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We construct a class of Jordan isomorphisms from a triangular ring 7, and we
show that if 7 is 2-torsionfree, any Jordan isomorphism from 7 to another ring
is of this form, up to a ring isomorphism. As an application, we show that for
triangular rings in a large class, any Jordan isomorphism to another ring is a direct
sum of a ring isomorphism and a ring anti-isomorphism. In particular, this applies
to complete upper block triangular matrix rings and indecomposable triangular
rings.
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1. Introduction and preliminaries

Let 7 and U be rings. An additive isomorphism ¢ : 7 — U is called a Jordan isomorphism
if p(xy 4+ yx) = o(xX)o(y) + ¢(y)@(x) for any x, y € 7. Ring isomorphisms and ring
anti-isomorphisms are examples of Jordan isomorphisms. It was proved that they are the
only such examples in certain special cases: when 7', U are prime rings of characteristic not
2 (see [1,2]), when T = U is a ring of upper triangular matrices over a field with more than
2 elements (see [3]), or more generally over a 2-torsionfree commutative ring having only
trivial idempotents (see [4]). If 7 is an upper triangular matrix ring over a 2-torsionfree
ring, then any Jordan isomorphism from 7 to another ring is a direct sum of an isomorphism
and an anti-isomorphism (see [5]). Jordan homomorphisms from upper triangular matrix
rings onto upper triangular matrix rings were investigated in [6] for base rings having only
trivial idempotents.

§ 1\;1 is a triangular ring, i.e. R and § are
rings with identity, M is a left R, right S-bimodule and the addition and multiplication
obey the usual rules for matrices. It was proved in [7] that any Jordan isomorphism from
T to another ring is either a ring isomorphism or a ring anti-isomorphism, provided that

M is an indecomposable bimodule, faithful as a left R-module and as a right S-module,

Our interest is in the case where 7 =
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and 7 is 2-torsionfree (such a 7 is called an indecomposable triangular ring). We will
refine the method of [7], which itself used some techniques of [4], and describe in Theorem
2.2 Jordan isomorphisms from 7 to another ring assuming only that 7 is 2-torsionfree.
In fact, we construct a class of Jordan isomorphisms from 7 to Morita rings associated
to Morita contexts with zero Morita maps, and show that up to a ring isomorphism, any
Jordan isomorphism from 7 lies in this class. As an application, we give in Theorem 3.1, a
quite large class of rings for which any Jordan isomorphism to another ring is a direct sum
of a ring isomorphism and a ring anti-isomorphism. Immediate consequences of this are
the above-mentioned result of [7] and the fact that a Jordan isomorphism from a complete
upper block triangular matrix ring 7 over a 2-torsionfree ring I' is a direct sum of a ring
isomorphism and a ring anti-isomorphism; this was proved in [5] for upper triangular matrix
rings. If " has only trivial central idempotents, it follows that any Jordan isomorphism from
T is either a ring isomorphism or a ring anti-isomorphism; for upper triangular matrix rings
this recovers results of [4,7].

All rings will be with identity and all modules will be unital. If ¢ : 7 — U is a Jordan
isomorphism between 2-torsionfree rings, then p(xyx) = ¢(x)p(y)@(x) forany x,y € 7,
¢(l7) = 1y, and ¢ maps idempotents to idempotents, see [4,7].

2. The main result

A Morita context with zero Morita maps is just a quadruple (A, B, N1, N2), where A and
B are rings, Ny is a left A, right B-bimodule; N, is a left B, right A-bimodule. The Morita
Ny

ring associated with such a Morita context is N> B
2

, with component-wise addition

and multiplication defined by

a ni a nj\ _ aa’ an’y +nib’
ny b ny b ) \ naa’ + bn) bb’

The following result gives a class of Jordan isomorphisms from a triangular matrix ring.

ProrosiTiON 2.1 Let T = (g A;) be a triangular ring such that M = My & M» as

bimodules. Also let (A, B, N1, N2) be a Morita context with zero Morita maps. Assume
that:

e p:R— A, 0:85 — BareJordan isomorphisms,

e Y1 : My — Ni, ¥ : My — Ny are isomorphisms of additive groups such that
Yirm) = p(r)yi(m), Yi(ms) = yi(m)o(s)foranym € My, r € R,s € S,
Yo(rm) = Yo(m)p(r), Yo(ms) = o (s)ya(m) foranym € My, r € R, s € S,
(shortly, V1 is an additive (p, o)-isomorphism and > is an additive (p, o)-anti-

isomorphism).
RM AN
D(p, 0,91, Y2) : <0 S ) e <N2 B])

Then, the map
rm\ _ [ p@) Yi0m)
(I)(,O,G, 1/[1’ 1”2) (O S) - <1ﬂ‘2(m2) U(S) )7

where m = my + mo, my € My, my € M», is a Jordan isomorphism.

defined by
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Moreover,

(1) ®(p, o, Y1, ¥o) is a ring isomorphism if and only if so are p and o, and M> = 0
(or equivalently N» = 0).

