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We construct a class of Jordan isomorphisms from a triangular ring T , and we
show that if T is 2-torsionfree, any Jordan isomorphism from T to another ring
is of this form, up to a ring isomorphism. As an application, we show that for
triangular rings in a large class, any Jordan isomorphism to another ring is a direct
sum of a ring isomorphism and a ring anti-isomorphism. In particular, this applies
to complete upper block triangular matrix rings and indecomposable triangular
rings.
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1. Introduction and preliminaries

Let T and U be rings. An additive isomorphism ϕ : T → U is called a Jordan isomorphism
if ϕ(xy + yx) = ϕ(x)ϕ(y) + ϕ(y)ϕ(x) for any x, y ∈ T . Ring isomorphisms and ring
anti-isomorphisms are examples of Jordan isomorphisms. It was proved that they are the
only such examples in certain special cases: when T ,U are prime rings of characteristic not
2 (see [1,2]), when T = U is a ring of upper triangular matrices over a field with more than
2 elements (see [3]), or more generally over a 2-torsionfree commutative ring having only
trivial idempotents (see [4]). If T is an upper triangular matrix ring over a 2-torsionfree
ring, then any Jordan isomorphism from T to another ring is a direct sum of an isomorphism
and an anti-isomorphism (see [5]). Jordan homomorphisms from upper triangular matrix
rings onto upper triangular matrix rings were investigated in [6] for base rings having only
trivial idempotents.

Our interest is in the case where T =
(

R M
0 S

)
is a triangular ring, i.e. R and S are

rings with identity, M is a left R, right S-bimodule and the addition and multiplication
obey the usual rules for matrices. It was proved in [7] that any Jordan isomorphism from
T to another ring is either a ring isomorphism or a ring anti-isomorphism, provided that
M is an indecomposable bimodule, faithful as a left R-module and as a right S-module,
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Linear and Multilinear Algebra 291

and T is 2-torsionfree (such a T is called an indecomposable triangular ring). We will
refine the method of [7], which itself used some techniques of [4], and describe in Theorem
2.2 Jordan isomorphisms from T to another ring assuming only that T is 2-torsionfree.
In fact, we construct a class of Jordan isomorphisms from T to Morita rings associated
to Morita contexts with zero Morita maps, and show that up to a ring isomorphism, any
Jordan isomorphism from T lies in this class. As an application, we give in Theorem 3.1, a
quite large class of rings for which any Jordan isomorphism to another ring is a direct sum
of a ring isomorphism and a ring anti-isomorphism. Immediate consequences of this are
the above-mentioned result of [7] and the fact that a Jordan isomorphism from a complete
upper block triangular matrix ring T over a 2-torsionfree ring � is a direct sum of a ring
isomorphism and a ring anti-isomorphism; this was proved in [5] for upper triangular matrix
rings. If � has only trivial central idempotents, it follows that any Jordan isomorphism from
T is either a ring isomorphism or a ring anti-isomorphism; for upper triangular matrix rings
this recovers results of [4,7].

All rings will be with identity and all modules will be unital. If ϕ : T → U is a Jordan
isomorphism between 2-torsionfree rings, then ϕ(xyx) = ϕ(x)ϕ(y)ϕ(x) for any x, y ∈ T ,
ϕ(1T ) = 1U , and ϕ maps idempotents to idempotents, see [4,7].

2. The main result

A Morita context with zero Morita maps is just a quadruple (A, B, N1, N2), where A and
B are rings, N1 is a left A, right B-bimodule; N2 is a left B, right A-bimodule. The Morita

ring associated with such a Morita context is

(
A N1

N2 B

)
, with component-wise addition

and multiplication defined by(
a n1
n2 b

) (
a′ n′

1
n′

2 b′
)

=
(

aa′ an′
1 + n1b′

n2a′ + bn′
2 bb′

)

The following result gives a class of Jordan isomorphisms from a triangular matrix ring.

