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Lie solvability in matrix algebras

Leon van Wyka and Michał Ziembowskib

aDepartment of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa; bFaculty of
Mathematics and Information Science, Technical University of Warsaw, Warsaw, Poland

ABSTRACT

If an algebra A satisfies the polynomial identity

[x1, y1][x2, y2] · · · [x2m , y2m ] = 0

(for short, A is D2m ), then A is trivially Lie solvable of indexm + 1 (for
short, A is Lsm+1). We prove that the converse holds for subalgebras
of the upper triangularmatrix algebraUn(R), R any commutative ring,
and n ≥ 1. We also prove that if a ring S is D2 (respectively, Ls2),
then the subring U�

m(S) of Um(S) comprising the upper triangular
m×mmatriceswith constantmaindiagonal, is D2�log2 m� (respectively,
Ls�log2 m�+1) for all m ≥ 2. We also study two related questions,
namely whether, for a field F , an Ls2 subalgebra ofMn(F), for some n,

with (F-)dimension larger than the maximum dimension 2 +
⌊
3n2
8

⌋
of a D2 subalgebra of Mn(F), exists, and whether a D2 subalgebra
of Un(F) with (the mentioned) maximum dimension, other than the
typical D2 subalgebras of Un(F) with maximum dimension, which
were described byDomokos and refined by vanWyk and Ziembowski,
exists. Partial results with regard to these two questions are obtained.
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1. Notation

Throughout this paper, R denotes a (not necessarily commutative) ring with identity 1, F
denotes a field, and

[
x, y

] = xy−yx denotes the additive commutator of elements x, y ∈ R.
For n ≥ 1 we use Mn(R) for the full matrix ring of all n × n matrices over R, Un(R)

for the subring ofMn(R) comprising all the upper triangular matrices, and U�
n(R) for the

subring of Un(R) consisting of all the matrices in Un(R) with constant main diagonal, i.e.
A1,1 = · · · = An,n for every A ∈ U�

n(R), where Xi,j (or (X)i,j in case of possible confusion)
denotes the entry of a matrix X inMn(R) in position (i, j). The customary notation In (or
simply I in case of no ambiguity) for the n × n identity matrix, and ei,j for the (i, j)-th
matrix unit, i.e. the matrix with 1 in position (i, j) and zeroes elsewhere, will be used.

If R is commutative, then Mn(R) is an R-algebra, and the mentioned subrings are R-
subalgebras.
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2. Introduction

Define inductively the Lie central and Lie derived series of a ring R as follows:

C0(R) := R, Cq+1(R) := [
Cq(R),R

]
(central series), (1)

and
D0(R) := R, Dq+1(R) := [

Dq(R),Dq(R)
]

(derived series). (2)

We say that R is Lie nilpotent (respectively, Lie solvable) of index q (for short, R is Lnq;
respectively, R is Lsq) if Cq(R) = 0 (respectively, Dq(R) = 0). It is evident from (1) and
(2) that R is Lnq or Lsq if and only if R satisfies the corresponding (polynomial) identity
(PI), and that if R is Lnq, then R is Lsq, or, for short, Lnq ⇒ Lsq; in particular,

Ln2 ⇒ Ls2. (3)

The PI [
x1, y1

] [
x2, y2

] · · · [xq, yq] = 0 (4)

features prominently in numerous papers, e.g. [1–4]. Mal’tsev proved in [1] that all the
polynomial identities of Uq(F) are consequences of only one identity, namely the identity
in (4). For an explicit form of a finite set of generators of an ideal of identities of the algebra
U�
q (R) over a commutative integral domain R, see [5].
If a ring R satisfies the identity in (4) for some q ≥ 1, then we say that R is Dq. (We

opted for the letter ‘D’ (in ‘Dq’), since this identity was studied extensively by Domokos in
[3].)

Note that if a ring R is Lnq (respectively, Lsq or Dq) for some q, then R is Lnq′
(respectively, Lsq′ or Dq′) for all q′ such that q′ > q.

It follows trivially that
D2m ⇒ Lsm+1; (5)

in particular,
D2 ⇒ Ls2. (6)

Although, in general, Ls2 �⇒ D2, it was shown in [6, Theorem 4] that the implication
Ls2 ⇒ D2 does hold for any block triangular structural matrix subalgebra of Mn(R), R
any commutative ring. Moreover (see [6, Corollary 6]), this implication also holds for
any R-subalgebra of Un(R), R any commutative ring, with structural Jacobson radical. In
Section 3 we will prove in Theorem 4 that, for all m, n ≥ 1, every Lsm+1 structural matrix
subalgebra of Un(R) is D2m . (See (5) in this regard.) In order to prove Theorem 4, we
invoke the notion of the (s, t)-reduction of a (triangular) matrix.

In the light of (3) and (6), the R-subalgebra U�
3
(
U�
3 (R)

)
of U�

9 (R), R any commutative
ring, was exhibited in [4, Corollary 2] as an example of a matrix algebra which is Ls2,
but neither D2 nor Ln2. This example has given rise to the directions of study pursued in
Section 4.

To wit, apart from the mentioned example illustrating that, in general, Ls2 �⇒ Ln2, it
was noted in [6] that the D2 (and hence Ls2) algebra A = U�

4 (F) (with dimension 7) is an
example of a subalgebra of Mn(F) with dimension larger than the maximum dimension
1 +

⌊
n2
3

⌋
(which, for n = 4, is equal to 6) of an Ln2 subalgebra of Mn(F). In this vein,
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also considering the fact that, in general, Ls2 �⇒ D2, one notes that, if R above is a field F,
then the dimension of the mentioned algebra in [4], namely the subalgebra U�

3
(
U�
3 (F)

)
of

U�
9 (F), is 16, while themaximumdimension of aD2 subalgebra ofM9(F) is 2+

⌊
3·92
8

⌋
= 32

(see [2,3,6]).
These observations have led to the following analogous question (see [6, Problem 17])

in connection with the Ls2 identity and the maximum dimension of a D2 subalgebra of
Mn(F):
Question 1: For a field F, does an Ls2 F-subalgebra of Mn(F) (for some n) with dimension
larger than the maximum dimension 2 +

⌊
3n2
8

⌋
of a D2 F-subalgebra of Mn(F) exist?

