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We describe the sub-bimodules of matrix bimodules over two structural
matrix rings. Structural matrix bimodules arise as particular such
sub-bimodules, and we discuss when such a bimodule is faithful or
indecomposable. As an application, we obtain a large class of rings
whose Jordan isomorphisms are either ring isomorphisms or ring anti-
isomorphisms. Complete upper block triangular matrix rings over 2-torsion-
free indecomposable rings are elements of this class.
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isomorphism; bimodule
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1. Introduction and preliminaries

A Jordan isomorphism between two rings T and U is an isomorphism f : T!U of
additive groups such that f(xyþ yx)¼ f(x)f(y)þ f(y)f(x) for any x, y2T. Ring
isomorphisms and ring anti-isomorphisms are examples of Jordan isomorphisms.
There has been extensive research to uncover conditions on T and U such that ring
isomorphisms and anti-isomorphisms are the only Jordan isomorphisms. This was
showed to be the case if T¼U is the ring of upper triangular matrices over a field
6¼F2 [2], or more generally if T is the ring of upper triangular matrices over a
2-torsion-free indecomposable commutative ring C, and U is a C-algebra [1]. These
results were extended in [4] to the case where T ¼

�
A M
0 B

�
is a 2-torsion-free

generalized triangular ring, where A and B are rings, and M is a left A, right B-
bimodule which is faithful over A and over B, and U is any ring. Two particular cases
where this result applies are when: (1) T is the upper triangular ring over a 2-torsion-
free indecomposable ring; (2) T is a nest algebra and U is a complex algebra. We are
interested to study the Jordan isomorphism problem for the case where T is a
structural matrix ring, in particular when T is a complete upper block triangular
matrix ring. Our approach works, in fact, for a larger class of rings.
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A structural matrix ring A over a ring R is a subring of the matrix ringMu(R)
consisting of all matrices having zero on certain prescribed positions. Also, let B be a
v� v structural matrix ring over a ring S. Let M be a left R, right S-bimodule. We
consider the set Mu,v(M) of u� v matrices with entries in M, which is naturally a
left A, right B-bimodule. We describe the sub-bimodules ofMu,v(M). In particular,
structural matrix bimodules arise as such sub-bimodules, and all their sub-bimodules
arise from here. As a special case, we recover the description of the two-sided ideals
of a structural matrix ring [3]. We discuss when is a structural matrix bimodule
faithful as a left A-module or as a right B-module, and when is it indecomposable as
a bimodule, giving combinatorial characterizations which can be checked on the
diagram of a certain partially ordered set. Combining these results and a result of
Wong [4], we obtain our main result, Theorem 3.6, which describes a large class of
rings T such that any Jordan isomorphism from T to another ring is either a ring
isomorphism or a ring anti-isomorphism. This class includes complete upper block
triangular matrix rings over 2-torsion-free indecomposable rings.

2. Sub-bimodules of matrix bimodules over structural matrix rings

Let R be a ring, and let u be a positive integer. Denote I¼ {1, . . . , u}, and letMu(R)
be the ring of u� u matrices with entries in R. Denote by ei,j the matrix units. Let
B� I� I be such that (i, i)2B for any i2 I, and (i, k)2B whenever (i, j)2B and
( j, k)2B. Thus B is a preorder relation on I. We consider the structural matrix ring
A¼M(B, R)¼

P
(i,j)2BRei,j, which is the subring ofMu(R) consisting of all matrices

whose (i, j) entries are zero for (i, j) =2 B. We also consider a structural matrix ring
B¼M(B0,S) over a ring S, where B0 is a preorder relation on the set J¼ {1, . . . , v}
for some positive integer v. We denote by fi,j the matrix units inMv(S).

Let M be a left R, right S-bimodule. We consider the set Mu,v(M) of all u� v
matrices with entries in M, which is a left Mu(R), right Mv(S)-bimodule with
addition on positions and left and right action given by matrix-like multiplication.
By restriction of scalars,Mu,v(M) becomes a left A, right B-bimodule. Our first aim
is to describe the sub-bimodules of this A, B-bimodule. If 1� i� u, 1� j� v and
m2M, we denote by mMi,j the matrix inMu,v(M) having m on the (i, j)-th position,
and zero elsewhere.

