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1. Introduction

It is well-known that the Jacobson radical J(T) of a ring T
carries over to the complete matrix ring ZMn (T) in the simplest
possible way, i.e. J(JMn (T) = M (J(T)). 1In fact, V.A. Andrunakie-
vic [1] proved that for a special radical R determined by a special
class M of rings such that s € M iff M (S) € M whenever s
has an identity, the equality R(ldn (T)) = M (R(T)) holds for every

ring T.

However, for a field F the Jacobson radical of

I

and so the Jacobson radical does not carry over in this way to the

ring of all 2 x 2 lower triangular matrices over F. The main pur-
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pose of this paper is to study special radicals of structural matrix
rings, i.e. subrings of I%I(T) which are rings solely by virtue of
the shape of their matrices. Such a shape can be described by saying
in which positions nonzero elements of the base ring T are allowed,
i.e. by an n x n Boolean matrix B. The maximal left ideals of
these rings (over a ring with 1) were characterized and studied in
[2), where the relevant notation and definitions were introduced.

For the convenience of the reader we provide the necessary background.

Throughout this paper the terms "ring"” and "ideal" will mean "asso-
ciative ring" and "two-sided ideal” respectively. T will be a ge-
neric symbol for a ring, and R for a ring with an identity. Every
n x n Boolean matrix B = [bij] determines and is determined by a
binary relation <, on n := {1,2,...,nl defined by
i <§ j e bij =1, and for a nonempty subset V of T, the set
assoctated with B and V is the set

S@,v) :={c=le; ] €M (V:b, =0~ c;4 = 0}
Then S(B,T) is a ring if <B is transitive, and S(B,R) is a ring
with an identity iff <£ is a quasi-order relation, i.e. reflexive

and transitive. Henceforth <% will be reflexive and transitive,

and then we call S(B,T) a structural matrix ring.

In section 2 we give a characterization of the ideals of S(B,R) in
terms of set-inclusion preserving functions. Although there is a
1 - 1 correspondence between the ideals of R and nﬁl(R) via

A~ l%x(A), no other structural matrix ring enjoys this property
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and is therefore not Morita equivalent to R. We show that if R
has finitely many ideals, then, starting with a quasi-order relation
<B which is not antisymmetric, it is possible to construct a "more
antisymmetric" quasi-order relation <B" differing slightly from

<B' such that S(B',R) has at least twice as many ideals as S(B,R):

no surprise that ]Mn (R) has so "few" ideals.

In section 3 we characterize the prime ideals of S(B,R) and this
leads to the main result of the paper which generalizes Andrunakie-
vic's result to structural matrix rings. Our result states that for
a special radical R determined by a special class M of rings
such that S € M iff ]Mn () € M whenever S has an identity,
R(S(B,T)) is the sum of two ideals, namely $(B,R(T)) and the set
of all matrices with entries from T in the "antisymmetric part" of
B, i.e. the positions (r,s) such that brs =1 and bsr = 0,
and zeroes elsewhere. Obviously the latter ideal, which we call the
antisymmetric radical of S(B,T), is the zero ideal iff <B is
symmetric, and so special radicals carry over to a structural matrix
ring $S(B,T) in the simplest possible way iff <B is an eguivalence

relation.
Notation
The quasi-order relation <B naturally gives rise to an eguivalence

relation ~p on 1 defined by i~Bj iff i<Bj and j<B i.

If there can be no confusion, then we simply write ~ instead of
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The number of equivalence classes of n induced by ~B will

~B'
be denoted by B, and zl,zz,...,zB will be representatives of the
different equivalence classes, which we denote by [zu] B (ox [zu]),
H EB. Let j1 < j2 < ... < j_. denote the different elements of

z i.e. 4 has n elements. We use E,, for the Boolean
L u] ! L u] U ij

matrix with 1 in position (i,j) and zeroes elsewhere.

2. Antisymmetry of B and ideals of S(B,R)

For all u,§ € B such that zu < Z_, we set

B &
%E(B) := {v € B: z, <B z, and z, <B zg}.
If there can be no confusion, then we simply write 1\15. Note that
AUH = {u} for every U € § Furthermore, all the Auf;"s are diffe-
rent.

