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Abstract. Let /V be a finite simple centralizer near-ring that is not an ex-

ceptional near-field. A semiendomorphism of N is a map ' from N into

N such that (a + b)' = a' + b', (aba)' = a'b'a1, and 1' = 1 for all

a, b £ TV . It is shown that every semiendomorphism of N is an automor-

phism of N . A Jordan-endomorphism of TV is a map ' from N into N

such that (a + b)1 = a1 + b', (ab + ba)' = a'b' + b'a', and 1' = 1 for all

a, b e N . It is shown that every Jordan-endomorphism of TV is an auto-

morphism assuming 2 e TV is invertible. The above results imply that every

semiendomorphism (Jordan-endomorphism) of a "special" class of semisimple

near-rings is an automorphism. These results are in contrast to the ring sit-

uation where semiendomorphisms tend to be either an automorphism or an

antiautomorphism.

1. Introduction

Let R be a ring with 1 . By a semiendomorphism of R we mean a map

' from R into R such that (a + b)' = a' + b', (aba)' = a'b'a', and 1' = 1
for all a, b in R. Semiendomorphisms of rings arose in connection with a

fundamental theorem in projective geometry [2, pp. 37-40, 79-85]. In [1, 4] it

was proven that every semiendomorphism of a division ring is either an auto-

morphism or an antiautomorphism, and it was proven similarly for a complete

matrix ring over a division ring.

Semiendomorphisms of rings found a new home in the study of Jordan rings.

For if R is a ring with 1, then R can be made into a Jordan ring RJ using a

new multiplication * defined by a*b = ab+ba where a, b are in R. A Jordan

automorphism of RJ is easily seen to be a semiendomorphism of the ring R .

Jordan automorphisms of rings (or more generally Jordan homomorphisms of

rings) have been extensively studied, especially by Herstein [3, Chapter 3].

It is the goal of this work to initiate a study of semiendomorphisms of near-

rings N with 1 that are not rings. So a semiendomorphism of TV is a map

' from N into N such that (a + b)' = a' + V, (aba)' = a'b'a', and 1' = 1
for all a, b in N. Unlike the ring case where a semiendomorphism normally

turns out to be either an automorphism or an antiautomorphism, the lack of

one distributive law in N should prevent a semiendomorphism from being an
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614 K. C. SMITH AND LEON VAN WYK

antiautomorphism of N. This will be seen to be the case for finite simple near-

rings with 1 that are neither rings nor exceptional near-fields. In fact we prove

that every semiendomorphism of such a near-ring is an automorphism.

2. Preliminaries

Let N be a (right) near-ring isomorphic to a near-ring of mappings MA(G),

where G is a finite group and A is a group of automorphisms of G. (Recall

that MA(G) is the set of mappings f: G —> G such that fa = af for every

automorphism a G A and /(0) = 0 where 0 is the identity element of G.

The set MA(G) forms a near-ring under the operations of function addition

and function composition. MA(G) is a "centralizer near-ring" as studied in

[6].) We note that if A is a fixed point free group of automorphisms of G

then MA(G) is simple, and conversely any finite simple near-ring with 1 that

is not a ring is isomorphic to a near-ring MA(G) where A is fixed point free

(see [6] and the references given there). An element e in TV is idempotent if

e is nonzero and e2 — e. If e¡ and e¡ are idempotents in N, let Ny denote

the set e¡Nej = {e¡nej\n is in N} , a subset of N. We recall some elementary

properties of TV (see [10]).

(i) There is a finite number of idempotents ei, ... , e,  in N such that

1 = e\ H-Yet, e¡ej = 0 for all i, j with i / j and e¡ + e¡ = e¡ + e¡
for all i, j.

(ii) For i = 1, ... , í the set (eiNe¡)* = N*¡ = N¡¡\{0} is a group under

multiplication with identity e¡.

(iii) If nhh is in Nhh , ... , nilh is in Niljt with {ji, ... , jt} = {1, ... , t},

then for every /in TV, f(n,di +■■■ + hitjl) = fnUh +■■■ + fnhj, .
(iv)  For every f in N and for every n¡¡ in N¡j , fn¡¡ belongs to Nkj for

some k   (k depends on f and n¡j).

(v) For every n¡j in Ny and for every nkj in Nkj, n¡j + nk¡ belongs to

NSj for some 5   (s depends on n¡¡ and nkj).

(vi) If Nlj ¿ {0} and Njk ¿ {0} , then Nik ¿ {0} .

We note that the set of idempotents {e¡} referred to in (i)-(vi) is unique

and each e¡ is a primitive idempotent (see [10]). Moreover, the centralizer

near-ring tV is simple if and only if N¡j is nonzero for all i, j . In this case

we have the following:

(vii) If N is simple, then for every nonzero n¡j in N¡j there exists an

element m,, in TV},- such that n¡jmji = e¡ and m^n^ = e¡.

3. Semiendomorphisms of finite simple centralizer near-rings

In §§3, 4 we assume that N is a finite simple centralizer near-ring with

associated idempotents e\, ... , et where t >2 .

Let ' be a semiendomorphism of N. So (a + b)' = a' + b', (aba)' — a'b'a',

and 1'= 1 for all a, b in N. If b = 1 then (a2)' = (a\a)' = a'\'a' = (a')2,

and so ' preserves squares of elements.

Lemma 3.1. For each i, e'¡ / 0.

Proof. Suppose e\ — 0. Let j / /, and choose nt] in N,j and Hj¡ in Nj¡

such that tlijriji = e¡ and «/,«,; = e¡ . Then e¡ = (n¡¡ + «7,-)t7,(/i/j + «/,•) and

£/ = ("o + nji)'e'i(nij + ";/)' = Ó- Thus e,' = 0 implies ej = 0 for all j, but
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semiendomorphisms of simple near-rings 615

this is impossible since 0 ^ 1 = 1' = e[ -\-h e't.