We consider the equivalence relation � on I associated to the preorder relation B,
i.e. i� j if and only if (i, j)2B and ( j, i)2B (in other words both matrix units ei,j and
ej,i lie in A). Let I1, . . . , Ip be the associated equivalence classes, and fix some elements
i12 I1, . . . , ip2 Ip. Then B induces a partial order4 on {1, . . . , p} defined by �4�0

if and only if (i�, i�0)2B. Clearly if �4 �0, then (�, �0)2B for any �2 I� and �0 2 I�0.
Similarly, we consider the equivalence relation � on J associated to B0, with

equivalence classes J1, . . . , Jq. Fix some elements j12 J1, . . . , jq2 Jq, and let the partial
order2on {1, . . . , q} be such that �2 �0 if and only if ( j�, j�0)2B

0.

PROPOSOTION 2.1 Let F ¼ ðN��Þ1���p
1���q

be a family of sub-bimodules of RMS such that

N���N�0�0 for any �
0
4 � and �2 �0. Then the set

XF ¼
n
ðmijÞ1�i�u

1�j�v

���mij 2N�� for any 1 � � � p, 1 � � � q and any i2 I�, j2 J�

o

is a sub-bimodule of AMu,v(M)B. Moreover, the correspondence F � XF is a bijection
between the set of all such families F and the set of all sub-bimodules of AMu,v(M)B.
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Proof It is straightforward to check that XF is a sub-bimodule of AMu,v(M)B.
Now, let X be a sub-bimodule of AMu,v(M)B. For any 1��� p and 1��� q,

we consider the set

N�� ¼ fm2Mj mMi�, j� 2Xg:

If m2N��, r2R and s2S, we have that ðrmsÞMi�, j� ¼ ðrei�, i� ÞðmMi�, j� Þðsfj�, j� Þ 2X,

so rms2N��, and thus N�� is a sub-bimodule of RMS. If �04 � and �2 �0,
let m2N��. Then

mMi�0 , j�0 ¼ ei�0 , i� ðmMi�, j� Þ fj�, j�0 2X,

and this shows that m2N�0�0.
Denote by F the family ðN��Þ1���p

1���q
. We show that X¼XF . Let first

U ¼ ðmijÞ1�i�u
1�j�v
2XF . If i2 I� and j2 J�, then mij2N��, so mijMi�, j� 2X, and

mijMi, j ¼ ei,i� ðmijMi�, j� Þ fj�, j 2X:

Then U¼
P

i,jmijMi,j2X.
Conversely, if U ¼ ðmijÞ1�i�u

1�j�v
2X, pick some 1��� p and 1��� q, and let i2 I�,

j2 J�. Then mijMi�, j� ¼ ei�, iUfj, j� 2X, so mij2N��. Thus U2XF .

We conclude that the correspondence F � XF is a bijection. g

Example 2.2 The case where A and B are complete upper block triangular matrix

rings (in particular when they are upper triangular matrix rings) is of special interest.

Thus,

A ¼

Md1 ðRÞ Md1,d2ðRÞ � � � Md1,dp ðRÞ

0 Md2ðRÞ � � � Md2,dp ðRÞ

� � � � � � � � � � � �

0 0 � � � Mdp ðRÞ

0
BBB@

1
CCCA

for some positive integers d1, d2, . . . , dp with u¼ d1þ � � �þ dp. In this case I1¼

{1, . . . , d1}, I2¼ {d1þ 1, . . . , d1þ d2}, . . . , Ip¼ {d1þ � � �þ dp�1þ 1, . . . , u} and

14 24 � � �4 p. Similarly, let B be the complete upper-blocked triangular matrix

ring of type �1, �2, . . . , �q over S, where v¼ �1þ � � � þ �q. We have that J1¼ {1, . . . , �1},
J2¼ {�1þ 1, . . . , �1þ �2}, . . . , Jq¼ {�1þ � � �þ �q�1þ 1, . . . , v} and 12 22 � � �2 q.