A (possible) negative answer to the above question, in conjunction with a description of
‘typical’ such Ls2 subalgebrasMn(F), could perhaps pave the way to finding a sharp upper
bound for the dimension of an Ls2 subalgebra ofMn(F).

It seems that a solution to Question 1 above will be facilitated by an answer to the
question ofwhether aD2 F-subalgebra ofUn(F), for somen, with thementionedmaximum
dimension, which is not a typical D2 subalgebra (the type mentioned in [3] and refined in
[6]; see also Section 4 in this regard) of Un(F) with maximum dimension, exists.

Partial results (see Theorems 15 and 16) with regard to these two questions are obtained
in Section 4. In this section, we also prove the converse of [4, Theorem 2.1], which was an
important tool in [4] in obtaining a matrix algebra which is Ls2, but neither D2 nor Ln2,
and we prove that if a ring S is D2 (respectively, Ls2), thenU�

m(S) is D2�log2 m� (respectively,
Ls�log2 m�+1) for allm ≥ 2.

3. Lsm+1 structural matrix subalgebras of Un(R) are D2m

In this section, we will consider structural R-subalgebras ofMn(R), R a commutative ring,
and R-subalgebras ofMn(R) such that their Jacobson radicals are ‘structural’. The class of
structural matrix rings or incidence rings has been studied extensively. See for example,
[7–12].

A structural matrix ring over a (not necessarily commutative) ring R is a subring of full
thematrix ringMn(R) consisting of all matrices having zero in certain prescribed positions
and any elements of R in all the other positions. To be more precise, for a reflexive and
transitive binary relation θ on the set {1, 2, . . . , n}, the structural matrix subringMn(θ ,R)

ofMn(R) is defined as follows:

Mn(θ ,R) = {A ∈ Mn(R) | Ai,j = 0 if (i, j) /∈ θ}.

Note that if, for any ordered pair (i, j), there is a matrix A in a structural matrix ring
Mn(θ ,R) such that Ai,j �= 0, then Rei,j ⊆ Mn(θ ,R), i.e.

πi,j
(
Mn(θ ,R)

) �= {0} ⇒ Rei,j ⊆ Mn(θ ,R). (7)

(Here πi,j is the natural projection onto the (i, j)-entry, and Rei,j is the set comprising all
the matrices with any element of R in position (i, j), and zeroes elsewhere.)

It can be shown (see [7, p.1386] or [10, p.5604]) that, for some k, there are positive
integers n1, . . . , nk such that n1+· · ·+nk = n andMn(θ ,R) is (isomorphic to) a block(ed)



triangular matrix ring

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mn1(R) Mn1×n2(X(1,2)) · · · Mn1×nk(X(1,k))

0 Mn2(R)
. . .

...

...
. . .

. . . Mnk−1×nk(X(k−1,k))

0 · · · 0 Mnk(R)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where X(i,j) = {0} or X(i,j) = R for all i, j with 1 ≤ i < j ≤ k. (See also [8].) By, e.g. [12,
Theorem 2.7],

J
(
Mn(θ ,R)

) ∼=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mn1
(
J(R)

)
Mn1×n2(X(1,2)) · · · Mn1×nk(X(1,k))

0 Mn2
(
J(R)

) . . .
...

...
. . .

. . . Mnk−1×nk(X(k−1,k))

0 · · · 0 Mnk
(
J(R)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

implying that the quotient ring Mn(θ ,R)/J
(
Mn(θ ,R)

)
is (isomorphic to) a direct sum of

full matrix rings:

Mn(θ ,R)/J
(
Mn(θ ,R)

) ∼= Mn1
(
R/J(R)

) ⊕ · · · ⊕ Mnk
(
R/J(R)

)
. (9)

At this point we note that complete block triangular matrix rings Mn(θ , F) over a
field F (that is the case when X(i,j) = F for all i, j with 1 ≤ i < j ≤ k in the block
triangular matrix ringMn(θ ,R) above) feature prominently in [13], where it is proved that
Id
(
Mn(θ , F)

) = Id
(
Mn1(F)

) · · · Id(Mnk(F)
)
. Here, Id(A) denotes the set of all polynomial

identities ofA (for an algebraA), which is a two-sided ideal of the free (associative) algebra
F〈X〉 of polynomials in the non-commuting indeterminates x ∈ X (for a set X).

In order to prove in Theorem 4 that, for all m, n ≥ 1, every Lsm+1 structural matrix
subring of Un(R), R a commutative ring, is D2m (see (5) in this regard), we invoke the
notion of the (s, t)-reduction of a (triangular) matrix:

Let

A =

⎛
⎜⎜⎜⎜⎝

A1,1 A1,2 · · · A1,n

0 A2,2
. . .

...
...

. . .
. . . An−1,n

0 · · · 0 An,n

⎞
⎟⎟⎟⎟⎠ ∈ Un(R),
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and let s, t ∈ {1, . . . , n}, with s < t. We define the (s, t)-reduction of A as the following
n × nmatrix:

reds,tA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s
↓

t
↓

s→ As,s · · · As,t

. . .
...

t→ At,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Lemma 2: If A,B ∈ Un(R) are such that [A,B]s,t �= 0 for some s and t such that s < t,
then

(1) [reds,tA, reds,tB]s,t = [A,B]s,t �= 0,
(2) [reds,tA, reds,tB]w,t = [A,B]w,t for any w > s,
(3) [reds,tA, reds,tB]p,t = 0 for any p < s,
(4) [reds,tA, reds,tB]s,q = 0 for any q > t.

Also, if P = [reds,tA, reds,tB], then, keeping in mind that Ps,t �= 0,

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s
↓

t
↓

s→ 0 Ps,s+1 · · · Ps,t

. . .
. . .

...