Since ' preserves squares, Lemma 3.1 implies that e\ is an idempotent for

every /. In Proposition 3.5 we will show that ' simply permutes the e, 's.

Toward this goal we need some preliminary results.

If / is an element in N, then / = f(ei + ■ ■ ■ + et) = fei + ■■■ + fet.
By (iv) each fe¡ belongs to Nk¡i for some k¡. This means / has the form

/ — nkx i + • • • + nka where nkl¡ belongs to Nk.¡. Moreover this form for

/ is easily seen to be unique. We call nkli, ... , nklt the summands of /.
Henceforth the notation for n,j will mean n¡j is an element of N¡j .

The next lemma describes the form of those elements in N that are idem-

potent.

Lemma 3.2. An element f ^ 0 in N is idempotent if and only if whenever n¡j

is a nonzero summand of f then e¡ is also a summand of f.

Proof. Assume / is idempotent and f = nkx x -\-1- n,; H-1- nki, where «,-_,•

is nonzero. Since / is idempotent, / = f2 = f(nkl i + ■ ■ ■ + n,j■ + ■ ■ ■ + nk¡t) =

fnk¡ i H-h fn¡j H-h fnkit. Using (iv) and the uniqueness of the form for

/, we have ftty — n¡j. Therefore the z'th summand of / must be e¡.

Now assume n¡j, a nonzero summand of /, means e¡ is also a summand

of /. Then fny - n,j. Since this is true for every nonzero summand of /,

ff = f, i.e., / is idempotent.

Since e\ is a nonzero idempotent for all i, Lemma 3.2 implies that e\ has

at least one summand of the form ek . The next lemma says there is exactly

one such summand.

Lemma 3.3. There is a permutation p of {\, ... , t} such that for each i,

e'i = «rtfl + Efc^(i) */*<<>* where nß(')k belongs to Np(i)k .

Proof. Assume ek is a summand of both e\ and e'¡. Then e'^e'^'j / 0, but

e'j^e'j = (eje¡ej)' = 0, a contradiction. So each e\ has exactly one idempotent

summand, and no two have the same idempotent summand. Hence there exists

a permutation p of {I, ... , t} such that e\ = eß{i) + E*^¿) "*<)* ■

Lemma 3.4. If i / j then e\e': == 0.

Proof. If follows from (iii) that e'¡ = (e'¡ + efie'Ael + e'f). Also, e\ + ej is

idempotent since e¡ + e¡ is idempotent. Multiply the above equation on the left

by e\ + e'j, and obtain (e\ + e'f)e'j = e'¡ or e\e'j + e'¡ — e'j. This means e\e'j = 0.

Henceforth, p will be the permutation obtained in Lemma 3.3.

Proposition 3.5. For each i, e\ — ep^ .

Proof. Suppose e\ has nß^k as a nonzero summand where k ^ p(i). Since

k jé p(i), k - p(s) for some s ^ i. By Lemma 3.4, e\e's = 0, and by Lemma

3.3, e's = ^(sj + X^y^.,) mß(s)j ■ This means e\e's ^ 0, since e\e's has the nonzero

summand n^^e^), a contradiction. So nß^k = 0 for all k / p(i). This

means e'¡ = e^¡).

Our next goal is to show that for each i and j, the image of N¡j under '

is either N^i)My) or NM^)ß^). This will be shown in Proposition 3.9.
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616 K. C SMITH AND LEON VAN WYK

Lemma 3.6. If n¡j jí 0 then n\¡ ^ 0.

Proof. First, suppose «„ =¿ 0 and n'u = 0. Since N*¡ is a group under mul-

tiplication, nu has an inverse nj¡1 in tVj; . We have e¡ = n^n^n^1 and

e\ = {nj¡l)'(n'u)2(nj¡1y = 0, which contradicts Lemma 3.1.

Second, let i ^ j , n¡j ^ 0, and suppose n'¡j = 0. Then there exists an «7-,

in Njj such that »*/«/,- = e¡ and rfyftfj - e¡. We have (ny + nj¡)2 = e¡ + e¡,

but then eß(i)+eßU) = fa+ejY = ((nu + nji)')2 = (n^ + n^)2 = (n^)2 = (n?,)' =
0' = 0, which is not true. Therefore n'tj ^ 0.

Lemma 3.6 implies that the map ' is one-to-one on N¡j for all i and j.

We will show in Theorem 3.1 that ' is one-to-one on N.

We note that if /' / / then (n^)2 = 0. The following lemma characterizes

those elements in TV that are nilpotent of index 2.

Lemma 3.7. Let f be an element of N. Then f2 = 0 if and only if f has the
property that if n¡j ^ 0 is a summand of f then nki is not a summand of f

for any nki in N^ , k = I, ... , t.

Proof. Assume / in TV is such that f2 = 0 and / has a summand tiy ^ 0.

If / has a summand of the form nki ^ 0 then f2 has nkin¡j ^ 0 in Nkj as
a summand, contradicting / having index 2.

Conversely assume that if »y / 0 is a summand of /, then nki ^ 0 is not

a summand for any k . Then clearly f2 = 0.

Lemma 3.8. For all i and j, either n\¡ is in Nß^ß^ or n'¡j is in A^y^,-).

Proof. If i = j then n'u = e,'«^,' = eß^n'ueß{i), which means n'u belongs to

Nßd)ß(i) •
If i t¿ /' then n¡j = (e¡ + ej)nu(ei + e¡), and so n'i} = (e¡ + ej)'n'i](ei + e¡)' =

(eß(i) + eß(j))n'ij(eß(>) + eß(j))- since (n',j)2 = °' Lemma 3.7 implies that the

possible nonzero summands of n'¡, are of the form mß^ß^, or mß^)ß^ ; that

is, n'ij — mß(i)ß(j) + mß(j)ß^ . But again since (»y)2 — 0, it follows from Lemma

3.7 that either n'u = mß(l)ßU) is in A/^y) or n'u = mßUMi) is in Nß(j)ß(i).