Let us now consider any set-inclusion preserving function
0: {AIJE: P,E €8 and zl‘1 <B ZE} -+ {A: A is an ideal of R}, i.e.
® 1is such that A\)n < 1\ug implies G(A\m) 59(1\“&). We show that
there is an ideal of S(B,R) associated with such a 8, viz

Ae = {x = [qu] € S(B,R): qu € 9(/\”&) if p~ zu, a-~z and

z <B ZE}:
Lemma 1.1 AB is an ideal of S(B,R).

Proof We denote the ideal e(AUE) of R by Aug for u,g €8

such that z, <B zp. It is obvious that Ae is an additive subgroup
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of S(B,R). Let X = [qu] € Ae and let Y = [ysu] € S(B,R). We
show that C = [cw] := XY is in AO' Let p<B g, with p~ z,
and q ~ zg. Then it is only necessary to prove that cpc1 € %5'
First note that cpq = E xptytq'

p<Bt and t<Bq. Then ) <B z, and z\)<B Zg, because P~z

and let t € [z\)] such that

and q~zg. Hence, if n€Au\), then zu<B zn and zn<B z,.

But <B is transitive, which implies that zn <B zE. This forces

ca,.
pt € Ay S A

Furthermore, l!Ang is an ideal, and so we conclude that

N to be in Aua. Hence, AUVSALIE' and so x

Coq € Aug. This proves that AG is a right ideal of S(B,R). A

similar argument shows that AS is a left ideal of S(B,R). o

A standard argument using the matrix units shows that every ideal of

S(B,R) has this form, and so we get

Proposition 1,2 The set of Ae, for

0: {AHE: u,E €8 and z, <B zg} -+ {A: A is an ideal of R} set-

inclusion preserving, is the set of all the ideals of $S(B,R). ]

Corollary 1.3 Let R have finitely many ideals. Then S(B,R) has

B8

(Z1) ideals iff <B is symmetric, where the sum is taken over the

ideals of R.

Proof If <B is symmetric, then the domain of 0. consists of pre-

cisely B elements, viz ALI = {u} for w=1,2,...,8, and so the

|1
desired result follows. Conversely, if <B is not symmetric, then
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zu <S ZE for some W,f € B with zu ”~ zg, i.e. zE £ z . Let

® be defimed as follows:

In

6 (A =R, if A A
( vn) ’ uE n
0, otherwise.
A direct argument shows that 0 is set-inclusion preserving, and so

it gives rise to an ideal of S(B,R). Now it is easy to see that

S(B,R) has at least (21)6 + 1 ideals. o

Example 1.4 Let F be a field, and let

S(B,F) has five ideals, viz

fo o], 0 0 (see 0 constructed in corollary 1.3), 0 0j,
0 0 R 0 R R

R 0 and R 0

R 0 R Rj.

Corollary 1.3 and example 1.4 suggest that every quasi-order relation,
which is rot antisymmetric, can be changed into a quasi-order rela-
tion, which is "more antisymmetric", such that the latter relation

gives rise to a structural matrix ring with more ideals. In fact,

Proposition 1.5 Let R have finitely many ideals, and suppose <S

is not antisymmetric. There is a quasi-order C such that S(C,R)

has at least twice as many ideals as S(B,R).

Proof As <s is not a partial order relation, there is an equiva-




SPECIAL RADICALS 427

lence class which is not a singleton. We may assume, without loss

of generality, that [zB]B = {jl’jZ""’jnB}’ with n, # 2 and

B

where the sum is taken over

J“B # ZB' If we set C :=B =~ XEjn K’

the k's for which jn <§ k amdB jn # k, then it follows almost
8 B8 '

immediately that C is still a quasi-order. Furthermore, ~_, in-

c

duces B + 1 equivalence classes on n. Let us leave the represen-

tatives zl,zz,...,zB of the equivalence classes induced by ~_  un-

B
changed for ~ and let za be the new representative, with
o :=f + 1. Then z, =3, - The domain of the functions (in pro-
B

position 1.2) yielding the ideals of S(C,R) is the union of the do-
main of the functions yielding the ideals of S(B,R), and the set
H . < .