2) D(p, 0, Y1, Y2) is a ring anti-isomorphism if and only if so are p and o, and
M = 0 (or equivalently Ny = 0).

Proof Denote ® = ®(p, o, Y1, ¥2), which is clearly a bijective additive map. It is a
straightforward computation to check that it is a Jordan isomorphism.
For (1), letx = (r m) y = <r’ m/) in <R M) withm = m+my,m’ = m/; +m!
’ 0s ) 0 s 0S ’ 1 2
my, my € My, my, m), € M,. Then a direct computation shows that ®(xy) = ®(x)P(y)
if and only if p(rr") = p(r)p(r'), o (ss") = o (s)o (s"), and Y2 (m5) p(r) — o ()2 (m}) =
Ya(m2) p(r') — o (s")yra(my). The first two relations mean that p and o are ring morphisms,
while the third one (for any x, y) means that N; = 0. Indeed, if r, s and s" are 0, we get
Yo (mp)p(r’) =0, so NoA = 0 and then, N, must be 0. A similar argument proves (2). [

Our main result shows that up to a ring isomorphism, any Jordan isomorphism of
a 2-torsionfree triangular ring is of the form constructed in Proposition 2.1, for some
decomposition of M as a direct sum of bimodules.

THEOREM 2.2 LetT = (g A;) be a 2-torsionfree triangular ring and let U be a ring.

If o : T — U is a Jordan isomorphism, then there exist rings A, B, bimodules AN,

Ny
N> B
such yo = ®(p, o, Y1, Yn) for certain Jordan isomorphisms p : R - A, 0 : S - B
and additive isomorphisms Y1 : M — Ny, ¥y : My — Nj satisfying the conditions of
Proposition 2.1.

BN2,, a ring isomorphism y : U — ) and a decomposition M = M; & M,

Proof Regard R, S and M as embeddedin7,thus7 = R® M @ S. Lete = ¢(1) and
f = @(lg), which are orthogonal idempotents with e + f = 1. As in the proof of [7,
Theorem 3.1], we have that ¢(R) = elle, a ring with identity e, and ¢(S) = fU f, aring
with identity f. Moreover, foranyr € R,m € M,s € S,

p(r)p(ms) = p(rm)e(s) and p(ms)e(r) = ¢(s)prm).

In particular one has

pr)pm) = orm) f, p(m)o(r) = fo(rm)
p(m)e(s) = ep(ms), p(s)pm) = p(ms)e
ep(m) = p(m) f, p(m)e = fo(m).

We note that ¢ (R)p(M) < ¢(M), nevertheless ¢ (M) is not a ¢(R)-module, since in
general ep(m) # @(m). However, ep(M) = (M) f = eld f is a left (R), right ¢(S)-
bimodule, and fo(M) = ¢(M)e = fUe is a left ¢(S), right ¢(R)-bimodule. It is proved
in [7, Theorem 3.1] that M = ¢~ ' (ep(M)) ® ¢~ ' (fo(M)) as left R, right S-bimodules.
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Actually R, S, M are subject to more conditions in [7], but they are not needed for proving
this relation. Denote M| = ¢~ ' (ep(M)) and M> = ¢~ (fo(M)).

Take A = elde, B = fUf, N1 = eldf, Ny = flUe. Consider the Morita context
A Ny
N> B )’

Wehaveld = elle®eld f B fUeD fUf = ¢(R)DBep(M)D fo(M)De(S). We show
that (ep(M))(fo(M)) = (fp(M))(ep(M)) = 0.Indeed, lety € ep(M)andy" € fo(M).
Then, there are m, m’ € M with y = ¢(m) and y’ = ¢(m’). Since mm' = m’'m = 0, one
has yy' + y'y = o(m)em’) + o(m"ep(m) = e(mm’ + m'm) = 0. But yy’ € elde and
y'y € fUf,so we must have yy’ = y’'y = 0. This shows that there is a ring isomorphism

o ) detinea by y = (e f

Since ¢ is a Jordan isomorphism, it induces by restriction and corestriction Jordan

isomorphisms p : R — Aando : § — B, and also additive isomorphisms V| : M| — N
romy+m p(r)  Yi(my)

0 N (lﬁz(mz) o(s) ) for any
reR,seS m € My,mye M. Itremains to show that ¥; is a (p, o)-isomorphism and

Y is a (p, o)-anti-isomorphism.