Then the left A, right B-sub-bimodules ofMu,v(M) are the subsets of the form

Md1,�1ðN11Þ Md1,�2ðN12Þ � � � Md1,�q ðN1qÞ

Md2,�1ðN21Þ Md2,�2ðN22Þ � � � Md2,�q ðN2qÞ

� � � � � � � � � � � �

Mdp,�1ðNp1Þ Mdp,�2ðNp2Þ � � � Mdp,�q ðNpqÞ

0
BBB@

1
CCCA

where ðN��Þ1���p
1���q

is a family of sub-bimodules of M such that N���N�0�0 for any

�0 �� and ���0.

Now, we consider a special type of sub-bimodules ofMu,v(M), namely the ones

corresponding to families F for which each N�� is either 0 or M. Extending the
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terminology from rings, we call them structural matrix bimodules. By the description
of sub-bimodules ofMu,v(M) given in Proposition 2.1, we see that if such a structural
matrix bimodule has M on position (i, j), then it must have M on any position (i0, j0)
with i� i0 and j� j0. Thus the structural matrix sub-bimodules of Mu,v(M) are the
sets of the form

MðP,MÞ ¼ fðmijÞi, jj mij ¼ 0 if ði, j Þ =2 [ð�,�Þ 2P I� � J�g

where P � {1, . . . , p}� { 1, . . . , q} is a set such that for any (�,�)2P and any �0 and
�0 such that �04� and �2 �0, we also have that (�0,�0)2P. With this notation, we
get as a direct consequence of Proposition 2.1 the following.

COROLLARY 2.3 The sub-bimodules of AM(P,M)B are in bijection to the set of
families (N��)(�,�)2P of sub-bimodules of RMS with the property that N���N�0�0 for
any (�,�)2P and any �04 �, �2 �0.

Remark 2.4 In the particular case where A¼B, M¼ RRR and M(P,M)¼A, our
result describes the two-sided ideals of a structural matrix ring. This description was
given in [3, Proposition 1.2].

3. Faithful structural matrix bimodules

We keep the notation of the previous section and discuss the following problem:
when is the structural matrix bimodule M(P,M) faithful as a left A-module,
respectively, as a right B-module? The answer will be given as a consequence of the
following description of the annihilator of a structural matrix bimodule.

PROPOSITION 3.1

(1) annA(M(P,M)) is the two-sided ideal of A corresponding to the family
ðH��Þ1��,��p

�4�
, where H��¼ annR(M) whenever �4 � and there exists � with

(�,�)2P, and H��¼R whenever �4 � and there does not exist � with
(�,�)2P.

(2) annB(M(P,M)) is the two-sided ideal of B corresponding to the family
ðK��Þ1��,��q

��
, where K��¼ annS(M) whenever �2 � and there exists � with

(�, �)2P, and K��¼S whenever �2� and there does not exist � with (�, �)2P.

Proof

(1) By Corollary 2.3, we have that the ideal H¼ annA(M(P,M)) of A
corresponds to a family ðH��Þ1��,��p

�4�
of ideals of R such that H���H�0� 0

whenever �04 � and �2 � 0. Fix some i and t, with i2 I�, t2 I� and �4 �.
If there is no � such that (�, �)2P, then for any r2R, we have that
(rei,t)(mMz,j)¼ 0 for any mMz,j lying inM(P,M). Indeed, this is clearly 0 if
z 6¼ t, while if z¼ t, then there is no j such that mMz,j2M(P,M). We obtain
that H��¼R.
If there exists � such that (�,�)2P, then for a fixed r2R, we have that
r2H�� if and only if (rei,t)(mMz,j)¼ 0 for any mMz,j lying inM(P,M). This
clearly holds if z 6¼ t, while if z¼ t, it is equivalent to rM¼ 0, i.e. r2 annR(M);

(2) is similar. g

372 S. Dăscălescu et al.



COROLLARY 3.2

(1) If M is faithful as a left R-module, thenM(P,M) is faithful as a left A-module

if and only if for any 1��� p there exists � such that (�,�)2P (in other words
any row ofM(P,M) is non-zero).

(2) If M is faithful as a right S-module, then M(P,M) is faithful as a right
B-module if and only if for any 1��� q there exists � such that (�,�)2P
(in other words any column ofM(P,M) is non-zero).

Example 3.3

(a) If A is complete upper block triangular, then M(P,M) is faithful as a left

A-module if and only if it has an entire column of M’s. Indeed, faithfulness
implies that there exists � such that (p,�)2P. Since 14 24 � � �4 p, we obtain
that (i,�)2P for any i.