A {Am(C). 2, <5z and WE Blua, (©
Note that A has at least two elements, namely ABa(C) and Aaa(C)'
However, no element of A is contained in any Avn(B)' since
o ¢ Avn(B)' For every ideal Ae of S(B,R), we now define '
and 06" to be the following extensions of 0:

[ = .
6 (AEa(C)) R for every Aga‘C) € A;

R, if A

6"(A€u(c)) ) €A and & # 0

g
0, if & = a.

It is merely routine to check that 6' and 6" are set-inclusion

preserving, and so for every ideal Ae of S8(B,R) we get the

ideals AG' and Ae“ of S(c,R). o

We conclude this section with some preliminary results for describing

special radicals of structural matrix rings.

et U € g, and let 6 be the set-inclusion preserving function
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mapping Allli onto the zero ideal of R and everything else onto R.
Henceforth we shall Qenote this resulting ideal Ae of S(B,R) by
ISJ(R), or just K . If we define £ : S(B,R) + M (R) by

H- H nu

fu([cqr]) = [dtu] , where d_ = cjtju, 1< tu< n, then I(u is
the kernel of the ring epimorphism f]-l'

B B
Lemma 1.6 Let 0 € VS R. Then S(B,V) + NK = n (SB,v) +K ).
—_— 2 = p=t M H
B B
Proof The inclusion S(B,V) + N K < N (S(B,V) + KU) is obvious.
8 H=1 =1
Therefore, let X = [qu] € N (SB,v) +K), and let v € B. Then
=1 H -

X=Y + C for some Y = [ytu] € S(B,V), C = [crs] € K\). Hence, if

xr,s € [zv] » then c =0, and so X o = Y, € V. This implies

rs
that
B8
H := I z x ,E , € S(B,V),
u=t k,2€lz ] k27Kl A
since 0 € V. Furthermore, X -HE€ N KL\' and so
g M=t
X=H+ (X-H) € §8,v) + NK_. o
p=1 M

Lemma 1.7 Let 0 € VS R, and let U € B. Then

g7 0L V) = SEY) +K .

2, Prime ideals of S(B,R)

Let spec(R) denote the set of prime ideals of R.

Lemna 2.1 Let P € spec(R), and let W € B, Then

S(B,p) +I<u € spec(S(B,R)).
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Proof Let Ae be the ideal of S(B,R) with e(Auu) =P and
B(A\N) =R for every V # M. Then Ae = S(B,P) +K11' Let AlP and
AX be ideals of S(B,R) such that Awa c % , and set

A, c P,

A := w(Auu) and A, := x(Auu) . It is easy to see that A\A, C

and so A; €P or A, SP. This implies that AU)SAQ or AX_C_Ae,

.

and so Ae is prime. o

It will turn out that these are all the prime ideals of S(B,R). We

first need the following results:

Lemma 2.2 Let f > 1, and let u,\)€§ with uw #v, If A is a

proper ideal of R, then y is set-inclusion preserving (i.e. A

1
is an ideal of $8(B,R)) if ¢ is defined as follows:
w(Apc) =0, if u ¢ Apc and Vv € Apc
A, |if uEApcr and veApc
R, if Vv € Apo' a

The following result is a trivial consequence, but we state it as

we are going to use it directly in proposition 2.4:

Corollary 2.3 ILet Y and V be as in lemma 2.2, and let C be a
proper ideal of R. Then AX is an ideal of R if ¥ 1is defined
as follows:
X(Apo) =0, 1if v ¢ Apo and U ¢ Apo
c, if \)EApG and uQApo

R, if p € Apo' . a
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Proposition 2.4 Let ¥ and X be the functions in lemma 2.2 and

corollary 2.3 respectively, and let 6 be a set-inclusion preserving
e = =
function with (Auu) A and G(Avv) C, where z, ’S z, Then

A¢Ax c Ae.