Proposition 3.9. For all i and j, either N{j = A^/^y) or N¡j = Nß^)ß^ .

Proof. Suppose there exist nonzero «y, m¡j in Ny such that n'tj is in Nß^ß^

and m\j is in Nß^ß^ . We have n¡¡ + m,j is in Nkj for some k by (v). If

k ^ j then (n¡j + m¡j)2 = 0, so (n\j + m'y}2 = 0, which is not true by Lemma

3.7. If k = j then (*y+/»y)2 is in Njj, so (n'¡¡-tm't¡)2 is in A^y^y) . But it

follows from (vi) that (n'y + m'y)2 belongs to Nß^ß^ + A^y^yj and does not

belong to A^y^y) ■ Hence the uniqueness of summands of (n'y + m'y)2 leads

to a contradiction, and so N¡j is a subset of Nß(i)ßy) or a subset of Nßy)ß(i).

But ' is one-to-one on Ny and all the N¡/s have the same (finite) cardinality,

and so the desired result follows.

In Proposition 3.11 we will show that N'y = Nß(i)ßU) for all /' and j.

Lemma 3.10. If N¡j = Nß(i)ßy) for one pair i, j with i / j, then N'uk =

Nß(u)ß(k) for all k,u.

Proof. First suppose that N'j¡ = A^^y), and let 0 ^ ny be in Ay and 0 ^

m¡i be in  Nji.   By Lemma 3.6,  0 ^ n'y  is in  Nß(i)ß(j), and 0 / m'j¡ is in
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semiendomorphisms of simple NEAR-RINGS 617

Nß(i)ßU) ■ Since 0 / («y + f»/¿)»y(«y + m,-,-) belongs to Ay,, by Lemma 3.6,
0 ¿ («;'7 + m'j^n'yin'y + m;/). But «y belongs to Nß(i)ßU) and my, belongs

to  Np(i)p(j)   so  (°y + m'ji)n'ij(n'ij + wy¡) = 0, a contradiction.   This means

Nji = NKJMi) ■

Second, choose any k such that k / i and k ^ j (if such a /c exists). Then

0¿((nki + njk)mij(nki + njk))' = (n'kj + n'jk)m'y(riki + n'jk) where »*,-, nJk and

my are nonzero. Since m'y belongs to Nß^)ßy), j ^ i, and k 9¿ i, we have

n'jkm'y = 0 by Lemma 3.8. So we must have n'kim'y / 0. Since k / I, it

follows from Lemma 3.8 that ra'¿ belongs to A^^,), and so by Proposition

3.9, N'k[ = Nß(k)ß(i) for all k. Fix /c and repeat the above argument, giving

N'uk = NßWß(k) for all u .

Proposition 3.11.  N'y = Nß^ßy) for all i and j.

Proof. Suppose N'y = Nßy)ß^ . Then by Proposition 3.9 and Lemma 3.10, this

is true for all i and j . Choose k ^ j, and select a nonzero nk] in Nkj. We

have e¡ — (e¡ - nkf) + nk¡. By (v), e¡ - nk¡ = mUj is in NUj for some u.

Then e} = mUJ + nkj, and so ë'j = mßU)ß(u) + nßU)ß(k). If u = k then by (v),

f*tßUM») + nßU)ß(k) belongs to NSß(k) for some 5 . But since p(k) / p(j), this

is impossible. If u j= k, then p(u) ^ p(k), and e'j would not be idempotent.

Hence N'y = Nßii)ßU) for all i, j .

Lemma 3.12. If j ¿ k then (ni¡muk + muknu)' = n'ym'ßk + m'ßkn'u for all ny

in Ny and muk in Nuk.

Proof. Using Lemmas 3.10 and 3.11 and distributivity as in (iii), we have

((ny + muk)2)' = (n'y + m'uk)2 = (n'y)2 + n'i}m'uk + m'ukn'u + (m'uk)2. On the

other hand ((nu + muk)2)' = (n2j + nymuk + mukny + m2uk)' = (n'y)2 + (numuk +

mukn¡j)' + (m'uk)2. Comparing the two results gives (ny-muk + mukni¡)' =

n'ijm'uk + Kkn'ij ■

Theorem 3.1. If N is a finite simple centralizer near-ring with 1 = e\ -\-\-et

where t > 2 and if ' is a semiendomorphism of N, then ' is an automorphism

ofN.

Proof. Let i / j, and let nj¡ be in Ay, and «,-,■ be in Nu. It follows from

Lemma 3.12 that («y,«,,)' = («,,«,, + az,,«,,)' = n'ufi'^ + n^n'^ = «y,«,', since

«¡¿«y, = 0 by Proposition 3.11. Since zz,,ra,, belongs to A,, and zzy,zn„ belongs

to Nji for every m¡¡ in Nu, the above argument shows that «y,(«,,m,,)' =

(zzy,w„ra,,)' = (nj,nii)'m'u = n'jin'iim'ii. Hence it follows from (vii) that («,,w,,)'

= n ' m! .u   ¡i

By Lemma 3.12, (ny«,,+/ty/iy)' = «y«y,-r-«y,/Zy. Then e^ny/yi+n/z«/;)'^

= e'i(n'yrijl + rijiriy)^ or (<?¿(Hy«/¿ + njiny)ei)' = e'^'yrí^ . This implies that
(nymji)' = n'ym'ji.

If k t¿ i, then by Lemma 3.12, (zzyWyt)' = (nymjk + my¿«y)' = n'ytn'jk +

m'jkn'y = n'ym'jk since fn'jkn'y = 0 by Proposition 3.11.

