ON IDEALS OF TRIANGULAR MATRIX RINGS

Johan Meyer ${ }^{1}$, Jenő Szigeti ${ }^{2}$ and Leon van Wyk ${ }^{3}$
[Communicated by Mária B. Szendrei]
${ }^{1}$ Department of Mathematics and Applied Mathematics, University of the Free State PO Box 339, Bloemfontein, 9300 South Africa
E-mail: MeyerJH.sci@ufs.ac.za
${ }^{2}$ Institute of Mathematics, University of Miskolc
Miskolc, H-3515 Hungary
E-mail: jeno.szigeti@uni-miskolc.hu
${ }^{3}$ Department of Mathematical Sciences, Stellenbosch University P/Bag X1, Matieland 7602, Stellenbosch, South Africa
E-mail: lvw@sun.ac.za
(Received May 11, 2009; Accepted May 28, 2009)

Abstract

We provide a formula for the number of ideals of complete blocktriangular matrix rings over any ring R such that the lattice of ideals of R is isomorphic to a finite product of finite chains, as well as for the number of ideals of (not necessarily complete) block-triangular matrix rings over any such ring R with three blocks on the diagonal.

1. Introduction

It is well known that if R is a ring with identity, then there is a one-to-one correspondence between the (two-sided) ideals of R and those of $M_{m}(R)$, the full $m \times m$ matrix ring over R.

If we rather focus on the class of structural matrix rings, or incidence rings, which has been studied extensively (see, for example, [1], [2] and [6]), then the situation becomes more involved. There are in general a lot more ideals in a structural matrix ring over any ring R than in the base ring R. It is known that every structural matrix ring is isomorphic to a block-triangular matrix ring (see [2]).

The purpose of this paper is to give a formula for the number of ideals of complete block-triangular matrix rings over any ring R if the lattice of ideals of R is isomorphic to a finite product of finite chains, for example, if $R=\mathbb{Z}_{n}$, the

Mathematics subject classification number: 16S50.
Key words and phrases: triangular matrix ring, structural matrix ring, Catalan number.
ring of integers modulo n, as well as for the number of ideals of (not necessarily complete) block-triangular matrix rings over any such ring R with three blocks on the diagonal.

We recall the definition of a structural matrix ring and the description of its ideals in [6]. Let m be a natural number, and let θ be a reflexive and transitive binary relation on the set $\underline{m}=\{1,2, \ldots, m\}$. The subring

$$
M_{m}(\theta, R)=\left\{\left[a_{i, j}\right] \in M_{m}(R) \mid a_{i, j}=0 \text { if }(i, j) \notin \theta\right\}
$$

of $M_{m}(R)$ is called a structural matrix ring, and the ideals of $M_{m}(\theta, R)$ can be obtained as follows: For $i, j \in \underline{m}$ consider the (possibly empty) interval

$$
[i, j]_{\theta}=\{k \in \underline{m} \mid(i, k),(k, j) \in \theta\}
$$

and the set $I(\theta, m)=\left\{[i, j]_{\theta} \mid i, j \in \underline{m}\right\}$ of all such intervals. If $(\mathcal{I}(R), \subseteq)$ denotes the lattice of ideals of R, and

$$
f:(I(\theta, m), \subseteq) \longrightarrow(\mathcal{I}(R), \subseteq)
$$

is order preserving, then the set

$$
M_{m}(\theta, R, f)=\left\{\left[a_{i, j}\right] \in M_{m}(\theta, R) \mid a_{i, j} \in f\left([i, j]_{\theta}\right)\right\}
$$

is an ideal of $M_{m}(\theta, R)$. In fact, every ideal of $M_{m}(\theta, R)$ is of the form $M_{m}(\theta, R, f)$ for a unique f; in other words, there is a bijection between the considered order preserving maps f and the ideals of $M_{m}(\theta, R)$.

Note that if $\theta=\underline{m} \times \underline{m}$, then $M_{m}(\theta, R)=M_{m}(R)$ and $[i, j]_{\theta}=\underline{m}$ for all $i, j \in \underline{m}$, from which it follows that $I(\theta, m)$ is a singleton, and so in this case we obtain the mentioned familiar one-to-one correspondence between the ideals of R and $M_{m}(R)$.