Proof Let p,0 € B, and let zp <B zg. We consider the following

four possibilities:
(1) v € Apo and v € Apc:

We show that every matrix in Awa has O in position (zp,zc). If

z S and z, <% z; for some w € §, then u ¢ pr, otherwise

szw
zp <§ zu and zu <% z <S Z which contradicts the assumption that
ue Apo' Similarly, Vv € pr, and so w(pr) = 0, which shows that
we kept our promise.

(ii) u ¢ Apc and V € ApO:

Note that B(Apc) 2 C, because Avv c Apo. We show that every matrix

in Awa has an element of C in position (zp,zo). If z, <B z,

and zm <% zo for some w € g, then an argument similar to one used
in (i) shows that u & ch, from which it follows that every matrix
in AX has an element of C in position (zw,zc). But C is a
left ideal, and so the desired result follows.

(iii) un € Apo and v ¢ Apc:

In this case G(Apc) 2 A. An argument similar to the one in (ii)
shows that every matrix in Aw has an element of A in position
(zp,zw) if zp <$ z, and z <% zc(w € B), from which it follows
that every matrix in AWAX has an element of A in position

(z as A is a right ideal.

p;zo.) ’
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(iv) u € Apo and Vv € Apo:
Now 1\.1].1'1\\)\) c Apc' and so 9 (Apo,) DA + C. We show that every ma-

trix in A AX has an element of A + C in position (zp,zo) . Let

13
zp<Bzw and zw<Bzo,u)€§. If u€Aw0 and \)€pr, then
g .
z, <B z, and 2, <5 Zur and so z, <B zu But we assumed that

z, %B zu. Hence, V ¢ pr or U € ch. This implies that every ma-
trix in A AX has an element of AR + RCC A + C in position

12

(zp,zc) . : o

Theorem 2.5 The set of S(B,P) +KU' for P € spec(R) and U € B,

is the set of all the prime ideals of S(B,R).

Proof Let P = Ae € spec(S(B,R)) with G(A]Ju) =: A # R for some

MWERB., If B=1, i.e. if B is the universal matrix, then there

is nothing to prove. Therefore, suppose B > 1, and let Vv € 8
such that u # v. Then z, "B zl‘l or zu "B z,. Set 6 (A\)\)) =: C,
and suppose C # R. Let Y and X be the functions in lemma 2.2 and
corpllary 2.3 respectively. Then by proposition 2.4 A‘PAX < Ae or
AXA " c Ae . However, A " ¢ Ae and AX ¢ AS , which contradicts the
fact that Ae is prime, and so C = R. Hence,
P= Ae = $(B,A) + Ku. Furthermore, fu(P) = Mn (3), which implies

U
that Mnu(A) € spec (Mn (R)), since S(B,R)/Ku = Mn (R). Therefore,

H H
A € spec(R). This, together with lemma 2.1, proves the theorem. a
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3. Specials radicals in structural matrix rings

Let M be a special class of rings satisfying the following condi-
tion:

I. If S is a ring with an identity, then S € M iff M (s) € M.
Andrunakievic (see [1] » theorem 12) proved that the equality

R(Mn (T)) = M (R(T)) holds for every special radical R determined
by a special class M of rings satisfying condition I. We shall use
the characterization of the special radical R(R) of R as the in-
tersection of its M-special ideals (i.e. the ideals P of R such
that R/P € M) to generalize Andrunakievic's result to structural

matrix rings.

Proposition 2.6 Let M be a special class of rings satisfying con-

dition I. The set of &(B,P) +KIJ' for P an M-special ideal of

R and U € g, is the set of all the M-special ideals of S(B,R).