We now have (nymuk)' = n'ym'uk for all i, j, k, u and «y in Ny , muk

in Nuk ■

Suppose / belongs to N with /' = 0 . We can uniquely write / = nk¡[-\-h

nkil. Then 0 = /' = »Mfel)Mi) + • • • + nß(ki)ß(t), which means n'k¡i = nß(ki)ß(i) = 0
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for ail i. By Lemma 3.6, nk¡¡ = 0 for all i. Hence ' is one-to-one on N.

Since A^ is finite, ' is onto.

Let /= £,•«*„• and g = T,jmkjj be in N. Then fg = Ey(E«("ftiiwW))
using (iii). But then (fg)' = Ey(Ei(M¡t im'u /)) = f S' ■> and ' is an automor-

phism of N.

4. JORDAN-ENDOMORPHISMS OF FINITE SIMPLE CENTRALIZER NEAR-RINGS

It was shown in [5] that in the ring case the condition

(aba)' = a'b'a'

is equivalent to the condition

(ab + ba)' = a'b' + b'a!

for characteristic different from 2 (and otherwise stronger). This is not true for

near-rings, however, as Example 4.1 shows.

McQuarrie [7] originally divised the following (infinite) distributively gen-

erated (dg) near-ring with identity. Let G2 be the (additive) group on two

generators x and y , and define for every integer zz the mapping Yn : G2 —► G2

by
Yn(h(x,y)) = h(nx, ny),

where h(x, y) is an arbitrary word in G2. Every T„ is an element of the

full near-ring M(G2) of mappings on G2 ; in fact, the r„'s form a semigroup

of monomorphisms of G2. Hence [8, Lemma 9.6], the r„'s are distributive

elements of M(G2). Let A" be the subnear-ring of M(G2) generated by {r„ :

n € Z} where Z is the set of integers, i.e., (A", {r„ : n e Z}) is a dg near-ring.

By [8, Lemma 9.11], (N, +) is generated as a group by {Fn : n e Z}. We use

this near-ring in the following example.

Example 4.1. Define ' from A* into A^ by

/ k \'      k

Ee«.r«.   =Ye»,T-».>
\i=\ J 1=1

where e„, = ± 1 and n¡■ e Z for z = 1, 2, ... , k . We show that ' is well de-

fined. First note that F„(h(-x, -y)) = h(n(-x), n(-y)) = h((-n)x, (-n)y) =

F-„(h(x, y)) for every n e Z and every word h(x, y) in G2. Now suppose

that £/=i £",r", = E'=i em,^m, ■ Then

£«i ' ii| + • • • + £«^I nk ~ £m;t m, — ' ' ' — £ZTZl 1 ni\  — ">

and so

(e„,r„, + • • • + e„kr„k -em,Fmi-emiFmi)(h(-x, -y)) = 0.

Hence, by the above remark,

(e„,r_„, +--- + e„tF-nk -em/r_m,-em¡F-mi)(h(x, y)) = 0,

i.e., J2i=i en,^-n, = Ey=i EmT.mj.  It is now obvious that ' is an endomor-

phism of (n,+). Also, since (r„rmr„)' = F'nm„ = r^.„m„ = r_„r_mr_„ =
r'„r'mr'„ for all m, n € Z, it follows easily that

(fgfY = f'g'f
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for all /, g e N. (r,r, + TiTi)' ¿ F[F\ + I^F, , however, since (Fir, +
r,ri)'(x +y) = (r, + rO'(x + y) = (r_j + r_,)(x + v) = -x - y - x - y and
(Tir, + r,r,)(x + y) = (r, + r,)(x + v) = x + v + x + >>.

Henceforth A" will be a finite simple centralizer near-ring with associated

idempotents ex, e2, ... , et where t > 2, as in §3. Let ' be a Jordan-endomor-

phism of N, and so (a + b)' = a' + b', (ab + ba)' - a'b' + b'a', and 1'= 1. Our
goal in this section is to show in Theorem 4.1 that every Jordan-endomorphism

of N is an automorphism of A^ in the case 2(= 1 + 1) is invertible in N.

To this end we pursue the same path as in §3, although some of the proofs are

completely different. For the ease of the reader we state all the relevant results.

Lemma 4.2. For each i, e\ ^ 0.

Proof. If e'j = 0, then for j ¿ i, n'y = (e¡ny + ny-e,)' = e[n'y + n'ye¡ - 0.

Similarly n'Jt — 0. By (vii) there exist elements zzzy, my, such that e¡ = m¡jmji

and <?y = mj¡my . Then (<?, + e¡)' = e\ + ej = (wyWy, + my/zziy)' = m'ym'ji +

m'j¡m'y = 0. Since e\ = 0, e'j = 0. This being true for every j implies V = 0,

a contradiction. So e,' ^ 0.

Now assume that N has the property that 2a = 2b implies a = b, i.e.,

assume 2 is invertible in N. Note that ' preserves squares, since for every

neN, 2(n2)' = (2n2)' = (nn+nn)' = n'n'+n'n' = 2(n')2, and so (zz2)' = (zz')2 •

The proof of the following lemma is identical to that of Lemma 3.2.

Lemma 4.3. An element f / 0 z'zz A^ is idempotent if and only if whenever n¡j

is a nonzero summand of f, e, is also a summand of f.

Lemma 4.4. There is a permutation p of {1, 2, ... , t} such that for each i,

< = em + Emm«) nf(')k where nPd)k e Nß(i)k.

Proof. Assume ek is a summand of both e\ and e'j where i ^ j. Then

0 = (e¡ej + eje¿)' = e\e'} + eje-. This means 0 = 0^ = (e\e'j + e'je¡)ek =

e-ey>£ + e'je\ek — e\ek + e'jek = ek + ek = 2ek , so ek — 0, which is not true.