Also, if $\theta=\{(i, j) \mid 1 \leq i \leq j \leq m\}$, then

$$
[i, j]_{\theta}=\{k \in \underline{m} \mid i \leq k \leq j\}
$$

is either empty or the ordinary interval $[i, j]$. Hence $M_{m}(\theta, R)$ is the $m \times m$ upper triangular matrix ring $U_{m}(R)$ over R, and so a typical ideal of $U_{m}(R)$ is given by

$$
I=\left[\begin{array}{ccccc}
A_{1,1} & A_{1,2} & A_{1,3} & \cdots & A_{1, m} \tag{1}\\
0 & A_{2,2} & A_{2,3} & \cdots & A_{2, m} \\
0 & 0 & A_{3,3} & \cdots & A_{3, m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_{m, m}
\end{array}\right]
$$

where $A_{i, j} \triangleleft R, A_{i, j} \subseteq A_{i, j+1}$ for all $i=1,2, \ldots, m-1$ and $j=i, i+1, \ldots, m-1$, and $A_{i+1, j} \subseteq A_{i, j}$ for all $j=2,3, \ldots, m$ and $i=1,2, \ldots, j-1$. Note that the notation in (1) suggests that the ideal I consists of all matrices $\left[x_{i, j}\right]$, where $x_{i, j} \in A_{i, j}$ if $i \leq j$, and $x_{i, j}=0$ otherwise.

We recall the description of a complete block-triangular matrix ring. Let $b_{1}, b_{2}, \ldots, b_{m}$ be positive integers summing to b, say. Then every $b \times b$ matrix $X=\left(x_{i, j}\right)$ can be viewed as a matrix of m^{2} rectangular blocks $X_{k, l}, 1 \leq k, l \leq m$, with

$$
X_{k, l}=\left(x_{b_{1}+\cdots+b_{k-1}+i, b_{1}+\cdots+b_{l-1}+j}\right)_{1 \leq i \leq b_{k}, 1 \leq j \leq b_{l}} .
$$

We call $X_{1,1}, \ldots, X_{m, m}$ the m blocks of X on the diagonal. The subring T of $M_{b}(R)$ comprising all the matrices X with $X_{k, l}=(0)_{b_{k} \times b_{l}}$ if $k>l$ is the $\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ complete (upper) block-triangular matrix ring over R (with m blocks on the diagonal). According to the general description of the ideals of a structural matrix ring, in each "block" of an ideal of the complete block-triangular matrix ring we must have only one ideal of the base ring and so these "blocks" are collapsed to a single entry of the corresponding ideal of the "underlying" triangular matrix ring. It follows that the ideal structure of T is precisely the same as that of $U_{m}(R)$, irrespective of the values of the b_{i} 's.

If, moreover, $X_{k, l}=(0)_{b_{k} \times b_{l}}$ for at least one pair (k, l) for which $k<l$, then we merely have a $\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ (upper) block-triangular matrix ring over R (with m blocks on the diagonal), which is not a complete block-triangular matrix ring.

A formula for the number of ideals of $U_{m}(F)$ for arbitrary m, and F a field, has been determined by Shapiro in [4], and we state it here for the sake of reference:

Proposition 1.1. $U_{m}(F)$ has C_{m+1} ideals, where $C_{l}=\frac{1}{l+1}\binom{2 l}{l}$ is the l-th Catalan number.

For example, $C_{3}=5$, and the five ideals of $U_{2}(F)$ are as follows:

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & F \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
F & F \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & F \\
0 & F
\end{array}\right] \text { and }\left[\begin{array}{cc}
F & F \\
0 & F
\end{array}\right]
$$

2. The number of ideals

If (P, \leq) is a poset and $\left(Q_{i}, \leq_{i}\right), 1 \leq i \leq k$, are chains, then an order preserving function

$$
f: P \longrightarrow Q_{1} \times Q_{2} \times \cdots \times Q_{k}
$$

is uniquely determined by the order preserving compositions $\pi_{i} \circ f: P \longrightarrow Q_{i}$, where

$$
\pi_{i}: Q_{1} \times Q_{2} \times \cdots \times Q_{k} \longrightarrow Q_{i}, 1 \leq i \leq k
$$

are the natural projections. Hence the number of order preserving functions from P to the product $Q_{1} \times Q_{2} \times \cdots \times Q_{k}$ is $q_{1} q_{2} \cdots q_{k}$, where q_{i} denotes the number of order preserving functions from P to Q_{i}. Thus, in order to determine the number of ideals of a structural matrix ring over a ring R such that the lattice of ideals of R is isomorphic to a finite product of finite chains, it suffices to restrict our consideration to the case of a uniserial (or a chain) ring R, i.e. $(\mathcal{I}(R), \subseteq)$ is a chain

$$
\{0\}=I_{0} \subset I_{1} \subset \cdots \subset I_{n}=R
$$

Then, according to the description given in Section 1, all ideals of $U_{m}(R)$ are of the form

$$
M_{m}(\theta, R, f)=\left[\begin{array}{ccccc}
f([1,1]) & f([1,2]) & f([1,3]) & \cdots & f([1, m]) \\
0 & f([2,2]) & f([2,3]) & \cdots & f([2, m]) \\
0 & 0 & f([3,3]) & \cdots & f([3, m]) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & f([m, m])
\end{array}\right]
$$

where $f([i, j]) \in\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$ and f is order preserving, i.e. $f([i, j]) \subseteq f\left(\left[i^{\prime}, j^{\prime}\right]\right)$ if $[i, j] \subseteq\left[i^{\prime}, j^{\prime}\right]$.