(b) If both A and B are complete upper block triangular, then M(P,M) is

faithful as a left A-module and as a right B-module if and only if the first row
and the last column ofM(P,M) consist only of M’s.

4. Indecomposable structural matrix bimodules

Let us consider a structural matrix bimoduleM(P,M), where A and B are structural
matrix rings, and the notation is as in Section 2. We are interested to see when is
M(P,M) an indecomposable bimodule, i.e. when it cannot be written as a direct sum

of two non-zero sub-bimodules. It is useful to regard P as a partially ordered set with
the ordering relation� defined by (�,�)� (�0, �0) if and only if �04 � and �2 �0.
Now, we have the following characterization of indecomposability.

PROPOSITION 4.1 Let M(P,M) be a non-zero structural matrix bimodule over the
structural matrix rings A and B. Then the following assertions are equivalent:

(1) M(P,M) is an indecomposable bimodule.
(2) M is an indecomposable R, S-bimodule and P cannot be written as a disjoint

union of two non-empty subsets P1 and P2 such that if (�,�)2Pi, where

i2 {1, 2} and (�,�)� (�0,�0), then (�0,�0)2Pi.

Proof (1)) (2) If M¼X	Y, a direct sum of R,S-bimodules, we have that
M(P,M)¼M(P,X)	M(P,Y), a direct sum of A, B-bimodules. SinceM(P,M) is

indecomposable, we must have either M(P,X)¼ 0 or M(P,Y)¼ 0, showing that
X¼ 0 or Y¼ 0. Thus, M is indecomposable. On the other hand, if P would be the
disjoint union of two non-empty sets P1 and P2 as described in (2), then

M(P,M)¼M(P1,M)	M(P2,M), contradicting the indecomposability of
M(P,M).

(2)) (1) LetM(P,M)¼X 	Y, a direct sum of sub-bimodules. By Corollary 2.3,

X corresponds to a family (X��)(�,�)2P of sub-bimodules of M, and Y corresponds to
a family (Y��)(�,�)2P of sub-bimodules. Then for any (�,�)2P, we have that
X��	Y��¼M, so either X��¼ 0 (and then Y��¼M) or Y��¼ 0 (and then X��¼M).

Let P1¼ {(�,�)j X�� 6¼ 0} and P2¼ {(�,�)j Y�� 6¼ 0}. It is clear that P is the disjoint
union of P1 and P2. Since X���X�0�0 for any (�,�)� (�0,�0), we see that if (�,�)2P1,
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then also (�0,�0)2P1, and similarly for P2. Then, necessarily one of P1 and P2 is
empty, which shows that either X ¼ 0 or Y ¼ 0. g

Remark 4.2 The condition

(*) P cannot be written as a disjoint union of some non-empty subsets P1 and P2
such that if (�,�)2Pi, where i2 {1, 2} and (�,�)� (�0,�0), then (�0,�0)2Pi
means in fact that P is not the coproduct of two non-empty objects in the
category of partially ordered sets, i.e. it is indecomposable in this category.
We consider another condition

(**) For any minimal elements (�1,�1) and (�2,�2) in the partially ordered set P
there exists (�,�)2P such that (�1,�1)� (�,�) and (�2,�2)� (�,�).

Then we have that (**) implies (*), thus (**) is a sufficient condition for the
indecomposability ofM(P,M) in the case where M is indecomposable. Clearly, it is
easy to check whether (**) holds or not by looking at the diagram associated to the
partially ordered set P. Nevertheless, (**) is not a necessary condition for (*). Indeed,
we give the following example. Let

A ¼

R R R R

0 R R 0

0 0 R 0

0 0 0 R

0
BBB@

1
CCCA, B ¼

S S S S

0 S S 0

0 0 S 0

0 0 0 S

0
BBB@

1
CCCA,

thus 14 24 3 and 14 4, and 14 24 3 and 14 4. Let

MðP,MÞ ¼

M M M M

0 0 0 M

0 0 0 M

0 0 M 0

0
BBB@

1
CCCA,

thus P¼ { (1, 1), (1, 2), (1, 3), (1, 4), (2, 4), (3, 4), (4, 3)}.