Hence each e\ has exactly one idempotent summand, and no two have the same

idempotent summand. This proves the assertion.

Henceforth p will be the permutation obtained in Lemma 4.4. We need the

following lemma to show that ' permutes the f/'s.

Lemma 4.5. If my + nkj = r,y + Sy — 0 with k / /, then my = nkj = 0 or
Zy = Sy = 0 .

Proof. Suppose my ^ 0. Then nkj ^ 0, and there exists zzîy, e Nji with

mjjrñjj - e,. So e, + nkjJnji = 0. If ry / 0 then there exists fy, e Nji such

that Tijfji = e¡, and so e¡ + SyFß = 0. This means nkjTñj¡ = syzy,. Since

k ^ l, nkjfñji = eknkj7ñj, — ekSyfji = 0. This means either nkj = 0 or

tñji = 0, which is impossible. So zy = 0 = Sy .

Proposition 4.6. For each i, eJ' = e/i(().

Proof. From Lemma 4.4, we have e[ = eß(l) + J2k^ß(i) nß(i)k ■ Without loss of

generality we may assume that p is the identity permutation on {1,2,...,;},

and so

e'i =e{ +zz12 + «n + --- + ZZ,,.
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Now assume that t > 2, and let i / 1, 2. We have

e'2 = m2x +e2 + m23 + --- + m2t

and

el = su + si2 + ■ ■ ■ + e¡ + ■ ■ ■ + s¡,.

The equations e[e2 + e'2e[ = 0, e[e'¡ + e'¡e[ = 0, and e'2e¡ + e\e'2 = 0 imply the

following equations:

(1) «12 + «21«12 = 0,

(2) «i,5,2 + 5,1 «12 = 0,

(3) «1,+5,1«1, =0,

(4) Zn2/5/l +5,2^21 =0,

(5) m2i + si2m2i = 0.

If «n ^ 0, then using Lemma 4.5 and the fact that i' ̂  2, it follows from ( 1 )

and (2) that ni2s¡2 = Sn«i2 = 0- Hence s¡\ = 0, because «12 # 0. Therefore
by (3) «1, = 0. Since «12 ̂  0, it follows from (1) that «Z21 # 0, and so by (4)

and the fact that 5,1 = 0, we have 5,2 = 0. Hence by (5) m2i = 0. We now

have

e'i = ei + «12 + «13 H-+ «w + 0 + «y H-h «1,,

e'2 - m2\ + e2 + zn23 H-1- «z2;. + 0 + «i2? -\-h m2t,

e'i — 0 + 0 + 5,3 H-h Sa* + e¡ + s¡¡ H-h Su,

where i* — i- I and i = i + 1. Therefore, since 1 = 1 ' = e\ + e'2 H-he¡, we

have

ex = (e'i + e'2 + ■ • • + e\)ex = e\ex + e'2ex +■■■ + e'tex =ex + m2X,

which is not true because W21 ̂  0. So our assumption that «12 ^ 0 is false,

and hence «12 = 0. A similar argument shows that «y = 0 for all z, j with

r'*J.
Finally, if t = 2, then 1 = 1' = e[+e'2, and so e\ = (e\+e'2)e[ = (e[)2+e'2e'x =

(e2)' + e2e[ = e\ + e'2e\ . Hence e'2e\ = 0. Similarly, e\e'2 = 0. The argument

in the proof of Lemma 3.5 now establishes the desired result.

Lemma 4.7. If n¡j ^ 0 then n'y ^ 0.

Proof. Suppose «„ / 0 but n'u = 0. Then 2e¡ = nnn~¡] + nj¡lnu, and so

2t?,' = 0. Hence e\ = 0, which is not true, and so «„ / 0. Next, let i ^ j,

and suppose «y ^ 0 but n'y = 0. Then there exists «iy, such that zrzy,«y = ej

and «,y«iy, = e¡. So e¡ + e} — ni¡m¡i + «i7,«y, which implies e¡ + e'j =

«y Wy,+ «iy,«y = 0. Then 0 = (e'i+e'j)e'i — e','t,,'+t?yt?¡' = e\, since by Proposition

4.6, e'je'i = 0. But e\ = 0 gives our contradiction. So n'y ^ 0.

The proof of the following lemma is identical to that of Lemma 3.7.

Lemma 4.8. Let f e N. Then f2 = 0 if and only if f has the property that if
n¡j ^ 0 is a summand of f, then nki is not a summand of f for any nki in

N*kl, k=\,2,...,t.

Lemma 4.9. If n G N is such that e,n + ne, = 2« , z«£« « e Nu .
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Proof. Let «yy+Wy^H-rHj,t. Then ne¡ = «¿¿ and e¡n = einjlX+e¡nj22-\-h

e,«y,(. Since «e,+e,« = 2« , we must have «y^+e^wy,i +e,«y22H-r-e¡njtt = 2« .

Equating components gives

:

e/»Az = «;,< + ";,z •

Suppose k ^ i and e¿«fefc ̂  0. Then ^ = i, and there exists ñki such that

njkkñki = ei. So é?,«a* = nÄ* + «yt¿¿ implies etnjkknki = %*% + «y^«/y or
e¡ = e¡ + e¡. This implies e¡■ — 0, which is not true. So if k / i, then nikk = 0.

Finally, «y(, + e,«y,, = «y,, + «y,, implies e,«y,, = «y;,. So either j¡ = i or

«y,, = 0. In either case « = «y(, is in N'u ■

Proposition 4.10. For all i and j, either n'y G Nß(i)ßU) or n'y G NßU)ß^ .