Therefore, the number $\lambda(m, n)$ of ideals of $U_{m}(R)$ is precisely the number of plane partitions of the 'staircase shape' $\delta_{m+1}=(m, m-1, \ldots, 1)$, allowing 0 as a part and with largest part at most n. [Following the notation used in [5], a plane partition is an array $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ of nonnegative integers such that π has finite support (i.e., at most finitely many nonzero entries) and is weakly decreasing in both rows and columns. A part of a plane partition $\pi=\left(\pi_{i j}\right)_{i, j \geq 1}$ is a positive entry $\pi_{i j}>0$, but in some cases, such as ours, 0 is allowed as a part. The shape of π is the ordinary partition $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{r}\right)$ for which π has γ_{i} nonzero parts in the i-th row, $1 \leq i \leq r$. So, for the 'staircase shape' $\delta_{m+1}=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right)$ we have $\gamma_{i}=m+1-i, 1 \leq i \leq m$.]

By [3] and [5],

$$
\lambda(m, n)=\prod_{1 \leq i<j \leq m+1} \frac{2 n+i+j-1}{i+j-1}
$$

Note that if $n=1$ (which is the case when R is a field), then it can be shown that

$$
\lambda(m, 1)=C_{m+1}
$$

This agrees with Proposition 1.1.
Combining the foregoing arguments, we obtain our main result:

Theorem 2.1. Let $m, b_{1}, \ldots, b_{m} \geq 1$, and let R be a ring such that the lattice of ideals of R is isomorphic to the product $Q_{1} \times Q_{2} \times \cdots \times Q_{k}$ of chains, where Q_{i} has $n_{i}+1$ elements for every i. The number of ideals of every $\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ complete block-triangular matrix ring over R is given by

$$
\lambda\left(m, n_{1}\right) \cdot \lambda\left(m, n_{2}\right) \cdots \lambda\left(m, n_{k}\right)=\prod_{t=1}^{k}\left(\prod_{1 \leq i<j \leq m+1} \frac{2 n_{t}+i+j-1}{i+j-1}\right)
$$

Example 2.2. The number of ideals of every $\left(b_{1}, b_{2}, b_{3}\right)$ complete blocktriangular matrix ring over \mathbb{Z}_{4}, for example $U_{3}\left(\mathbb{Z}_{4}\right)$, is

$$
\lambda(3,2)=\prod_{1 \leq i<j \leq 4} \frac{4+i+j-1}{i+j-1}=84,
$$

while the number of ideals is

$$
\lambda(3,1) \cdot \lambda(3,1)=196
$$

in case the base ring is \mathbb{Z}_{6}.

3. Block-triangular matrix rings with three blocks on the diagonal

In this section we are particularly interested in the number of ideals of the structural matrix rings

$$
S_{1}=\left[\begin{array}{ccc}
R & 0 & R \\
0 & R & R \\
0 & 0 & R
\end{array}\right] \quad \text { and } S_{2}=\left[\begin{array}{ccc}
R & R & R \\
0 & R & 0 \\
0 & 0 & R
\end{array}\right]
$$

with R as in Theorem 2.1; equivalently, as discussed in Section 2, the number of ideals of the block-triangular matrix rings

$$
\left[\begin{array}{ccc}
M_{b_{1} \times b_{1}}(R) & (0)_{b_{1} \times b_{2}} & M_{b_{1} \times b_{3}}(R) \\
(0)_{b_{2} \times b_{1}} & M_{b_{2} \times b_{2}}(R) & M_{b_{2} \times b_{3}}(R) \\
(0)_{b_{3} \times b_{1}} & (0)_{b_{3} \times b_{2}} & M_{b_{3} \times b_{3}}(R)
\end{array}\right]
$$

and

$$
\left[\begin{array}{ccc}
M_{b_{1} \times b_{1}}(R) & M_{b_{1} \times b_{2}}(R) & M_{b_{1} \times b_{3}}(R) \\
(0)_{b_{2} \times b_{1}} & M_{b_{2} \times b_{2}}(R) & (0)_{b_{2} \times b_{3}} \\
(0)_{b_{3} \times b_{1}} & (0)_{b_{3} \times b_{2}} & M_{b_{3} \times b_{3}}(R)
\end{array}\right],
$$

over R, with b_{1}, b_{2}, b_{3} any positive integers.

