(F ) as an F-algebra.

(b)  Assume that ny = 1 and k > 2. Denote by 0 the additive identity
of M™(F). Define P,Q, R € eajf‘:anm/(F) as

Pi= (O, P ma, ., P o),
Q= (0,'1'11. ML ,Tk*)
R= (00, R, ..., RI™),
Let A, ..., A, be elements of EBjkzl M,’f’jJ(F) such that:
D) m,(A),...,m,(A) generate M;*(F) (= F™) as an F-algebra;
(i) P+ Q,Re{id—1,mNAp,...,>Gd — ¢, m, (A}
Then Ay, ..., A, generate €Bjk=l MZE!’(F) as an F-algebra.

Proof. We only prove (b). A similar argument will work for (a). Denote
by S the subalgebra of GBJLM,Z’;J(F) generated by A4,,..., A;, and by I the
identity element of @, M"(F). We first show that i, (M;“(F))  S. By
(i), P+ Q = (id — v, m, N(A4,) for some A,, 1 <r < [. Therefore the con-
struction of P and Q implies that m, (A, — )™ equals

0 ... 0 o o - 0 e
o - 0 0 0O - 0 0
0 0 0 0 0 0

= (alel,nk’ et amkel,nk)’
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and m, (A4, — D" * = 0for 1 <i < k. We now construct a matrix B in §

such that 7, (B) =0 and 7,(B) = 7,(A, — D" * if 1 <i <k. To this

end, note that 7,(A4, — )" =0 for 1<i<k. Say, m,(A, —D" =

(ay,...,a,), with a;,...,a, € F.Forall i with a; # 0 let b; be arbitrary
in F,and let b, =0if a; =0. Fors =1,...,m, let

a b, ifa, #0,

“ "o if a, = 0.

Since 7,(A,),...,m,(A,) generate F™, there is a matrix C in S with

m,(C) = (cy,...,¢,,). Then 7z, ((A4, — D)"C) = (by,..., b, ) and 7,((4,
-0"C) =0 for 1 < i <k. Slnce (4, —D™C < S and smce b, are arbi-
trary in F if a;, # 0, it follows that if A is any matrix in ED M’”r(F) with
zeros in the posmons where (A, — I)" has zeros, then A e S. Therefore
v, m (A, — )"~ 1 € §. Consequently, with B = (A4, — )" !

nypny

—, m, (A, — D"t we have B € S, =, (B) =0, and m,(B) = m,(A4, —
Nt if 1<i<k Hence, 7,(B)= 0if 1<i< k, and m,(B) =
(erey v @y eq )

By (ii) and Theorem 2.1 we have m, (S) = M;'*(F), and so if a is an
arbitrary element of F and 1 < u, v < ny, then there are matrices D, and
D, in S with 7, (D)) = (aai‘e, ,,0,...,0)and 7, (D,) = (e, ,,0,...,0).
Hence =, (D, BD )=0if 1<i<k and m, (D, BD 2) = (ae, ,,0,...,0).
Since a, u, and v are arbitrary, ¢, (I\/I]’"k(F)) c S. Now consider (A -

I)™-1"1 and repeat the above argument to eventually obtain that
L (M2CF)) + -+ 4o, (M2(F)) © S. Finally, (i) completes the proof. 1l

THEOREM 2.3. Let g == max{my, ..., m,} and assume that |F| > g + 1.
Then

1 ifn,=1(andthusk = 1) andm, (=m,) > 1,
o mj =
M(®=1M”J (F)) 2 ifn,>1.

Also, if ny, > 1, then EBk M’"/(F ) can be generated (as an F-algebra) by an
idempotent and a nllpotent element.

Proof. Note that if « is an element in F™ with distinct non-zero
components, then it follows from the Vandermonde determinant that
a,a?,..., a™ are linearly independent over F. For the case n, > 1, use
Lemma 2.2 and the fact that a single element cannot generate a non-com-
mutative algebra, to determine u( GBJ,’;IM,'Z/'(F)). Note that if n, > 1, then
P + Q — I is nilpotent and R is idempotent, where P, Q, and R are
defined as in Lemma 2.2(a). Also, from Lemma 2.2 it follows that P + Q
— I and R generate EBJ."ZlMij(F). 1
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3. GENERATORS FOR M F)

[STR YRR rt(

In the first result we obtain a lower bound for »(M,,

(F).