Proof Let P be an M—special ideal of R, and let u € _B_ Then
R/P €M, and so M (R)/Mn (p) = M (R/P) € M. Hence, ™M (P)
u H U
is an M-special ideal of ™M (R) . Furthermore,
-1 .
f]_1 (JMn (P)) = S(B,P) +Ku, and so (S(B,P) +KU)/KU is an M-spe-
cial ideal of S(B,R)/Ku. But
(S(B,R)/Ku)/((S(B,P) + KIJ)/KIJ) = S(B,R)/(S(B,P) + K“),
and so S(B,R)/(S(B,P) + Ku) €M, i.e. S(B,P) + Kll is an M-special
ideal of S(B,R). Suppose now that P is an M-special ideal of

S(B,R). Then S(B,R)/P € M, and so S(B,R) /P is a prime ring, i.e.

P € spec(S(B,R)). Hence, by theorem 2.5 P = S(B,P) +Ku for some
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P € spec(R) and | € B. The rest of the proof follows again from the

two iéomorphisms used above. a

Theorem 2.7 Let R be a special radical determined by a special
class M of rings satisfying condition I. Then

B
R(8B,T)) = S(B,R(M) + NK (T)
. u=1 u
for every ring T.

Proof We first suppose that the ring T has an identity. If we set
Nu := N{S(B,P) + Ku (T): P an M-special ideal of T}, u € 8, then
8

iti = . the k 1l of £ is
by proposition 2.6 R(S(B,T)) u21N“ But the kernel o .

Ku which is contained in every S(B,P) + KU (T), u € _B_, and so

B
-1
= N)) =
R(S(B,T)) n fu (f]-l( U))

g1 (n{fu(S(B,P) + Ku (M): P an
n=1 U

g H

| D w

M-special ideal of T})
B
-1
= N £ (M{M_ (P): P an M-special ideal
=1 !

£ _1(]Mn (R(T))). Hence, by lemmas 1.6 and 1.7
B

of T}H =
1 H

u

1 D™

u
R(S(B,T))

n (Se,R(T)) +K (T))
=1 g M
S(B,R(T)) + NK (T).
p=1 ¥
Now suppose that the ring T has no identity. It is well-known that

T may be imbedded into a ring R with identity in such a way that
T is an ideal of R. Since R is a hereditary radical, we have

R(T) =T N R(R),

B B
and so S(B,R(T)) + NK (1) = (S(B,™ N S(B,R(R))) + NK (T). But
8 p=g ¥ p=t M
n Ku () = 8(B,T), which implies that

u=1

B B

SB,R(M) + nK (1) = $(B,T) N (S(B,R(R)) + NK (T)). Further-
p=t ¥ p=1 ¥

more, T=TN (R(R) + T) TN (R(R) + R), and so
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B B
S(B,R(T) + nK (T) = S(B,T) N (S(B,R(R)) + nK (R))
p=t M p=t
= S(B,T) N R(S(B,R)),
since R has an identity. Hence, as S(B,T) is an ideal of S(B,R),
we get S(8,T) + nK (1) = R(S(B,T)). -]
p=t ¥

Example 2.8 The Jacobson radical of

T T T 0
T T T 0
0 0 T O
T T T T
is
Jm J T 0
I I T 0
0 0 J(m) 0
T T T J(T)
B
We call the ideal NK (T) the antisymmetric radical of S(B,T),
u=1 B
since the factor ring S(B,T)/ n.’(u (T) is isomorphic to the structu-
H=1

ral matrix ring S(C,T), C being the largest symmetric Boolean ma-

trix Q satisfying Q < B.

Corollary 2.9 Let R and T be as in theorem 2.7. Then

R(S(8,T)) = S(B,R(T)) iff <B is an equivalence relation.

. B
Proof N K11 (T) 1is the zero ideal iff B is symmetric (unless, of
u=1
course, if T = 0). o

Let I‘n denote the n x n identity matrix. Then it is easy to .
B

see that N KU (T) = 8(B - '._[n,T) iff B 1is antisymmetric, and so the
u=i
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form of the Jacobson radical of the ring of all n x n lower triangu-

lar matrices over T should be no surprise. In fact,

Corgollary 2.10 Let R and T be as in theorem 2.7. Then
R(S(B,T)) = S(B,R(T)) + S(B - In,T) iff <% is a partial order re-

lation. o
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