Remark 3.1. Some 3×3 structural matrix rings are direct sums of blocktriangular matrix rings for which we have already determined the number of ideals. For example, the block-triangular matrix ring

$$
\left[\begin{array}{ccc}
R & 0 & R \\
0 & R & 0 \\
0 & 0 & R
\end{array}\right]
$$

is the direct sum of R and $U_{2}(R)$, and the lattices of ideals of the complete blocktriangular matrix rings

$$
S_{3}=\left[\begin{array}{lll}
R & R & R \\
R & R & R \\
0 & 0 & R
\end{array}\right] \quad \text { and } S_{4}=\left[\begin{array}{ccc}
R & R & R \\
0 & R & R \\
0 & R & R
\end{array}\right]
$$

are isomorphic to that of $U_{2}(R)$. (Note, however, that S_{3} and S_{4} are not isomorphic as rings. See [2].) We conclude from [2] that, up to isomorphism, the rings S_{1} and S_{2} are the only 3×3 structural matrix rings for which we have not yet determined the number of ideals.

By Section 1, every ideal of S_{1} (respectively S_{2}) is of the form $M_{3}\left(\theta_{1}, R, f_{1}\right)$ (respectively $M_{3}\left(\theta_{2}, R, f_{2}\right)$), where θ_{1} and θ_{2} are the appropriate relations and f_{1} and f_{2} are the appropriate order preserving functions. If R is a uniserial ring with a chain $\{0\}=I_{0} \subset I_{1} \subset \cdots \subset I_{n}=R$ of ideals as in Section 2, then a typical ideal of S_{1} is given by

$$
\left[\begin{array}{ccc}
A_{1,1} & 0 & A_{1,3} \\
0 & A_{2,2} & A_{2,3} \\
0 & 0 & A_{3,3}
\end{array}\right],
$$

where each $A_{i, j}=I_{r}$ can be identified with r. Thus an ideal of S_{1} can be visualized as a matrix

$$
\left[\begin{array}{lll}
a & 0 & b \\
0 & c & d \\
0 & 0 & e
\end{array}\right],
$$

where $a, b, c, d, e \in\{0,1, \ldots, n\}$, and $a \leq b, c \leq d, e \leq d$ and $e \leq b$. A formula for the number of such matrices can be obtained as the following nested sequence of summations:

$$
\sum_{a=0}^{n} \sum_{b=a}^{n} \sum_{c=0}^{n} \sum_{d=c}^{n} \sum_{e=0}^{\min (b, d)} 1,
$$

which simplifies to

$$
\xi(n)=\frac{1}{30}(n+1)(n+2)(2 n+3)\left(2 n^{2}+6 n+5\right) .
$$

As in Theorem 2.1, the number of ideals of S_{1} is the product $\xi\left(n_{1}\right) \cdot \xi\left(n_{2}\right) \cdots \xi\left(n_{k}\right)$, where the lattice of ideals of R is isomorphic to $Q_{1} \times Q_{2} \times \cdots \times Q_{k}$, with Q_{i} a chain of $n_{i}+1$ elements.

Although S_{1} and S_{2} are not isomorphic as rings, it is straightforward to see that there is an anti-isomorphism between the rings S_{2}^{*} (obtained from S_{2} by replacing each R by $R^{o p}$) and S_{1}. Since R and $R^{o p}$ have the same lattice of ideals, the same is true for S_{1} and S_{2}, and so the number of ideals of S_{2} is the same as the number of ideals of S_{1} (using the same base ring R).

Example 3.2. If $R=\mathbb{Z}_{4}$ (respectively \mathbb{Z}_{6}), then we get that the number of ideals of S_{1} is $\xi(2)=70$ (respectively $\xi(1) \cdot \xi(1)=169$). Naturally, one expects these numbers to be somewhat less than the values obtained in Example 2.2 for the full triangular case.

Acknowledgements. The second author was supported by OTKA of Hungary No. K61007. The first and third authors were supported by the National Research Foundation of South Africa under Grant No. UID 61857. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the National Research Foundation does not accept any liability in regard thereto. All three authors wish to thank P. N. Ánh and L. Márki for fruitful consultations - and the referee for helpful suggestions.

References

[1] G. Abrams, J. Haefner and A. del Rio, The isomorphism problem for incidence rings, Pacific J. Math., 187 (1999), 201-214.
[2] S. Dăscălescu and L. van Wyk, Do isomorphic structural matrix rings have isomorphic graphs?, Proc. Amer. Math. Soc., 124 (1996), 1385-1391.
[3] R. A. Proctor, New Symmetric Plane Partition Identities from Invariant Theory Work of De Concini and Procesi, European J. Combin., 11 (1990), 289-300.
[4] L. W. Shapiro, Upper Triangular Rings, Ideals, and Catalan Numbers, Amer. Math. Monthly, 82 (1975), 634-637.
[5] R. P. Stanley, Enumerative Combinatorics, Vol 2, Cambridge University Press, 1999.
[6] L. van Wyk, Special Radicals in Structural Matrix Rings, Comm. Algebra, 16 (1988), 421-435.