THEOREM 3.1. Let m; be the number of 1 X 1 diagonal blocks of
M (F), and assume that M, .(F) is not an upper triangular or full

matrix 'algebra. Then

R 3 ifm, <8,
v(R) = [log, m,] ifm, > 8.

Proof. By [5], every algebra generated by two idempotents satisfies the
standard polynomial identity

2 sIN(0) X0y %0 @) ¥o @ ¥o@ = 0,

gES,

of degree 4, where x,, x,, x5, and x, are non-commutating indetermi-
nates. However, M, . (f) does not satisfy the mentioned polynomial
identity, which can be seen by using e, ,, e; ,, e, ,, and e, .

Assume that m; > 1. From Theorem 2 in [1] we have that v(F™) >
[log, m,]. Since there is an F-algebra epimorphism from M, (F) onto
Fm,vM, L (f) = max{3,[log, m, 1. |

For A € M, (F) we denote by D,(A4) € F" the main diagonal of A4, and
by D,(A) € F"~! the superdiagonal (diagonal right above the main diago-
nal) of A. If we do not refer to a specific matrix, then we only write D,
and D,, respectively.

Recall that r, + -+ +r,=nin M, (F). Let N* be the vector space
over F generated by e¢;; €M,  (F), where i +2<j<n; ie, N?
comprises all the matrices in M, (F) with zeros on and below D,. In
the following result we show that if S is a subalgebra of M, (F) and if
the natural F-linear map from § to M, (F)/N? is onto, then § =
M (F).

LEMMA 3.2. Let R be a ring with subring S and let N be a subgroup of
(R, +) such that x' = 0 for all x € N, for some fixed positive integer . Also
assume that N D N2, where N? is the subgroup of (R, +) generated by
{xylx,y € N}. Then S = R if the natural group homomorphism from S to
R/N? is onto.

.....

.....

Proof. The proof is similar to the proof of Lemma 4 in [1]. 1

In the following result we specialize Lemma 3.2 to obtain a criterion for
a subalgebra of M, (F)to be equal to M, (F).

..........
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THEOREM 3.3.  Let S be a subalgebra of M, (F), with t > 1, such

......

that the projection from S to @;:1 M,j(F ) is onto. If for each integer i, with
1 <i<t—1, there is a matrix A in S such that the entry in the bottom left
corner ofA[l i+1 is non-zero and all the entries in the last row of Ay; ;; and all
the entries in the first column of Ay, 1 ;.1 are zero, then S =M, (F).

Proof. Since the projection from § to EB’ (F) is onto, there is a

matrix B in § such that the entry in the bottom rlght corner of By; ;;is 1
and all the other entries in all the diagonal blocks of B are 0. From the
assumption on A it is clear that all the diagonal blocks of B?4 are zero
and that the entry in the bottom left corner of (B A)l i+1 1S the only
non-zero entry in DZ(BZA) In particular, B%4 is strlctly upper triangular
and D,(B’A) has precisely one non-zero entry, viz. in the bottom left
corner of (B’A)y, i1 1y

Again, since the projection from § to EB‘ (F) is onto, thus it follows
that for any position in any diagonal block or any position on D, there is a
matrix in S with a non-zero entry in that particular posmon and 0
elsewhere in the diagonal blocks and on D,. The desired result now
follows from the paragraph preceding Lemma 3.2. |

COROLLARY 3.4. Let S be a subalgebra of M, . (F). Assume that

t > 1 and that the projection from § to 69].':1 M,f(F ) is onto. Also assume

that there is a matrix A in S for each integer i with 1 < i <t — 1 such that (1)
or (1) holds:

(1) There is a non-zero entry in position (r,s) in Ay; 1y, for some r
and s, and the rth row ofA[l-'l-] and sth column ofA[i+1,i+1] are zero.