Proof. First, since «,,?, + e,«„ = 2«,,, it follows from Proposition 4.6 that

Kießd) + eß(i)n'a = 2n'ii > and so by Lemma 4.9, n'u G Nß^)ß(i).
Second, let i ^ j, and let k be distinct from i and j. Then 0 =

(nyek + eknu)' = n'yeß(k) + eß{k)n'u. Assume emn'u ¿ 0. Then n'y has a
nonzero summand in Nß(k)S for some 5. Since n'y is nilpotent of index 2,

by Lemma 4.8, n'y cannot have a nonzero summand in NXß^ for any x . So

in particular n'yeß{k) = 0, but then eß(k)n'u = 0. So n'yeß,k) = eß{k)n'u = 0 for

all k ¿ i, j. Also, since «yt-y + fy«y = «y , «y = eß{j)n'y + n'yeßU). Since

n'y ^ 0, either eßy)n'y ^ 0 or n'y-eßy) / 0. Since (n'y)2 = 0, then, as above, if

n'ijeß(j) Ve 0 then eßy)ny = 0 and if ^yjWy ^ 0 then n'ye^j) - 0. Similarly, if

eß(i)n\j ¥" 0 then n'yeß{i) - 0, and conversely. Since eß(k)n'y = n'yeß^k) — 0 for

every k / i, j, then the nonzero summands of n'y are of the form nß(i)ß(j) or

ißUMO ■ If eßU)n'y = 0 then nßU)ß{i) = 0 and n'y e Nß{l)ßU). If n'yeßU) = 0,

then nßU)ßU) = 0 and n'y G NßU)ßU).

The proof of the following proposition is identical to that of Proposition 3.9.

Proposition 4.11. For all i and j, either N'y = NM^My¡ or N'y = Nßy)ß^).

Lemma 4.12. If N'y = A^y^yj for one pair i, j with i ^ j, then N'uk =

Nß(u)ß(k) for all u,k.

Proof. Suppose n'y G A^í/Míl and Wy, G Nß^)ßU) with «y and «iy, being

nonzero. We have «yzwy, ^ 0 and my,«y ^ 0. So 0 =¿ («yw7, + z«y,«y)' =

n'ijm'ji + m'jjn'jj = 0, since «y«?y, = 0 and «ty,«y = 0, a contradiction.  So

m'jie NiiO)m and N'ji * *tew •
Next choose k such that k ^ i, k ^ j (if such a k exists). Then 0 ^

(nkimy + mynkl)' = n'kjm'u + ra^n'¿ . Since m'y G Nß{i)ßU), n'ki G Nß{kMi) U

Nßd)ß(k), and zc ^ »,'/, «^ G Nß(k)ß(l) (because m'tJn'ki = 0). Hence by

Proposition 4.11, N'k¡ = A/i(/t)/i(,). Fix zc, and repeat the above argument,

giving N'uk = Nß(u)ß(k) for all zz.
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The proofs of Proposition 4.13 and Theorem 4.1 are identical to those of

Proposition 3.11 and Theorem 3.1 respectively.

Proposition 4.13.  N'y = Nß{i)ßy) for all i and j.

Theorem 4.1. Let N be a finite simple centralizer near-ring with 1 = ex + e2 +

• • • + et where t > 2. If 2 G N is invertible, then every Jordan-endomorphism

of N is an automorphism of N.

5. Semiendomorphisms and Jordan-endomorphisms

of finite Dickson near-fields

It is the goal of this section to prove that if A^ is a finite Dickson near-field,

then every semiendomorphism and every Jordan-endomorphism (characteristic

of N not 2 in the Jordan case) is an automorphism. The reader is referred to

the book by Pilz [9, pp. 254-258] for background on Dickson near-fields.
We begin by establishing a result about finite fields that will be needed later

in this section.

Lemma 5.1. Let K = GF(p') be the finite field of order p' where p is a prime.

Let n be a positive integer less than t, and let w be a generator of the multi-

plicative cyclic group K*. Then K is the smallest extension field of the prime

field F = GF(p) that contains w" , that is, K = F(w").

Proof. Let L be a proper subfield of K. Then L = GF(pu) where zz is a

proper divisor of t. So t — uv with v > 1 . It suffices to show that w" does

not belong to L.
If w" belongs to L, then 1 = (wn)p"~x = w"<J'"~l'>. Since the order of w

in K* is p' - 1, this order must divide n(pu - 1). We have p\'■— 1 = puv - 1 =

(pu - l)((pu)v~l + ■ ■ ■ +pu + 1). This means that (p")"_1 + • • ■ + PU + l divides

«.

If u> l,then pu + l >2" + l > 2zz, and so (pu)v~l+ ---+pu + l > (v-2)u +

2u = vu = t > n , which is not possible. If u = 1 , then (pu)v~l H-\-pu + 1 >

v = t > n , again not possible.

This shows that w" does not belong to any proper subfield of K, and hence
K = F(wn) as desired.

Now we set some of the concepts and notation for the rest of this section.

Let (q, n) be a Dickson pair of positive integers. This means

(a) q — pl for some prime p ,

(b) each prime divisor of « divides q - 1,

(c) if q = 3 (mod «) then 4 does not divide « .

Recall [9, pp. 254-258] that for a Dickson pair (q, «), a finite near-field
A^ having q" elements and center F = GF(q) may be constructed from the

field K = GF(q") as follows. Let it; be a generator of the multiplicative cyclic

group K*, and let H — (wn), the cyclic subgroup of A^* generated by w" .

The cosets of H in K* turn out to be

wH, w i-' H, ... , w i-' H = H,

a cyclic group of order «. For z = 1, ... , « let H¡ = wí-q'~l^t-q^l)H (so

Hx = wH and H„ = H). Associate the automorphism a —> aq'  of K with

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



semiendomorphisms of simple near-rings 623

Hi. Let (N, +) be the group (K, +), and define multiplication o on N in

terms of that in K,

aob = aq'b   if be H¡,

aob = 0   ifb = 0.