Proposition 2.1 Let T =
(

R M
0 S

)
be a triangular ring such that M = M1 ⊕ M2 as

bimodules. Also let (A, B, N1, N2) be a Morita context with zero Morita maps. Assume
that:

• ρ : R → A, σ : S → B are Jordan isomorphisms,
• ψ1 : M1 → N1, ψ2 : M2 → N2 are isomorphisms of additive groups such that

ψ1(rm) = ρ(r)ψ1(m), ψ1(ms) = ψ1(m)σ (s) for any m ∈ M1, r ∈ R, s ∈ S,
ψ2(rm) = ψ2(m)ρ(r), ψ2(ms) = σ(s)ψ2(m) for any m ∈ M2, r ∈ R, s ∈ S,
(shortly, ψ1 is an additive (ρ, σ )-isomorphism and ψ2 is an additive (ρ, σ )-anti-
isomorphism).
Then, the map

�(ρ, σ,ψ1, ψ2) :
(

R M
0 S

)
→

(
A N1

N2 B

)

defined by

�(ρ, σ,ψ1, ψ2)

(
r m
0 s

)
=

(
ρ(r) ψ1(m1)

ψ2(m2) σ (s)

)
,

where m = m1 + m2, m1 ∈ M1,m2 ∈ M2, is a Jordan isomorphism.
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292 C. Boboc et al.

Moreover,

(1) �(ρ, σ,ψ1, ψ2) is a ring isomorphism if and only if so are ρ and σ , and M2 = 0
(or equivalently N2 = 0).

(2) �(ρ, σ,ψ1, ψ2) is a ring anti-isomorphism if and only if so are ρ and σ , and
M1 = 0 (or equivalently N1 = 0).

Proof Denote � = �(ρ, σ,ψ1, ψ2), which is clearly a bijective additive map. It is a
straightforward computation to check that it is a Jordan isomorphism.

For (1), let x =
(

r m
0 s

)
, y =

(
r ′ m′
0 s′

)
in

(
R M
0 S

)
with m = m1 +m2, m′ = m′

1 +m′
2,

m1,m′
1 ∈ M1, m2,m′

2 ∈ M2. Then a direct computation shows that �(xy) = �(x)�(y)
if and only if ρ(rr ′) = ρ(r)ρ(r ′), σ(ss′) = σ(s)σ (s′), and ψ2(m′

2)ρ(r)− σ(s)ψ2(m′
2) =

ψ2(m2)ρ(r ′)−σ(s′)ψ2(m2). The first two relations mean that ρ and σ are ring morphisms,
while the third one (for any x, y) means that N2 = 0. Indeed, if r, s and s′ are 0, we get
ψ2(m2)ρ(r ′) = 0, so N2 A = 0 and then, N2 must be 0. A similar argument proves (2). �

Our main result shows that up to a ring isomorphism, any Jordan isomorphism of
a 2-torsionfree triangular ring is of the form constructed in Proposition 2.1, for some
decomposition of M as a direct sum of bimodules.

Theorem 2.2 Let T =
(

R M
0 S

)
be a 2-torsionfree triangular ring and let U be a ring.

If ϕ : T → U is a Jordan isomorphism, then there exist rings A, B, bimodules A N1B ,

B N2A , a ring isomorphism γ : U →
(

A N1
N2 B

)
and a decomposition M = M1 ⊕ M2

such γ ϕ = �(ρ, σ,ψ1, ψ2) for certain Jordan isomorphisms ρ : R → A, σ : S → B
and additive isomorphisms ψ1 : M1 → N1, ψ2 : M2 → N2 satisfying the conditions of
Proposition 2.1.