(1)) There is a non-zero entry in position (r,1) of Ay; ;. 1), for somer. If
this non-zero entry is in the bottom left corner of A; ;. 1, then the first entry is
the only possible non-zero entry in the first column of A; 1 ;. 1} Otherwise all
entries in the first column of Ay, ;1 are equal to zero. In both cases the last
entry is the only possible non-zero entry in the rth row of Ay; ;. There is also a
matrix B in S such that the entry in the bottom right corner of By; ;, or the entry
in the top left comner of By, 1 ;. 1, is non-zero, but not both are non-zero. All
other entries in the last row of By; ;; and first column of By, , ;.. are zero.

The entry on the superdiagonal next to the last row of By; ; is also zero.
Proof. Under the above hypothesis, S = M, ~ (F).Letl <i<t—1,
and assume that the ith diagonal block is [ X /.
We first consider case (I). There is a matrix C in S with 1 in position
(I,r) of C;; ; and 0 elsewhere in all the diagonal blocks, and there is a

matrix D in S with 1 in position (s, 1) of D};,, ;. and 0 elsewhere in all
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the diagonal blocks. Then CAD, with A as in (1), has the properties of the
matrix A in the formulation of Theorem 3.3

Now for case (11). If r =1, then BA — AB, with A as in (I1), has the
properties of the matrix A in Theorem 3.3. If r # [/, then with C as in the
previous paragraph and A as in (I1), CA has a non-zero entry in the
bottom left corner of (CA)WH], the last entry is the only possible
non-zero entry in the last row of (CA); ; and all the entries in the first
column of (cA);. 4 41y are 0. Then BCA — CAB has the properties of the
matrix A4 in Theorem 3.3. |

In the next result we use Theorem 3.3 to show that v(M, = ,(F)) =3

if M, . ,(F)hasnol X 1diagonal blocks. Since this special case is tech-

nically a lot less demanding, we consider it separately.
Let A €M,  (F)with components i and i + 1 of D,(A4) equal to a

------

and ¢, respectively, and component i of D,(A) equal to b. Then we
denote by A, ; the tuple (a, b, ¢).

THEOREM 3.5. Assume that |F| > g + 1, where g is a positive integer
such that M, (F) has at most g diagonal r; X r; blocks on the main

diagonal for 1 <i <t. Also assume that r,>1 for 1<i<t. Then
v(M, (F) =3

Proof. We define idempotents U™, U, and U™ of M, (F) and

denote by S the subalgebra of M, ,.(F) generated by U], U®), and U,

------

R, on U
LetyBl =] " o
0 on Uiy if i # .

[ 7]

Recall that P, ,, Q,, and R, were defined in Section 2. Construct
idempotents U™ and U™ with the following properties:

@ Ui, = P, or Q for some a € F\{0}, i=12 and j=1,
2,...,L
2] _ P
b Ui, + U, = P +Q forj=12...t1

(c) The a’s are distinct for diagonal blocks of the same size.

(d) If the ith component of the superdiagonal of matrices in
M ,(F) is not part of a diagonal block, then {U'NU)} = {(1,1,0), (0,

From Lemma 2.2 it follows that the projection from S to 69’ M (F) is
onto. Since all the components of D,(U® + U®?! — T) are non- zero ‘Where
I is the multiplicative identity, we have from Theorem 3.3 that § =
M NOD A |
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In the next result we determine the result corresponding to Theorem 2.3
A(F).

THEOREM 3.6. Assume that |F|> g + 1, where g is a positive integer
such that M, . (F) has at most g diagonal r; X r; blocks if r; > 2. Also
assume that M, (F) is not equalto F™, m > 1. Then u(M,  ,(F)) = 2.

Also, if there are no 1 X1 diagonal blocks, then M, . (F) can be
generated (as an F-algebra) by an idempotent and a nilpotent element.

Proof.  This follows from Lemma 2.2, Theorem 2.3, the proof of Theo-
rem 2.3, Theorem 3.3, and the proof of Theorem 3.5. |

Now we are in a position to use Corollary 3.4 to prove the main result.

THEOREM 3.7. Assume that |F|> g + 1, where g is a positive integer
such that M, . (F) has at most g diagonal r; X r; blocks if r; > 2, for
1<ix<t Also assume that M, (F) is not an upper triangular matrix
algebra or a full matrix algebra. Then

ifm; <8,
V(Mrl ,,,,, r,(F)) = {“092 m,]| ifm, > 8,

where m, is the number of 1 X 1 diagonal blocks of R.