Using addition and multiplication as defined above, N(+, o) forms a near-

field. Finite near-fields formed in this way are called Dickson near-fields. With

seven exceptions, all having order p2 for some prime p, all finite near-fields

are Dickson near-fields.

The next four lemmas will be used to show that if ' is a semiendomorphism

or a Jordan-endomorphism of A" and (q, n) ^ (3, 2), then ' must preserve

the set //„=//, that is, H' = H.

Lemma 5.2. Let i and n be relatively prime positive integers. Then the polyno-

mial f(x) = (x' - l)/(x - 1) divides the polynomial g(x) = (xin - l)/(x" - 1)

in C[x], C the field of complex numbers.

Proof. Let a be a root of f(x). Then a / 1 , and a is an z'th root of unity.

The complex number a" is also an z'th root of unity. Since (z, «) = 1 , a" ^ 1 .

This means a is also a root of g(x). Since every root of f(x) is also a root

of g(x) and f(x) has no repeated roots, f(x) divides g(x).

Lemma 5.3. Let g. c. d.{i, «} = d. The order of (wnyc'"'~l)^<1'~l'> in N* divides
qd - 1.

Proof. We have

qin - 1       / q'n - 1  \ fqinld - \\

q'-\  ~ \qinld - 1 / V  <?' - 1   J

( qin - 1  \ /<?"- 1\ /(qdn/dy/d _ ,x     / /(qd)i/d_l\

~ \ql»/d-l) \qd-\) V    qd»'d-l    )/\    qd - 1    )'

Since g.c.d.{j, §} = 1 , Lemma 5.2 implies ^ l_~x divides ^ ànJd_\x . But

q'nld _ i divides qin _ i, and wq"-x = 1, and so («;»)(«'"-!)/(«'-») raised to

the power qd - 1 gives 1 .

Lemma 5.4. // d divides n with d ^ « and (q, n) ^ (3, 2) úa Dickson pair,

then n2(qd - I) < q" - 1.

Pz-oo/. Since (<?"- \)/(qd- 1) = ^""d + ^'I"2i/H-h^¿ + 1 , it is enough to show

that q"~d + q"~2d H-h qd + 1 > «2 . The conditions on the pair (q , n) imply

that q > 3 and « > 2. Let / be the function defined by /(«) = 3"/2 + 1 - «2.
Elementary calculus shows that / is an increasing function on [7, oo). Since

/(8) > 0, f(n) > 0 for all « > 8. Since d divides « and d / «, J < «/2,
and so qn~d + qn~2d + • • • + 1 > qn~d + 1 > q'i + 1 > 3? + 1 > «2 if « > 8 .

We now consider the cases « = 2,3,... ,7. If « = 2,4,5,6,7, then the
conditions on (q, n) imply that q > 5. Using the function g(n) = 5"/2 + l-«2

and an argument similar to the above shows that 5"/2 + 1 > «2 if « > 2 . Hence
qn-d + qn-2d + . . . + I   > qn-d + j  > qn/2 + j  > 5«/2 + j  > „2     If  „ = 3   then

^ > 4, and the previous argument is valid if q > 5 . If q = 4 and « = 3, then

d = 1 , and direct verification gives the result.
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Lemma 5.5. Let (q, n) be a Dickson pair different from (3,2), and let N be

a corresponding near-field of order qn . If v is an element of H¡ with H¡ ^ H
then the order of v in the group N* is less than (qn - \)/n .

Proof. Since v e Hi with //, ^ H, v = ■»;(«'->)/(<?-1)y;«' for SOme integer r

where i < n . Letting v°" denote the product of v   «-times in N*, we have

von = Iw «-1 Wnr I = W i-' (w"r) «'-'  .

By Lemma 5.3, the order of v°" divides qd - 1 where d = g.c.d.{z, «}.

Hence the order of v in N* divides n(qd - 1), which is less than (q" - \)/n

by Lemma 5.4.

Let ' be a group endomorphism of (A', +) that also preserves powers of

elements in A^ ; that is,

(a + b)'= a' + b',        (a01)' = (a')°<

for all a, b e N and all integers t. (We note that such a map ' includes

semiendomorphisms of N and Jordan endomorphisms of A" assuming the

characteristic of N is not 2.) Using t = 0 we get 1' = 1 or 1' = 0. If 1' = 0

then ' is the zero map. We assume henceforth that 1' = 1 . If a ^ 0 is in A'

then some power of a is 1 , which means a' ^ 0. This shows ' is one-to-one.

Lemma 5.6. Let N be a Dickson near-field of order q" with center GF(q),

where q = p1 for some prime p and (q, n) ^ (3, 2). Then there are at most

In group endomorphisms of (N, +) that preserve powers of elements in N.

Proof. Let w be the generator of K*, K — GF(q"), used in the construction

of N. The order of w" in N* is (qn-\)/n. If' is a nonzero power preserving

map on N then ' is one-to-one, and so (wn)' has order (qn - \)/n in N*

because ' preserves orders of elements in N* . By Lemma 5.5, if v $. H = (wn)

then the order of v is less than (qn - \)/n . This means (wn)' belongs to H

since H is the unique cyclic subgroup of Af* of order (q" - \)/n. Since

(w")' e H, we must have //' = //, i.e., H is invariant under the map '.

By Lemma 5.1, K = F(wn) where F = GF(p). Since w" belongs to H, for

every m e N we have mow" — mw" , so as an element of N, w" multiplies

as it does in K . In particular, powers of w" in N are identical to those in K .