. . . Pt−1,t

t→ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

Proof: By assumption we have

[A,B]s,t = (AB)s,t − (BA)s,t =
n∑

i=1

As,iBi,t −
n∑

i=1

Bs,iAi,t �= 0,

and so the fact that A,B ∈ Un(F) implies that

t∑
i=s

As,iBi,t −
t∑

i=s

Bs,iAi,t �= 0.

LINEAR ANDMULTILINEAR ALGEBRA 781



Now, by the construction it is clear that

[reds,tA, reds,tB]s,t =
t∑

i=s

As,iBi,t −
t∑

i=s

Bs,iAi,t �= 0.

Also, by the construction it is easy to see that (2), (3) and (4) hold.
The form of [reds,tA, reds,tB] should be also clear.

Lemma 3: If A,B,C,D ∈ Un(R) and s, t, z are integers such that 1 ≤ s < t < z ≤ n, then

[redt,zA, redt,zB][reds,tC, reds,tD] = 0.

Proof: For P = [
redt,zA, redt,zB

]
and Q = [

reds,tC, reds,tD
]
, using (10) we get

PQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Pt,t+1 · · · Pt,z

. . .
. . .

...

. . . Pz−1,z

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Qs,s+1 · · · Qs,t

. . .
. . .

...

. . . Qt−1,t

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

Theorem 4: If A is an Lsm+1 (for some m ≥ 1) structural matrix subring of Un(R), R a
commutative ring and n ≥ 1, then A is D2m.

Proof: First notice that if [A,B]s,t �= 0, then s < t.
We use induction on n. For n = 1 there is nothing to prove. Hence, consider a fixed

n such that n ≥ 2, and assume that the assertion is true for all k such that k < n. Let A
be an Lsm+1 (for somem ≥ 1) structural matrix subring of Un(R), R a commutative ring.
Let � = 2m, and suppose that A is not D�. Then there are matrices A1,B1, . . . ,A�,B� in A
such that

[A1,B1][A2,B2] · · · [A�,B�] �= 0.

Since every matrix A in A is upper triangular, there are an (n − 1) × (n − 1) upper
triangular matrix A and a 1 × (n − 1) matrix NA such that

A =
(

A1,1 NA
0 A

)
.
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It is not hard to see that

A := {A : A ∈ A}

is an Lsm+1 structural subring of Un−1(R), and so by the induction hypothesis A is D�.
Hence,

0 �= [A1,B1][A2,B2] · · · [A�,B�] =
(

0 N
0 0

)
,

where N := N[A1,B1][A2,B2]···[A�,B�] ∈ M1,n−1(R).
Let Xi = [Ai,Bi], i = 1, . . . , �, and let t1 be the largest integer such that N1,t1−1 �= 0.

Then (X1X2 · · ·X�)1,t1 �= 0, which gives

n∑
j=1

(X1X2 · · ·X�−1)1,j(X�)j,t1 =
t1−1∑
j=1

(X1X2 · · ·X�−1)1,j(X�)j,t1 �= 0.

Let t2 now be the largest integer such that

(X1X2 · · ·X�−1)1,t2(X�)t2,t1 �= 0. (11)

Obviously we have t2 < t1.
Let X ′

� = [
redt2,t1A�, redt2,t1B�

]
. Then by Lemma 2,

(X ′
�)t2,t1 = (X�)t2,t1 �= 0,

(X ′
�)w,t1 = (X�)w,t1 for any w > t2,

(X ′
�)s,t1 = 0 for any s < t2,

and (X ′
�)t2,q = 0 for any q > t1.

This consideration leads us to the following:

(X1X2 · · ·X�−1X ′
�)1,t1 =

t1−1∑
j=1

(X1X2 · · ·X�−1)1,j(X ′
�)j,t1

=
t1−1∑
j=t2

(X1X2 · · ·X�−1)1,j(X ′
�)j,t1

= (X1X2 · · ·X�−1)1,t2(X
′
�)t2,t1

= (X1X2 · · ·X�−1)1,t2(X�)t2,t1

�= 0 (by (11)),

and so

(X1X2 · · ·X�−1)1,t2 =
t2−1∑
j=1

(X1X2 · · ·X�−2)1,j(X�−1)j,t2 �= 0.

Next, let t3 be the largest integer such that

(X1X2 · · ·X�−2)1,t3(X�−1)t3,t2(X
′
�)t2,t1 �= 0. (12)
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Notice that t3 < t2 < t1. Similarly as above, let

X ′
�−1 = [

redt3,t2A�−1, redt3,t2B�−1
]
.

Then by Lemma 2,

(X ′
�−1)t3,t2 = (X�−1)t3,t2 �= 0,

(X ′
�−1)w,t2 = (X�−1)w,t2 for any w > t3,

(X ′
�−1)s,t2 = 0 for any s < t3,

(X ′
�−1)t3,q = 0 for any q > t2.

Next,

(X1X2 · · ·X�−2X ′
�−1X

′
�)1,t1

=
t1−1∑
j=1

(X1X2 · · ·X ′
�−1)1,j(X

′
�)j,t1

= (�)

t1−1∑
j=t2

⎡
⎣ j−1∑

i=1

(X1X2 · · ·X�−2)1,i(X ′
�−1)i,j

⎤
⎦ (X ′

�)j,t1

= (X1X2 · · ·X�−2)1,t3(X
′
�−1)t3,t2(X

′
�)t2,t1

= (X1X2 · · ·X�−2)1,t3(X�−1)t3,t2(X�)t2,t1 �= 0.

Notice that if j < t2 in the sum (�), then (X ′
�)j,t1 = 0, and for j > t2 we have (X ′

�−1)i,j = 0.
Thus j = t2. Now if i < t3, then (X ′

�−1)i,t2 = 0, while if i > t3, then (X ′
�−1)i,t2 = (X�−1)i,t2 ,

and by the maximality of t3 (see (12)) we must have

(X1X2 · · ·X�−2)1,i(X�−1)i,t2(X
′
�)t2,t1 = 0.

Thus, indeed (X1X2 · · ·X�−2X ′
�−1X

′
�)1,t1 �= 0.