Proof.  From Theorem 3.5 we may assume that M,
one 1 X 1 diagonal block.

Recall from [1] that v»(U,(F)), where U,(F) is the m X m upper
triangular matrix algebra, is given by

,(F) has at least

[log, m]+1 ifm =234,
[log, m] if m > 5.

v(U,(F)) = {
In [1] it was shown that it is possible to construct idempotents U™, ...,
Ulee oy COr U™, U5 1 if m=2,3,4) in U,(F) in such a way

that:

) DyU™, ..., D(Ufs) ) (or DAU™), ..., DAUSed 111 if m
= 2,3,4) generate F".

(i) If m > 2, then U{™ is a diagonal matrix with 1,0,1,0,... on
the main diagonal.

(iii) The ith component, for all i with 1 <i < m — 1, of at least one
of D,(U{) or D,(Us™) is non-zero.

Now assume that we have idempotents U™ with the above stated three
properties. From Corollary 3.4(11) we have that the idempotents U™
generate U, ,(F) if m > 2.
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Let

3 if m, <8,

[log, m,| if my > 8.

From Theorem 3.1, »(M,,
vy v in M
Ty,

..... ,(F)) = . We now construct idempotents
J(F) that generate M, (F). Let 5 be the
nilpotent ideal in M, (F) consisting of all elements with all diagonal
blocks equal to zero (thus 7 is the Jacobson radical of M, .(F)). Then
since idempotents in M, =~ ,r(F)/YZ can be lifted to idempotents in
M, . (F), it is sufficient to construct the elements I'I'l so that their
images in M, ,I(F)/y‘2 are idempotent.

Denote by S the subalgebra generated by idempotents V1, ... I with
the following properties:

(@ If m; =1, then the 1 X 1 diagonal block of all the idempotents
are equal to 0. Otherwise, we place D,(U;"") on the 1 X 1 diagonal blocks
of VIl for 1 <i < [log, m,](or [log, m,] + 1if m = 2,3,4), and we place
(1,0,1,0,1,...) on the 1 X 1 diagonal blocks of V' even if m, = 2.

() V=P, ,orQ, forsome a € F\{0}if r,>2,i=12

© Vi, + Vi = P, .+ Q, if r;>2 and the a’s are distinct for
diagonal blocks of the same size.

(d) Assume that the ith position on the super diagonal of M, . (F)
is not part of a diagonal block. Then if this position is next to a 1 X 1
diagonal block and above a 1 X 1 diagonal block, at least one of D,(V/!)
or D,(IV'?) is non-zero. If this position (on the superdiagonal) is next to a
1 X 1 diagonal block and above a diagonal block of size at least 2 X 2, it is
zero if the 1 X 1 diagonal block to the left of this position is 0 in both /1!
and V% or 1in both VI and V2], otherwise {1}, V) = {(1, 1,0), (0,0, 1)}.
If this position (on the superdiagonal) is next to a diagonal block of size at
least 2 X 2 and above a diagonal block of size at least 2 X 2, then
(VI VY = {(1,1,0),(0,0,1)}. Finally, if this partition is next to a diagonal
block of size at least 2 X 2 and above a 1 X 1 diagonal block, the ith
components of D,(V™M) and D,(V') are both zero.

(e) We construct V1 in the following way. On V[’ we place R, if
r; = 2. Now suppose that the ith position on the superdiagonal is next to
the jth diagonal block, ;> 2 and r;,, =1. Then VEI=(1,1,0) or
(1, -1,1). In the case where VB! = (1, —1,1), the first row of block
(j,j + 1) is equal to 1. Now suppose that the ith position on the super-

diagonal is next to the jth diagonal block, that r; = 1, r;,; > 2, and that
the jth diagonal block is equal to 0 in both V1! and 1%, or equal to 1 in



IDEMPOTENT GENERATORS 201

both V™M and 1?1, In this situation V2 = (1,1,0) or (0, 1,0), and the last
entry in the block (j, j + 1) is equal to 1 if VBl = (0, 1, 0). All other entries
in VB! in superdiagonal blocks are zero.