Letr € Rand m € M. We have {ri(rm) = ¢(rm) € N; = ep(M), so ¢(rm) =
ep(n) = @(n)f for some n € M. Then, p(rm)f = @) f> = () f = @(rm), so
@rm) = o(rm) f = @(r)pm) = p(r)y1(m).

If s € S and m € M then, Y1 (ms) = @(ms) = ep(n) for some n € M. Then, p(ms) =
ep(n) = e*p(n) = ep(ms) = @(m)g(s) = Y1 (m)o (s).

Similarly, one can prove that Y» (rm) = yrp(m)p(r) and ¥ (ms) = o (s)¥(m) for any

reR,meM,ands € S. O

(A, B, N1, N>) with zero Morita maps, and the associated Morita ring <

y: U — )foranyueu.

and Y : My — N. It is clear that y¢ <

The following result shows in some sense what is the obstruction for p and o in
Theorem 2.2 to being ring morphisms or ring anti-morphisms.

ProrosiTioN 2.3 With notation as in Theorem 2.2 and its proof, we have that for any
r,r' € R,s, s’ € S the following hold:

p@rr')y —p(r)p (') € p(anng(My))
p(r'r) — p(r)p (') € planng(My))
o(ss") —o(s)o(s") € planns(My))
o(s's) —o(s)o(s') € planng(Ma))

Proof Letr,r’ € R. Then forany m € M,

e(M)e(rNem) = er)er'm) f = o@r'm) f = e@rr)e(m),

$0 ((r)e") — p@rr'))p(m) = 0. Since p(R) is a subring of U, we have that ¢ (r)p(r’) —
orr’y = @(rg) for some rog € R. Then ep(rom) = @(rom)f = @@r9)p(m) = 0, so
rom = ¢~ '(@(rom)) = ¢~ (fe(rom)) € M,. ThisshowsthatroM € M>.AsroM; C Mj,
we must have roM; = 0, so rg € anng(M;). We conclude that p(rr’) — p(r)p(r') €
planng(My)).
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For the second relation, we see that

em)er)e') = ferm)er’) = for'rm) = o(m)e('r)

so o(m)(p(r)p(r’) — ¢(r'r)) = 0. As for the first relation, if we write @(r)p(’) —
o(r'r) = @(ro), we have that fo(rom) = p(m)e(ro) = 0. Hence, rom € M for any
m, implying ro € anng(M>) and the second relation. The other two relations can be proved
similarly. O

3. Applications

We use Theorem 2.2 and Proposition 2.3 for proving the following result, giving information
about Jordan isomorphisms of a large class of rings.

THeEoREM 3.1 Let C be a commutative ring and R, S be C-algebras. Let M be a left R,
right S-bimodule, faithful on each side, such that any direct summand of M as a bimodule

R M
is of the form ¢M for some idempotent ¢ in C. Let T = 0s ) which is assumed
to be 2-torsionfree. Then for any Jordan isomorphism ¢ : — U, where U is a ring,

there exists an idempotent ¢ € C such that ¢|c7 is a ring isomorphism and ¢|(1—¢)T is a
ring anti-isomorphism. In particular, ¢ is the direct sum of a ring isomorphism and a ring
anti-isomorphism.

Proof By Theorem 2.2, and keeping the notation in its statement and its proof, there is
a decomposition M = M| @ M, as bimodules such that yo = ®(p, o, ¥, ¥2). By our
hypothesis, there is an idempotent ¢ € C such that M| = ¢M and M, = (1 — ¢)M. The
mapping z — (cz, (1 — ¢)z) defines a ring isomorphism 7 >~ ¢7 x (1 — ¢)7.

We have that ¢(clg) and ¢((1 — ¢)1g) are central orthogonal idempotents in ¢(R),
and their sum is e, the identity of @(R). Since ¢(cr) = @(crc) = @(clr)e(r)e(clg) =
@(clr)p(r), we see that ¢ (cR) = ¢(clr)@(R) is a subring of ¢(R), with identity ¢(clg).
Similarly, o ((1—c)1r) = ¢ ((1—c)1r)@(R)isasubring of ¢ (R), withidentity ¢ ((1—c)1g).