We now show the next step to describe the procedure we are dealing with:
Let t4 be the largest integer such that

(X1X2 · · ·X�−3)1,t4(X�−2)t4,t3(X
′
�−1)t3,t2(X

′
�)t2,t1 �= 0.

Obviously t4 < t3 < t2 < t1. As one can expect, we set

X ′
�−2 = [

redt4,t3A�−2, redt4,t3B�−2
]
.
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Then by Lemma 2,

(X ′
�−2)t4,t3 = (X�−2)t4,t3 �= 0,

(X ′
�−2)w,t3 = (X�−2)w,t3 for any w > t4,

(X ′
�−2)s,t3 = 0 for any s < t4,

(X ′
�−2)t4,q = 0 for any q > t3.

Therefore, we have

(X1X2 · · ·X�−3X ′
�−2X

′
�−1X

′
�)1,t1

=
t1−1∑
j=1

(X1X2 · · ·X ′
�−1)1,j(X

′
�)j,t1

=
t1−1∑
j=t2

(X1X2 · · ·X ′
�−1)1,j(X

′
�)j,t1

=
t1−1∑
j=t2

⎡
⎣ j−1∑

i=1

(X1X2 · · ·X ′
�−2)1,i(X

′
�−1)i,j

⎤
⎦ (X ′

�)j,t1

=
⎡
⎣ j−1∑

i=1

(X1X2 · · ·X ′
�−2)1,i(X

′
�−1)i,t2

⎤
⎦ (X ′

�)t2,t1

=
⎡
⎣ j−1∑
i=t3

(X1X2 · · ·X ′
�−2)1,i(X

′
�−1)i,t2

⎤
⎦ (X ′

�)t2,t1

=
t2−1∑
i=t3

[ i−1∑
k=1

(X1X2 · · ·X�−3)1,k(X ′
�−2)k,i

]
(X ′

�−1)i,t2(X
′
�)t2,t1

= (X1X2 · · ·X�−3)1,t4(X
′
�−2)t4,t3(X

′
�−1)t3,t2(X

′
�)t2,t1

= (X1X2 · · ·X�−3)1,t4(X�−2)t4,t3(X
′
�−1)t3,t2(X

′
�)t2,t1 �= 0.

Continuing in the above way, after finitely many steps we get positive integers t1, t2, . . . ,
t�−1, t�, such that 1 < t� < t�−1 < · · · < t2 < t1, and reduced matrices X ′

1, . . . ,X
′
� such that

X ′
q = [redt�−q+2,t�−q+1Aq, redt�−q+2,t�−q+1Bq]

for any q = 1, . . . , �. Moreover,

(X ′
1X

′
2 · · ·X ′

�)1,t1 = (X ′
1)1,t�(X

′
2)t�,t�−1 · · · (X ′

�−1)t3,t2(X
′
�)t2,t1 �= 0.

Using Lemma 3 we can easily see that for any permutation σ ∈ S�, with σ �= id, we
have

X ′
σ(1)X

′
σ(2) · · ·X ′

σ(�) = 0.
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For a sequence Y1,Y2, . . . of elements ofMn(F) and positive integers p1, p2, . . . , let

S(p1p2) := [Yp1 ,Yp2], S(p1p2p3p4) := [S(p1p2), S(p3p4)],

and if S(p1p2 · · · p2q) has been defined for some q, then

S(p1p2 · · · p2qp2q+1 · · · p2q+1) := [
S(p1p2 · · · p2q), S(p2q+1 · · · p2q+1)

]
.

Using the above notation and results, we have, for the sequence X ′
1, . . . ,X

′
� (recall that

� = 2m), S(123 . . . �) = X ′
1 · · ·X ′

� and(
S(123 · · · �))1,t1 = (X ′

1 · · ·X ′
�)1,t1 �= 0.

Thus A is not Lsm+1, a contradiction. We conclude that A is D2m .

4. D2 subalgebras and Ls2 subalgebras ofMn(F)

Let F be any field, and let n1 ≥ 2. Define the rectangular array B by

B := {(i, j) : 1 ≤ i ≤
⌊n1
2

⌋
< j ≤ n1},

and the subset J of Mn1(F) by

J :=
⎧⎨
⎩

∑
(i,j)∈B

ai,jei,j : ai,j ∈ F for all (i, j) ∈ B

⎫⎬
⎭ . (13)

This means thatJ comprises the set of all block upper triangular matrices that correspond
with B, which has the following illuminating pictorial representations (the unshaded
regions in the pictures below correspond with zero entries):

(1) n1 is even:

(2) n1 is odd:

Denote by
FIn1 := {aIn1 : a ∈ F}
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the set of all n1 × n1 scalar matrices over F. By [14,15], the upper triangular matrix F-
subalgebra FIn1 + J of Mn1(F) is an example of a commutative F-subalgebra of Mn1(F)

with maximum dimension 1 +
⌊
n21
4

⌋
.

Next, let n1 and n2 be positive integers, let n = n1 + n2 and let A be an R-subalgebra of
Un(R), R any commutative ring. Every matrix A in A is of the form

A =
(

A1 A3
0 A2

)
, (14)

with A1 ∈ Un1(R), A2 ∈ Un2(R) and A3 ∈ Mn1×n2(R). For i = 1, 2, 3, we set

Ai :=
{
Ai :

(
A1 A3
0 A2

)
∈ A

}
. (15)

Then Ai is an R-subalgebra of Uni(R), i = 1, 2. (Note that the commutative algebra C
above may also be presented in this way.)