Since K = F(w"), every element in K is a polynomial in w" with coefficients

from the prime field F ; that is, each element in K has the form

(6) cr-x(wny-{ + cr-2(wny-2 + • ■ • + cxwn + co,

where r - In and each c, G F. Since ' preserves powers, we have ((w")k)' —

((w")')k for all k. If c e F then cw" can be viewed as repeated addition,

and since ' preserves addition, (cwn)' = c(w")'. We now see that the image

of (6) under ' is

cr-x(v)r-i + cr-2(v)r~2 + • • • + CXV + Co ,

where v = (wn)' and v belongs to H. So ' is completely determined on N

once (wn)' is known. Since (wn)' = v belongs to H, v must be a root of the

minimal polynomial for w" in F[x]. Since the dimension of K over F is

In and K = F(w"), there are at most In possibilities for (wn)'.
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Corollary. If ' is a semiautomorphism (Jordan-automorphism) of the near-field

N of order q", ' is an automorphism of the field K = GF(q").

Proof. Every semiautomorphism (Jordan-automorphism) of the near-field A^

is a power preserving map. By Lemma 5.6, power preserving maps of A^ are

automorphisms of K.

Lemma 5.7. // ' is a semiautomorphism (Jordan-automorphism) of the near-field

N then ' preserves H¡ for every i.

Proof. By Corollary, we know that ' is an automorphism of the associated field
If

K, so ' has the form a' = aP for some k > 0. Now assume that ' is a

semiautomorphism of N. We have

(wn o w o wny = (wnowwny = (wnqwwny = (wnqwwn)pk = (wnq)p\wpk+npk).

Also,
(tu")' o w' o (W")' = Wnpk o Wpk o Wnpk = Wnpk o Wpk+"pk .

Since ' is a semiautomorphism,

W""" o Wpk+npk = (wnpk)qWpk+npk ,

k k k
which means wp +np belongs to wH = Hx, and so wp = w' belongs to

wH = Hi . This means ' preserves H{ . Since ' is an automorphism of K, '

preserves each H¡.

Now assume ' is a Jordan-automorphism of N. Then

(w"ow + wowny = (wnqw + ww")pk =(wnq)pkwpk + wpk (w")pk

and
(wny o w' + w' o (wny = wnpk o Wp" + wpk (W")"" .

This means wnp o wp = (wnp )qwp , and so w" belongs to w H = Hi . As

above, ' preserves each H¡.

Lemma 5.8. Let N be a near-field corresponding to the Dickson pair (q, n)

where (q, n) ^ (3,2). The automorphisms of N are precisely those automor-

phisms of the associated field K that preserve the Hfs.

Proof. By Zassenhaus [11] every automorphism of N is an automorphism of

K, but not conversely. If a is an automorphism of N then in particular a is

a semiautomorphism of N. By Lemma 5.7, a preserves each //,.

It remains to show that if a is an automorphism of K that preserves each

set Hi then a is an automorphism of A^. Let r G //, and m eH¡. Then

r o m = rq' m .

k
Let a(a) = aP . Then we have

a(r o m) = a(rqJ m) = (rqlm)p

and

a(r) o a(m) = a(r)qla(m)    (since o(m) G Hj)

= (rpk)q'mpk =o(r°m).

This shows a e A\xi(N).
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Theorem 5.1. Let (q, n) be a Dickson pair, and let N be a Dickson near-field

of order q" . If ' is a semiendomorphism (Jordan-endomorphism) of N then '

is an automorphism of N.

Proof. Assume (q, n) jt (3, 2). By the corollary to Lemma 5.6, ' is an auto-

morphism of the associated field K. By Lemma 5.7, ' preserves H¡ for every

i. By Lemma 5.8, ' is an automorphism of A^.

If (q, n) — (3, 2) then A^ has six automorphisms (see Zassenhaus [11]). If

' is a semiautomorphism (Jordan-automorphism) of A~ then ' preserves 0,1,

and 2 . Hence there are six possibilities for (w2)', each giving an automorphism

of N.

6. Semiendomorphisms and Jordan-endomorphisms

of special finite semisimple near-rings

Let A" be a finite semisimple near-ring with 1 . Then A" is a direct sum

of simple near-rings Nx, ... , Ns. We call A" a special semisimple near-ring if

each A, is a finite simple centralizer near-ring and not a near-field. (So each

N¡ is a simple near-ring of the type discussed in §§2-4 above.)

Since N = Nx ® ■ ■ ■ ® Ns and A" is special, N has primitive idempotents

ex, ... , et such that 1 = ex + ■■■ + e, and they satisfy properties (i)-(vi) of

§2 (see [6]). Moreover A^ semisimple is equivalent to the property that Ny is

nonzero iff Ay, is nonzero. So property (vii) is replaced by the following.

(vii)' If A^ is special semisimple and Ny ^ {0} then for every nonzero

«y in Ny there exists an element «zy, in Ay, such that «yz«y, = e, and

mnny = e'j.
Now let ' be either a semiendomorphism or a Jordan-endomorphism of the

special semisimple near-ring N. Since A' is special, for each index i there

exists at least one index j, j / z such that both Ny and Ay, are nonzero.

This and the fact that properties (i)-(vi), (vii)' are satisfied ensures that the

lemmas and propositions of §§3 and 4 are true when A" is special semisimple.

(If ' is a Jordan-endomorphism we assume 2 G A' is invertible.) Thus we have

Theorem 6.1 whose proof is identical to that of Theorem 3.1.

Theorem 6.1. Let N be a special finite semisimple near-ring. If is a semiendo-

morphism of N then ' is an automorphism of N. If is a Jordan-endomorphism

of N and 2 e N is invertible then ' is an automorphism of N.

We remark that if A^ is a finite semisimple near-ring that is not simple or

special then Theorem 6.1 is not true. Let N = Nx ® ■ ■ ■ ® Ns where Ai is

a simple ring that is not commutative and N2, ... , Ns are simple centralizer

near-rings as in §§3 and 4. Let ax be an antiautomorphism of Ai , and for

i = 2, ... , s let a, be an automorphism of Ar,. Then a = ax + a2 + • • • +

as is a semiendomorphism (or a Jordan-endomorphism) of N that is not an

automorphism of A^.
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