We show that ¢c is a ring morphism. Indeed, by Proposition 2.3, ¢ (rr') —(r)e(r’) €
p(anng(My)) = ¢(anng(cM)) = ¢((1 = c)R) = ¢((1 — c)1r)@(R), for any r,r" € R.
Now if r, 7’ € ¢cR, we have ¢ (rr’) — o(r)e(r’) € ¢(clg)@(R), as this is a subring. Since
p(clR)e(R) Ne((1 = c)1g)e(R) = 0, we must have p(rr") — ¢(r)p(r’) = 0.

In a similar way, if we use the relation ¢ (rr’) — o (r)o(r) € p(anng(M>)) = ¢(cR) =
@(clgr)p(R), where r, r’ € R, we obtain that for r, 7’ € (1 — ¢)R,

p(rr") = o(re(r) € p(clR)p(R) Ne((1 = ) 1g)¢(R) =0,

SO @|(1—¢)R 18 a ring anti-morphism.

Similarly, one sees that ¢|cs is a ring morphism and ¢|(]_¢)s is a ring anti-morphism.

We show that @|cps i @ (@|cr, @|cs)-morphism, which in view of Proposition 2.1(1)
shows that ¢|.7 is a ring isomorphism. Indeed, we have ¢(cr)p(cm) = @(crem) f =
¢(crm) f. Since crm = rcm € My, we have ¢(crm) € o(M1) = ¢(M) f, and we get
p(crm) f = @(crm) = @(crcm), showing that ¢ (cr)@(cm) = @(crcm). On the other hand,
p(cm)p(cs) = ep(cmces) = ep(mes). Now mes € My shows that p(mcs) € (M) =
ep(M), and then ep(mcs) = @(mces) = @(cmces). Thus, p(cm)p(cs) = p(cmces).
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In a similar way, one can show that ¢|(1—¢)a is @ (@|(1-c)R» ¢|(1—c)s)-morphism, and
then by Proposition 2.1(2) we see that ¢|(j—.)7 is a ring anti-isomorphism, and this ends
the proof. U

CoroLLARY 3.2[7, Theorem 3.1] Let7 = g A;

If M is R-faithful, S-faithful and indecomposable as a bimodule, then every Jordan isomor-
phism from T onto another ring is either a ring isomorphism or a ring anti-isomorphism.

be a 2-torsionfree triangular ring.

Proof LetC = Z. Since M is indecomposable, a direct summand M| of M is of the form
cM, with ¢ = 0 or ¢ = 1. By Theorem 3.1, we obtain that ¢ is a ring isomorphism for
¢ = 1, and a ring anti-isomorphism for ¢ = 0. O

We recall that a complete upper block triangular matrix ring over a ring I is a ring of
the form

Mg, (T) Mg, q,(T) -+ Mg, q, ()
0 Mg, (T) - May.a,(I)

0 0 0 Mg,(D)

for some positive integers p > 2,dy, da, ..., d). If all the blocks are of size 1, i.e. d| =
... =dp =1, this is just an upper triangular matrix ring.

CoroLLARY 3.3 Let I' be a 2-torsionfree ring and let T be a complete upper block
triangular matrix ring over I'. Then for any Jordan isomorphism ¢ : T — U, where U is
a ring, there exists a central idempotent ¢ € 1" such that ¢|.7 is a ring isomorphism and
@|(1-¢)T I8 a ring anti-isomorphism. Thus, ¢ is the direct sum of a ring isomorphism and a
ring anti-isomorphism. In particular, if I' has only trivial central idempotents, ¢ is either
an isomorphism of rings or an anti-isomorphism of rings.

Proof We regard 7 as a triangular ring (g A;,’), where R is the first diagonal block of

T, say of size p X p, S is the complete upper block triangular matrix ring, say of size ¢ x ¢,
obtained from 7 by deleting the first p rows and the first p columns, and M = M, ,(I).
Let C be the centre of I". By direct computation, or by using [8, Propositions 2.1 and 3.1],
we see that M is faithful as a left R-module and also as a right S-module, and that the
sub-bimodules of M which are direct summands of M are of the form M, ,(I), where 1
is a two-sided ideal of I'. Then, a decomposition of M as a direct sum of sub-bimodules
reduces to a decomposition of I" as a direct sum of ideals. Therefore, a direct summand
of the bimodule M is of the form ¢M for some idempotent ¢ € C. Now we just apply
Theorem 3.1. (]

In the particular case of upper triangular matrix rings, Corollary 3.3 was proved in
[5, Main Theorem 1]. The fact that a Jordan isomorphism from an upper triangular matrix
ring over a 2-torsionfree ring I" having only trivial idempotents is either a ring isomorphism
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or a ring anti-isomorphism was proved in [4] for commutative I, and in [7, Theorem 3.2]
in general.
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