For a particular such R-subalgebra A of Un(R), it is in principle possible that, for
every matrix A in A, there may be ‘ties’ (or ‘links’) between the matrices A1, A2 and A3
(respectively, between some of the matrices A1, A2 and A3), as is indeed the case in the
algebras U�

3
(
U�
3 (F)

)
(respectively U�

9 (F)) and FIn1 + J mentioned above, and so the
containment A ⊆ A′ of the algebras A and A′, where

A′ :=
{(

A1 0
0 0

)
+
(

0 0
0 A2

)
+
(

0 A3
0 0

)
: Ai ∈ Ai, i = 1, 2, 3

}
(16)

may be proper. If there are none of the possible mentioned ‘ties’, then clearlyA = A′. This
observation leads to:

Definition 5: If, for everymatrixA =
(

A1 A3
0 A2

)
∈ A above, there are no ‘ties’ between

the matrices A1, A2 and A3, then we say that A1, A2 and A3 are independent.
It is not hard to see that the above ‘independence’ is equivalent to the fact that the

idempotent e = e1,1 + e2,2 + · · · + en1,n1 is an element of A, which obviously implies that

en1+1,n1+1 + · · · + en,n = 1 − e is also in A. We then have
(

In1 0
0 0

)
,
(

0 0
0 In2

)
∈ A.

For q = 2, the Dq subalgebras of Mn(F) (with n = n1 + n2) of maximum dimension
2+

⌊
3n2
8

⌋
in [3, p.157] are of the form in (16) if the commutative subalgebras ofMni(F), i =

1, 2, of maximum dimension 1 +
⌊
n2i
4

⌋
in the main diagonal blocks in [3, p.157] are taken

to be upper triangular matrix algebras, for example, as in (17).
Such a selection implies that there are no ties between any of the matrices A1, A2 and

A3 in such (i.e. the form in (16)) a chosen D2 subalgebra A = A′ of Un(F) of maximum
dimension. By [6, Theorem 14 and Remark 15], for a given n, and for such a chosen D2
subalgebra of Un(F) of maximum dimension, we may take n1 = n2 = n

2 , if n is even, and
we may take n1 = ⌊n

2
⌋
and n2 = n1 + 1, if n is odd. This gives rise to:

Definition 6: We call such (as in the preceding paragraph) a D2 subalgebra of Un(F)

with maximum dimension a typical D2 subalgebra of Un(F) with maximum dimension.
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The analogue of the block upper triangular pictorial representations ofJ above, for the
case where both n and

⌊n
2
⌋
are odd (and hence

⌊n
2
⌋ + 1 is even), is the following:

By [3, p.157] and [6, Theorem 14 and Remark 15], the F-subalgebra⎧⎨
⎩a

� n
2�∑

i=1

ei,i : a ∈ F

⎫⎬
⎭ +

⎧⎨
⎩b

n∑
j=� n

2�+1

ej,j : b ∈ F

⎫⎬
⎭ + J (17)

ofMn(F) is an example of a typical D2 F-subalgebra ofMn1(F) with maximum dimension
2 +

⌊
3n2
8

⌋
. Of course, the other possibilities, i.e. when n and/or

⌊n
2
⌋
are even/odd, can

be treated similarly. Instead of taking only two positive integers n1 and n2 such that
n1 + n2 = n (for a fixed n), we could have generalized the above setting in the framework
of Dq subalgebras ofMn(F) as in [3, p.157] by taking q positive integers with sum equal to
n. However, since the focus in this section is on D2 subalgebras, we have only treated the
n1 + n2 = n case.

It is immediately clear that if A is an Ln2 (respectively Ls2, D2) R-subalgebra of Un(R),
then the algebras Ai above (even considering the case n1 + n2 + · · · + nq = n) are also
Ln2 (respectively Ls2, D2). In this vein, [4, Theorem 2.1] states that if S is a ring which is
both D2 and Ln2, thenU�

3 (S) is Ls2. This result was an important tool in [4] in obtaining a
matrix algebra which is Ls2, but neither D2 nor Ln2. In Theorem 8 we explore U�

m(S) (for
m ≥ 2) if S is not required to be Ln2, but merely D2 (respectively Ls2). However, we first
prove that the converse of [4, Theorem 2.1] is also true:
Proposition 7: If S is a ring such that U�

3 (S) is Ls2, then S is D2 and Ln2.

Proof: For all a, d, c, d ∈ S we have

0 = [[aI3, be1,2], [cI3, de2,3]] = [[a, b]e1,2, [c, d]e2,3
] = [a, b][c, d]e1,3

and
0 = [[aI3, bI3], [ce1,2, e2,3]] = [[a, b]I3, ce1,3] = [[a, b], c]e1,3,

implying that [a, b][c, d] = 0 and
[[a, b], c] = 0.

Theorem 8: If a ring S is D2 (respectively Ls2), then U�
m(S) is D2�log2 m� (respectively,

Ls�log2 m�+1) for all m ≥ 2.
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Proof: We first prove by induction that if a ring S is D2 (respectively Ls2), then

U�
2n(S) is D2n (respectively, Lsn+1) for all n ≥ 1. (18)

The case n = 1 is direct computation. So, suppose that S is D2 (respectively Ls2), and for
some fixed positive integer k, U�

2k(S) is D2k (respectively Lsk+1, i.e. by (2),Dk+1(U�
2k(S)

) =
0.) Since (an isomorphic copy of)U�

2k+1(S) is contained in the 2k+1×2k+1 upper triangular
matrix ring(

U�
2k(S) M2k(S)
0 U�

2k(S)

)

=
{(

A1 A3
0 A2

)
: Ai ∈ U�

2k(S), i = 1, 2, and A3 ∈ M2k (S)
}
, (19)

it follows from the induction hypothesis, for the D2 case, that for all matrices Xi,Yi,Zi and
Wi, i = 1, 2, . . . , 2k, in U�

2k+1(S),

[X1,Y1][X2,Y2] · · · [X2k ,Y2k ] ∈
(

0 M2k(S)
0 0

)
,

and

[Z1,W1][Z2,W2] · · · [Z2k ,W2k ] ∈
(

0 M2k(S)
0 0

)
,

and so

[X1,Y1][X2,Y2] · · · [X2k ,Y2k ][Z1,W1][Z2,W2] · · · [Z2k ,W2k ] = 0,

which implies that U�
2k+1(S) is D2k+1 , and thus proves the D2 version of (18).