Proof Regard R, S and M as embedded in T , thus T = R ⊕ M ⊕ S. Let e = ϕ(1R) and
f = ϕ(1S), which are orthogonal idempotents with e + f = 1U . As in the proof of [7,
Theorem 3.1], we have that ϕ(R) = eUe, a ring with identity e, and ϕ(S) = f U f , a ring
with identity f . Moreover, for any r ∈ R,m ∈ M, s ∈ S,

ϕ(r)ϕ(ms) = ϕ(rm)ϕ(s) and ϕ(ms)ϕ(r) = ϕ(s)ϕ(rm).

In particular one has

ϕ(r)ϕ(m) = ϕ(rm) f, ϕ(m)ϕ(r) = f ϕ(rm)

ϕ(m)ϕ(s) = eϕ(ms), ϕ(s)ϕ(m) = ϕ(ms)e

eϕ(m) = ϕ(m) f, ϕ(m)e = f ϕ(m).

We note that ϕ(R)ϕ(M) ⊆ ϕ(M), nevertheless ϕ(M) is not a ϕ(R)-module, since in
general eϕ(m) �= ϕ(m). However, eϕ(M) = ϕ(M) f = eU f is a left ϕ(R), right ϕ(S)-
bimodule, and f ϕ(M) = ϕ(M)e = f Ue is a left ϕ(S), right ϕ(R)-bimodule. It is proved
in [7, Theorem 3.1] that M = ϕ−1(eϕ(M)) ⊕ ϕ−1( f ϕ(M)) as left R, right S-bimodules.
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Linear and Multilinear Algebra 293

Actually R, S,M are subject to more conditions in [7], but they are not needed for proving
this relation. Denote M1 = ϕ−1(eϕ(M)) and M2 = ϕ−1( f ϕ(M)).

Take A = eUe, B = f U f , N1 = eU f , N2 = f Ue. Consider the Morita context

(A, B, N1, N2) with zero Morita maps, and the associated Morita ring

(
A N1

N2 B

)
.

We have U = eUe⊕eU f ⊕ f Ue⊕ f U f = ϕ(R)⊕eϕ(M)⊕ f ϕ(M)⊕ϕ(S). We show
that (eϕ(M))( f ϕ(M)) = ( f ϕ(M))(eϕ(M)) = 0. Indeed, let y ∈ eϕ(M) and y′ ∈ f ϕ(M).
Then, there are m,m′ ∈ M with y = ϕ(m) and y′ = ϕ(m′). Since mm′ = m′m = 0, one
has yy′ + y′y = ϕ(m)ϕ(m′) + ϕ(m′)ϕ(m) = ϕ(mm′ + m′m) = 0. But yy′ ∈ eUe and
y′y ∈ f U f , so we must have yy′ = y′y = 0. This shows that there is a ring isomorphism

γ : U →
(

A N1
N2 B

)
, defined by γ (u) =

(
eue eu f
f ue f u f

)
for any u ∈ U .

Since ϕ is a Jordan isomorphism, it induces by restriction and corestriction Jordan
isomorphisms ρ : R → A and σ : S → B, and also additive isomorphismsψ1 : M1 → N1

and ψ2 : M2 → N2. It is clear that γ ϕ

(
r m1 + m2
0 s

)
=

(
ρ(r) ψ1(m1)

ψ2(m2) σ (s)

)
for any

r ∈ R, s ∈ S,m1 ∈ M1,m2 ∈ M2. It remains to show that ψ1 is a (ρ, σ )-isomorphism and
ψ2 is a (ρ, σ )-anti-isomorphism.

Let r ∈ R and m ∈ M1. We have ψ1(rm) = ϕ(rm) ∈ N1 = eϕ(M), so ϕ(rm) =
eϕ(n) = ϕ(n) f for some n ∈ M . Then, ϕ(rm) f = ϕ(n) f 2 = ϕ(n) f = ϕ(rm), so
ϕ(rm) = ϕ(rm) f = ϕ(r)ϕ(m) = ρ(r)ψ1(m).
If s ∈ S and m ∈ M1 then, ψ1(ms) = ϕ(ms) = eϕ(n) for some n ∈ M . Then, ϕ(ms) =
eϕ(n) = e2ϕ(n) = eϕ(ms) = ϕ(m)ϕ(s) = ψ1(m)σ (s).