It is easy to see that P satisfies condition (*), but it does not satisfy (**), as we can
see by considering the minimal elements (3, 4) and (4, 3).

It is possible to give a more approachable method to check whether P is
indecomposable. In fact, we can consider a finite partially ordered set (X,� ), and let
Min(X) be the set of minimal elements of X. Consider the relation � on Min(X),
defined by x�y if and only if there exists z2X such that x� z and y� z. It is clear that
� is reflexive and symmetric, but not necessarily transitive. Now, we can consider the
induced equivalence relation 
 onMin(X), defined by x
 y if and only if there exist a
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positive integer n and x1, . . . , xn2Min(X) such that x¼x1, x1�x2, . . . , xn�1� xn,
xn¼ y. Let (Mi)i2I be the set of equivalence classes with respect to 
, and for any i2 I
let Xi¼ {z2Xj 9 x2Mi with x� z}. Then it is easy to see that each Xi is
an indecomposable partially ordered set (with the order relation induced from X),
and X is the disjoint union of all Xi’s. In conclusion, (X,�) is indecomposable
if and only if 
 has only one equivalence class. Applying this to our context, we
obtain the following, which checks the indecomposability of P by looking at its
diagram.

PROPOSITION 4.3 Condition (*) is equivalent to the fact that for any minimal elements
(�,�) and (�0, �0) of P, there exist minimal elements (�1,�1), . . . , (�n, �n) of P such that
(�1,�1)¼ (�,�), (�n, �n)¼ (�0, �0), and for any 1� i� n� 1 there exists (� i, �i)2P such
that (�i, �i)� (� i, �i) and (�iþ1, �iþ1)� (� i, �i).

We note that condition (**) in Remark 4.2 just says that any two minimal
elements of P are in the relation �, which is clearly a stronger condition than being
equivalent with respect to the relation 
.

COROLLARY 4.4 If P has a smallest element, then M(P,M) is an indecomposable
bimodule if and only if M is an indecomposable bimodule.

Remark 4.5 As a particular case of Corollary 4.4, we see that if A and B are
complete upper block triangular matrix rings as in Example 2.2, thenMu,v(M) is an
indecomposable A,B-bimodule if and only if M is an indecomposable R,
S-bimodule. In particular, if S¼R and M¼R, we have that Mu,v(R) is an
indecomposable A, B-bimodule if and only if R is an indecomposable ring, i.e. it does
not have non-trivial central idempotents. In the particular case of upper triangular
matrix rings (i.e. A and B have only blocks of size 1), this recovers [4, Theorem 2.1].

Now using the result of Wong [4, Theorem 3.1], we obtain the following.

THEOREM 4.6 Let M be an indecomposable left R, right S-bimodule, such that M is
faithful as a left R-module and as a right S-module, and R, S and M are 2-torsion-free.
Let A and B be structural matrix rings over R and S, and letM(P,M) be a structural
matrix bimodule with non-zero rows and columns and such that P satisfies condition
(*). Then any Jordan isomorphism from the triangular ring T ¼

�
A MðP,MÞ
0 B

�
to another

ring is either a ring isomorphism or a ring anti-isomorphism.

COROLLARY 4.7 Any Jordan isomorphism from an upper block triangular matrix ring
(in particular an upper triangular matrix ring) over a 2-torsion-free indecomposable
ring to another ring is either a ring isomorphism or a ring anti-isomorphism.

Remark 4.8 Any structural matrix ring T, which is not the full matrix ring (over a
ring R), can be regarded (in several ways) as a generalized triangular ring. Indeed, by
a permutation of rows and columns, T is isomorphic to a (not necessarily complete)
upper block triangular matrix ring. If there are h diagonal blocks, then we can split T
as a generalized triangular ring

�
A M
0 B

�
, where A is the ring obtained from T by taking

the intersection of rows and columns of the first g diagonal blocks, where g5 h, B is
obtained similarly from the rest of h� g diagonal blocks, and M is obtained by
taking the intersection of the rows of the first g diagonal blocks and the columns of
the other h� g diagonal blocks. The Jordan isomorphism problem can be tested for
any such representation of T, using Theorem 4.6.
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