Since, by (19),

Dk+1(U�
2k+1(S)

) ⊆
(

Dk+1(U�
2k(S)

)
M2k(S)

0 Dk+1(U�
2k(S)

)
)
,

the induction hypothesis for the Ls2 case implies that

Dk+1(U�
2k+1(S)

) ⊆
(

0 M2k(S)
0 0

)
,

and so

Dk+2(U�
2k+1(S)

) =
[
Dk+1(U�

2k+1(S)
)
,Dk+1(U�

2k+1(S)
)] = 0,

i.e. U�
2k+1(S) is Lsk+2, establishing the Ls2 version of (18).

Next, since (an isomorphic copy of)U�
2n−1+i(S), i = 1, . . . , 2n−1, is contained inU�

2n(S),
it follows from (18) that if S is D2 (respectively, Ls2), then

U�
2n−1+i(S) is D2n (respectively, Lsn+1), i = 1, . . . , 2n−1, n ≥ 1.
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Since
⌈
log2 (2n−1 + i)

⌉ = n for all such i and n, it follows that if S is D2 (respectively, Ls2),
then

U�
2n−1+i(S) is D2�log2 (2n−1+i)� (respectively, Ls�log2 (2n−1+i)�+1).

Settingm := 2n−1 + i for a fixed pair (n, i), and noting that

{2n−1 + i : i = 1, . . . 2n−1, n ≥ 1} = {m : m ≥ 2},

we get that if S is D2 (respectively, Ls2), thenU�
m(S) is D2�log2 m� (respectively, Ls�log2 m�+1)

for allm ≥ 2.

It seems that a solution to Question 1 (see Section 2) will be facilitated by an answer to
the following question:
Question 9: For a field F, does a D2 F-subalgebra of Un(F), for some n, with maximum
dimension 2 +

⌊
3n2
8

⌋
and which is not a typical D2 subalgebra of Un(F) with maximum

dimension (see Definition 6 and the paragraph preceding it), exist?
In particular, we do not know if there is a D2 subalgebra A of Un(F) (for some n) with

maximum dimension such that

(
0 Mn

2
(F)

0 0

)
�⊆ A or

(
0 M� n

2�×(� n
2�+1

)(F)

0 0

)
�⊆ A, (20)

depending on whether n is even or odd.
Neither do we know whether a D2 subalgebra A of Un(F) (for some n, with n even

(say)) with maximum dimension exists such that

(
0 Mn

2
(F)

0 0

)
⊆ A and dimFAi > 1 +

⌊
(n2 )

2

4

⌋
, (21)

which would imply that the algebra Ai is not commutative, and that

dimFAj < 1 +
⌊

(n2 )
2

4

⌋
,

with i �= j and {i, j} = {1, 2}. (For the sake of brevity we have mentioned only the case
when n is even, but the corresponding question, for when is odd, is clear.)

However, if we do not require a D2 subalgebra of Un(F) to have maximum dimension,
then a D2 algebra A as in (21) does exist, as shown in Example 10 below.

Note that in this case, for every matrix A =
(

A1 A3
0 A2

)
∈ A, there are ‘ties’ between

A1 and A2.
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Example 10: The R-subalgebra

A :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

a b c e f g
0 a d h k �

0 0 a p q r
0 0 0 a 0 0
0 0 0 0 a 0
0 0 0 0 0 a

⎞
⎟⎟⎟⎟⎟⎟⎠

: a, b, . . . , r ∈ R

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

of U�
6 (R), R any commutative ring, is easily seen to be D2. To wit, every matrix in A is of

the form

Xa,U ,B :=
(

aI3 + U B
0 aI3

)
,

with U a strictly upper triangular 3 × 3 matrix, and B ∈ M3(R), and so the commutator

[Xa,U ,B,Xc,V ,D] =
[(

aI3 + U B
0 aI3

)
,
(

cI3 + V D
0 cI3

)]

of two such matrices is equal to

( [U ,V ] aD + UD + Bc − cB − VB − Da
0 0

)
=

( [U ,V ] UD − VB
0 0

)
,

since aI3 and cI3 are in the centre ofM3(R). Furthermore, [U ,V ] = xe1,3 for some x ∈ R,
and the 3rd rows of UD and VB are zero rows. Hence,

[Xa,U ,B,Xc,V ,D] · [Xe,W ,G,Xf ,Y ,H ]
=

( [U ,V ] UD − VB
0 0

)( [W ,Y ] WH − YG
0 0

)

=
( [U ,V ][W ,Y ] [U ,V ](WH − YG)

0 0

)
= 0,

since, as above, the 3rd rows ofWH and YG are zero rows.
However, A1 = U�

3 (R), which is not commutative.
Note thatU�

6 (F), with F a field, is not an example illustrating the phenomenon in Exam-
ple 10. To wit, U�

6 (F) is not D2, because the maximum dimension of a D2

(F-)subalgebra ofM6(F) is 2 +
⌊
3·62
8

⌋
= 15, but dimF U�

6 (F) = 16.
The last two theorems in the paper, namely Theorems 15 and 16, provide partial answers

to Questions 9 and 1, respectively. In particular, Theorem 15 should also be viewed in the
context of (21), and Theorem 16 should be seen against the background of (20).

However, we first need some preliminary results, including the following result from
[16]:

LINEAR ANDMULTILINEAR ALGEBRA 791



Theorem 11: If A is a finite-dimensional commutative algebra over a field F, and V is a
faithful R-module of finite F-dimension, then

dimFA ≤
⌊

(dimFV)2

4

⌋
+ 1.

Lemma 12: If A is a D2 subalgebra of Un(F), V = Fn and C is the ideal of A generated
by all commutators [x, y], x, y ∈ A, then

dimFA ≤
⌊(

dimF(VC)
)2

4

⌋
+
⌊(

dimF(V/VC)
)2

4

⌋
+ 1

+ dimF(VC) · dimF(V/VC).