Similarly, one can prove that ψ2(rm) = ψ2(m)ρ(r) and ψ2(ms) = σ(s)ψ2(m) for any
r ∈ R, m ∈ M2 and s ∈ S. �

The following result shows in some sense what is the obstruction for ρ and σ in
Theorem 2.2 to being ring morphisms or ring anti-morphisms.

Proposition 2.3 With notation as in Theorem 2.2 and its proof, we have that for any
r, r ′ ∈ R, s, s′ ∈ S the following hold:

ρ(rr ′)− ρ(r)ρ(r ′) ∈ ϕ(annR(M1))

ρ(r ′r)− ρ(r)ρ(r ′) ∈ ϕ(annR(M2))

σ (ss′)− σ(s)σ (s′) ∈ ϕ(annS(M1))

σ (s′s)− σ(s)σ (s′) ∈ ϕ(annS(M2))

Proof Let r, r ′ ∈ R. Then for any m ∈ M ,

ϕ(r)ϕ(r ′)ϕ(m) = ϕ(r)ϕ(r ′m) f = ϕ(rr ′m) f = ϕ(rr ′)ϕ(m),

so (ϕ(r)ϕ(r ′)− ϕ(rr ′))ϕ(m) = 0. Since ϕ(R) is a subring of U , we have that ϕ(r)ϕ(r ′)−
ϕ(rr ′) = ϕ(r0) for some r0 ∈ R. Then eϕ(r0m) = ϕ(r0m) f = ϕ(r0)ϕ(m) = 0, so
r0m = ϕ−1(ϕ(r0m)) = ϕ−1( f ϕ(r0m)) ∈ M2. This shows that r0 M ⊆ M2.As r0 M1 ⊆ M1,
we must have r0 M1 = 0, so r0 ∈ annR(M1). We conclude that ρ(rr ′) − ρ(r)ρ(r ′) ∈
ϕ(annR(M1)).
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294 C. Boboc et al.

For the second relation, we see that

ϕ(m)ϕ(r)ϕ(r ′) = f ϕ(rm)ϕ(r ′) = f ϕ(r ′rm) = ϕ(m)ϕ(r ′r)

so ϕ(m)(ϕ(r)ϕ(r ′) − ϕ(r ′r)) = 0. As for the first relation, if we write ϕ(r)ϕ(r ′) −
ϕ(r ′r) = ϕ(r0), we have that f ϕ(r0m) = ϕ(m)ϕ(r0) = 0. Hence, r0m ∈ M1 for any
m, implying r0 ∈ annR(M2) and the second relation. The other two relations can be proved
similarly. �

3. Applications

We use Theorem 2.2 and Proposition 2.3 for proving the following result, giving information
about Jordan isomorphisms of a large class of rings.

Theorem 3.1 Let C be a commutative ring and R, S be C-algebras. Let M be a left R,
right S-bimodule, faithful on each side, such that any direct summand of M as a bimodule

is of the form cM for some idempotent c in C. Let T =
(

R M
0 S

)
, which is assumed

to be 2-torsionfree. Then for any Jordan isomorphism ϕ : T → U , where U is a ring,
there exists an idempotent c ∈ C such that ϕ|cT is a ring isomorphism and ϕ|(1−c)T is a
ring anti-isomorphism. In particular, ϕ is the direct sum of a ring isomorphism and a ring
anti-isomorphism.

Proof By Theorem 2.2, and keeping the notation in its statement and its proof, there is
a decomposition M = M1 ⊕ M2 as bimodules such that γ ϕ = �(ρ, σ,ψ1, ψ2). By our
hypothesis, there is an idempotent c ∈ C such that M1 = cM and M2 = (1 − c)M . The
mapping z 	→ (cz, (1 − c)z) defines a ring isomorphism T 
 cT × (1 − c)T .