(f) The only non-zero entries in V') for i > 4 are the 1 X 1 diagonal
blocks.

First note that from Lemma 2.2 it follows that the projection from S to
éBj’zll\/I],j(F) is onto. To complete the proof, we use Corollary 3.4. Assume
that the ith component of the superdiagonal is not part of a diagonal
block.

If this position (on the superdiagonal) is next to a 1 X 1 diagonal block
and above a 1 X 1 diagonal block, we let 4 = V1!l if the ith component of
D,(V™M) is non-zero, 4 = V% otherwise, and B = VB! in Corollary 3.4(11).

Now assume that this position on the superdiagonal is next to a 1 X 1
diagonal block and above a block of size at least 2 x 2. If {VI 12} =
{(1,1,0),(0,0,10}, {4, B} = (V™M 1V} in Corollary 3.4(11). Next we assume
that {5, 12} = {(1,0,1),(1,0,0)}. Let m be a positive integer such that
(VHyEhm oy = 0. Inthiscase 4 = (VH By Bland B = (W HpRl)y»
in Corollary 3.4(11). Finally, if {5, 1V} = {(0,0, 1),(0,0,0)}, we replace
VU @Rl py [ — VA T — VB jn the previous argument.

If this position (on the superdiagonal) is next to and above a diagonal
block of size at least 2 X 2, we let A = VI + 112 — [ in Corollary 3.4(1).

Finally assume that this position (on the superdiagonal) is next to the

Jth diagonal block, that r; > 2 and that r,,; = 1. Here we use Corollary
3.4(1). Without loss of generality assume that Vi), = P, . First note that
(ymy @y =0 for m large enough, and that the (j + 1, j + Dth block
of (V)" are equal to 1 if and only if the (j + 1,j + Dth blocks of
both V11 and 1712 are equal to 1. Using this observation we might as well
assume that the (j + 1, j + Dth block of (WIMIB) for i > 1, is equal to
ep0. Thus by using the matrices VM2 Ryl ey e
we can obtain a matrix C with a 1 in the last position of the first row of
block (j,j) and all other entries in blocks (j, j),(j,j+ 1D,(j +1,j+ 1)
equal to zero. Also, by using the matrices CVEIVIH CyBIpMpE
cyBlytyeytl cyBly eyt | we can obtain matrices with any
desired first row in block (j,j), and all the other entries in blocks
(G, (G, j+ D,(j+1,j+ 1) equal to 0. Denote by D a matrix with the
first and last entry in the first row of block (j, j) equal to 1 and all other
entries in blocks (7, /), (j,j + 1,(j + 1,j + 1) equal to zero. We set A
equal to CVEl — D, |

ExampPLE 3.8. (Also see the example at the end of [1].) In this example

yyyyyyyyyyyyyyy
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where F is a field with at least four elements. Let a, b, ¢ be three distinct
non-zero elements in F. Define the idempotents V1 112 /Bl /141 g
follows (entries not indicated are equal to 0):

1
1
0 0 ©
0 1 1
0 0 o
0
[
1 a
o 0
1 b
0 0
1
1] =
v 1] 1
0 0 0
o 1 1
0o 0 o0
0
1 ¢
0o o
1 ¢ 0
0o 0 o
o 0 1
o1
1
1
01
1
1 a 0
o 0 o
o 0 1
1711
0
o 0 | O
o 1 |1
¢ 0
o 1
1|1
2] -
vi2l o
I b O
0o ¢ o
0 0 1
0
o 0| O
0o 1! 1
0o 0 o
¢ 1 1
o 0 0
1
G|l
L 1
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ol 1 0 1
0O 0 0 |O
0 0 o0 |1
1 0 1 )]0
1
0] 1 1
o 0
T 1
0 0 |1
1 1 1
18] !
viElhi= °
0 0 0 |1 1
0 0 0 |0 O
1 0 1 |1 -1
111
(L)
1 1

~oo
coco
~oo0
Sl moo

On the 1 X 1 diagonal blocks of V™™ we place (1,1,1,1,1,1,1,1,0,0).
All other components of V! are equal to zero.
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