Proof: If C = 0 (which means that A is commutative), then the desired inequality has the
form

dimFA ≤ +
⌊

(dimFV)2

4

⌋
+ 1,

which is valid by Theorem 11.
Suppose now that VC �= 0, and consider the F-algebra homomorphism φ : A →

End(VC) induced by the A-module structure of VC. Obviously,

dimFA = dimF
(
im(φ)

) + dimF
(
ker(φ)

)
. (22)

Since VC is a faithful im(φ)-module, and im(φ) is commutative (because C2 = 0), we
get

dimF
(
im(φ)

) ≤
⌊(

dimF(VC)
)2

4

⌋
+ 1. (23)

Consider now the ideal ker(φ) of A. Obviously, In �∈ ker(φ). Thus, considering the
subalgebra E of A generated by ker(φ), we have

dimF
(
ker(φ)

)
< dimFE . (24)

As (VC)ker(φ) = 0, we can investigate the F-algebra homomorphism ϕ : E →
End(V/VC). Then

dimFE = dimF
(
im(ϕ)

) + dimF
(
ker(ϕ)

)
. (25)

Again, since V/VC is a faithful im(ϕ)-module, and im(ϕ) is commutative, it follows
from Theorem 11 that

dimF
(
im(ϕ)

) ≤
⌊(

dimF(V/VC)
)2

4

⌋
+ 1. (26)
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Notice that every element of ker(ϕ) can be viewed as a linear map from V/VC to VC,
which implies that

dimF
(
ker(ϕ)

) ≤ dimF(V/VC) · dimF(VC). (27)

Putting together (22)–(27) we finally obtain the desired inequality in the case
VC �= 0.

Lemma 13: If A is a D2 subalgebra of Un(F), and A1, A2 and A3 are independent
(see Definition 5), then C1A3 = A3C2 = 0, where Ci is the ideal of Ai generated by all
commutators [x, y], x, y ∈ Ai, i = 1, 2.

Proof: We will only show that C1A3 = 0, since the second case can be treated similarly.
Suppose, for a contradiction, that C1A3 �= 0. Let W ∈ C1 and G ∈ A3 be such

that WG �= 0. Firstly, for the identity I ∈ A2 (see the paragraph immediately following
Definition 5) we consider the commutator[(

0 G
0 0

)
,
(

0 0
0 I

)]
=

(
0 G
0 0

)
.

As A is D2 andW ∈ C1 we get(
0 WG
0 0

)
=

(
W 0
0 0

)
·
(

0 G
0 0

)
= 0;

a contradiction.

Henceforth, for every integer n ≥ 2, we write D2(n) for the maximum dimension⌊
3n2
8

⌋
+ 2 of a D2 subalgebra of Un(F).

Remark 14:

(1) Let V1 = Fn1 , V2 = Fn2 , and letA be a linear subspace ofMn1×n2(F). Suppose that
W1 is a subspace of V1 such thatW1A = 0. Taking a complement U1 ofW1 in V1,
we haveV1 = W1⊕U1. It can be seen thatA can be embedded into the linear space
L(U1,V2) of all linear transformations from U1 into V2, and

dimFA ≤ n2 · dimFU1 = n2 · (n1 − dimFW1).

(2) Keeping the notation as above, and considering a subspace W2 of V2 such that
AW2 = 0, we have, for a complement U2 ofW2,

dimFA ≤ n1 · dimFU2 = n1 · (n2 − dimFW2).

In the next result, which provides a partial answer to Question 9, we follow, without
loss of generality, the ‘convention’ described in the paragraph immediately preceding
Definition 6, namely the sizes of A1 and A2 are equal when n is even, and the sizes differ
by 1 when n is odd.
Theorem 15: IfA is a D2 subalgebra of Un(F)withmaximum dimension D2(n), such that
A1, A2 and A3 are independent, then A1 and A2 are commutative.
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Proof: We will consider two cases.

Case 1. n is even: Then, form := n
2 : A1,A2 ⊆ Um(F).

By Lemma 12 and its symmetric version we have

dimFA1 ≤
⌊
p2

4

⌋
+
⌊

(m − p)2

4

⌋
+ 1 + p(m − p) =: P,

and
dimFA2 ≤

⌊
q2

4

⌋
+
⌊

(m − q)2

4

⌋
+ 1 + q(m − q) =: Q,

where for V = Fm, p := dimF(VC1), q := dimF(C2V), and Ci is the ideal ofAi generated
by all commutators [x, y], x, y ∈ Ai, i = 1, 2.

Using Lemma 13 and Remark 14 we have

dimFA3 ≤ m(m − p), and dimFA3 ≤ m(m − q).

Without loss of generality we may assume that Q ≤ P. Then

dimFA = dimFA1 + dimFA2 + dimFA3 ≤ P + Q + m(m − p)

≤ 2
(⌊

p2

4

⌋
+
⌊

(m − p)2

4

⌋
+ 1 + p(m − p)

)
+ m(m − p)

≤ 2
(
p2

4
+ (m − p)2

4
+ 1 + p(m − p)

)
+ m(m − p)

= 3
2
m2 − p2 + 2.

Thus, if m = 2s for some s, then dimFA ≤ 6s2 − p2 + 2, and if m = 2s + 1, then
dimFA ≤ 6s2 + 6s − p2 + 312 . On the other hand, since n = 2m and D2(n) =

⌊
3n2
8

⌋
+ 2,

we have

D2(n) =
{
6s2 + 2, ifm = 2s,
6s2 + 6s + 3, ifm = 2s + 1.

Therefore, we conclude that p = 0, which means that A1 is commutative. Using p = 0
and the assumption that Q ≤ P, it is not hard to show that q = 0, whence A2 is also
commutative. The proof is thus complete for the case when n is even.

Case 2. n is odd: Then, form := ⌊n
2
⌋
: A1 ∈ Um(F) and A2 ⊆ Um+1(F).

Notice that in this case,A3 ⊆ Mm,m+1(F). (The second pictorial representation follow-
ing (13) may be helpful.) By the same argument as above,

dimFA1 ≤
⌊
p2

4

⌋
+
⌊

(m − p)2

4

⌋
+ 1 + p(m − p) =: P,

and
dimFA2 ≤

⌊
q2

4

⌋
+
⌊

(m + 1 − q)2

4

⌋
+ 1 + q(m + 1 − q) =: Q,
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where for V1 = Fm and V2 = Fm+1, p := dimF(V1C1), q := dimF(C2V2) and Ci is the
ideal of Ai generated by all commutators [x, y], x, y ∈ Ai, i = 1, 2.

Also by similar arguments as above we get

dimFA3 ≤ min{(m + 1)(m − p),m(m + 1 − q)},

and so
dimFA ≤ P + Q + min

{
(m + 1)(m − p),m(m + 1 − q)

}
.

Now we consider all the possible cases related to the parity of m and the value of
min

{
(m + 1)(m − p),m(m + 1 − q)

}
.

Subcase A. m = 2s (for some s) and (m + 1)(m − p) ≤ m(m + 1 − q):
The assumption (m + 1)(m − p) ≤ m(m + 1 − q) implies that − 1

2p ≤ s(p − q). Thus
if p = 0, then q = 0, and we are done. So suppose that p �= 0. Then, keeping in mind that
dimFA = D2(n) = D2(4s + 1), we have

D2(n) − dimFA ≥ D2(4s + 1) − P − Q − (2s − p)(2s + 1)

≥ 1
2
p2 + 1

2
q2 + p − 1

2
q − 1

4
+ s(p − q)

≥ 1
2
p2 + 1

2
q2 + p − 1

2
q − 1

4
− 1

2
p

= 1
2
p2 + 1

2
q2 + 1

2
p − 1

2
q − 1

4
> 0.

Thus D2(n) − dimFA > 0, and we have a contradiction.

Subcase B. m = 2s and (m + 1)(m − p) > m(m + 1 − q):
The assumption (m + 1)(m − p) > m(m + 1 − q) yields 1

2p < s(q − p). In this case,

D2(4s + 1) − P − Q − 2s(2s + 1 − q)

≥ 1
2
p2 + 1

2
q2 − 1

2
q − 1

4
+ s(q − p)

≥ 1
2
p2 + 1

2
p + 1

2
q2 − 1

2
q − 1

4
.

If p �= 0, then by the above,D2(4s+1)−dimFA > 0, and we again have a contradiction. If
p = 0 and q > 1, thenwe also get a contradiction by direct computation. If p = 0 and q = 1
then we obtain that D2(4s + 1) − P − Q − 2s(2s + 1 − q) = s > 0; again a contradiction.
Hence we conclude that p = q = 0, which implies that A1 and A2 are commutative.

The situation where m = 2s + 1 can be considered in a similar way. Thus the proof is
complete.

The following result gives a partial answer to Question 1.
Theorem 16: Suppose there is an Ls2 F-subalgebraA of U�

n(F), for some n, with dimFA >
2 +

⌊
3n2
8

⌋
, i.e. the maximum dimension of a D2 subalgebra of Mn(F), and consider the

smallest such n. Then n = 2k or n = 2k + 1 for some k. Let m ∈ {k, k + 1}. Then(
0 Mk×m(F)

0

)
�⊆ A.
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Proof: Suppose that
(

0 Mk×m(F)

0

)
⊆ A. Since A is not D2, we have that A1 or A2 is

not commutative.
We only consider the case where A1 is not commutative, since the case whereA2 is not

commutative can be handled in a similar way. Then there are matrices A and A′ in A such
that [A,A′]1 �= 0, and ([A,A′]1)i,j �= 0 for some pair (i, j) (see (14)), with 1 ≤ i < j ≤ k.
Since A and A′ have constant main diagonals, we may assume that both are strictly upper

triangular as far as [A,A′] is concerned. Moreover, since
(

0 Mk×m(F)

0

)
⊆ A, we may

assume that A3 = 0 = A′
3, and so

[A,A′] =
( [A1,A′

1] 0
[A2,A′

2]
)

.

Next, we will show that there is a matrix inA2 which is not a scalar matrix. Suppose, for
a contradiction, that this is not the case. Then dimFA2 = 1.We will consider the following
two cases.

Case 1. m = k: Then we have

dimFA > 2 +
⌊
12k2

8

⌋
> 1 + 12k2

8
, (28)

and by the minimality of n,

dimFA1 ≤ 2 +
⌊
3k2

8

⌋
≤ 2 + 3k2

8
.

Thus, noticing that we may omit below the dimension of A2 (since, by the assumption
above, all matrices in A2 are scalar), we have

dimFA ≤ dimFA1 + dimF
(
Mk×k(F)

) ≤ 2 + 11
8
k2,

which together with (28) gives us k2 < 8. Thus k ∈ {1, 2}; i.e. in both cases A1 is
commutative, a contradiction.

Case 2. m = k + 1: In this case, using similar arguments as above, we get k2 + 4k − 5 < 0;
a contradiction.

The above arguments show that there is indeed a matrix in A2 which is not scalar.
Hence there is a p, with k + 1 ≤ p < k + m, such that the p-th row of some matrix in A
has a nonzero non-diagonal entry. Fix p, and let

q = min{� : � > p, and Ap,� �= 0 for some A ∈ A}. (29)
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Let C =
(

C1 C3
0 C2

)
∈ A be a matrix such that Cp,q �= 0. A similar argument as above

shows that we may assume that C is of the form

C =
(

C1 0
C2

)
.

With E := ej,p (note that E ∈ A, because
(

0 Mk×m(F)

0

)
⊆ A), we have

[[A,A′], [C,E]]i,q = ([A,A′][C,E])i,q − ([C,E][A,A′])i,q.
Direct calculation shows that

([A,A′][C,E])i,q =
∑
t

[A,A′]i,t[C,E]t,q = [A,A′]i,j[C,E]j,q �= 0,

and ([C,E][A,A′])i,q = Ci,j[A,A′]p,q.
Notice that, by (29), and the fact that A and A′ are (without loss of generalization)

strictly upper triangular,

[A,A′]p,q =
∑
t

Ap,tA′
t,q −

∑
s

A′
p,tAt,q = 0,

Therefore [[A,A′], [C,E]]i,q = [A,A′]i,j[C,E]j,q �= 0,

which contradicts the assumption that A is Ls2.
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