We have that ϕ(c1R) and ϕ((1 − c)1R) are central orthogonal idempotents in ϕ(R),
and their sum is e, the identity of ϕ(R). Since ϕ(cr) = ϕ(crc) = ϕ(c1R)ϕ(r)ϕ(c1R) =
ϕ(c1R)ϕ(r), we see that ϕ(cR) = ϕ(c1R)ϕ(R) is a subring of ϕ(R), with identity ϕ(c1R).
Similarly,ϕ((1−c)1R) = ϕ((1−c)1R)ϕ(R) is a subring ofϕ(R), with identityϕ((1−c)1R).

We show that ϕ|cR is a ring morphism. Indeed, by Proposition 2.3, ϕ(rr ′)−ϕ(r)ϕ(r ′) ∈
ϕ(annR(M1)) = ϕ(annR(cM)) = ϕ((1 − c)R) = ϕ((1 − c)1R)ϕ(R), for any r, r ′ ∈ R.
Now if r, r ′ ∈ cR, we have ϕ(rr ′) − ϕ(r)ϕ(r ′) ∈ ϕ(c1R)ϕ(R), as this is a subring. Since
ϕ(c1R)ϕ(R) ∩ ϕ((1 − c)1R)ϕ(R) = 0, we must have ϕ(rr ′)− ϕ(r)ϕ(r ′) = 0.

In a similar way, if we use the relation ϕ(rr ′)−ϕ(r ′)ϕ(r) ∈ ϕ(annR(M2)) = ϕ(cR) =
ϕ(c1R)ϕ(R), where r, r ′ ∈ R, we obtain that for r, r ′ ∈ (1 − c)R,

ϕ(rr ′)− ϕ(r ′)ϕ(r) ∈ ϕ(c1R)ϕ(R) ∩ ϕ((1 − c)1R)ϕ(R) = 0,

so ϕ|(1−c)R is a ring anti-morphism.
Similarly, one sees that ϕ|cS is a ring morphism and ϕ|(1−c)S is a ring anti-morphism.
We show that ϕ|cM is a (ϕ|cR , ϕ|cS)-morphism, which in view of Proposition 2.1(1)

shows that ϕ|cT is a ring isomorphism. Indeed, we have ϕ(cr)ϕ(cm) = ϕ(crcm) f =
ϕ(crm) f . Since crm = rcm ∈ M1, we have ϕ(crm) ∈ ϕ(M1) = φ(M) f , and we get
ϕ(crm) f = ϕ(crm) = ϕ(crcm), showing thatϕ(cr)ϕ(cm) = ϕ(crcm). On the other hand,
ϕ(cm)ϕ(cs) = eϕ(cmcs) = eϕ(mcs). Now mcs ∈ M1 shows that ϕ(mcs) ∈ ϕ(M1) =
eϕ(M), and then eϕ(mcs) = ϕ(mcs) = ϕ(cmcs). Thus, ϕ(cm)ϕ(cs) = ϕ(cmcs).
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Linear and Multilinear Algebra 295

In a similar way, one can show that ϕ|(1−c)M is a (ϕ|(1−c)R , ϕ|(1−c)S)-morphism, and
then by Proposition 2.1(2) we see that ϕ|(1−c)T is a ring anti-isomorphism, and this ends
the proof. �

Corollary 3.2 [7, Theorem 3.1] Let T =
(

R M
0 S

)
be a 2-torsionfree triangular ring.

If M is R-faithful, S-faithful and indecomposable as a bimodule, then every Jordan isomor-
phism from T onto another ring is either a ring isomorphism or a ring anti-isomorphism.

Proof Let C = Z. Since M is indecomposable, a direct summand M1 of M is of the form
cM , with c = 0 or c = 1. By Theorem 3.1, we obtain that ϕ is a ring isomorphism for
c = 1, and a ring anti-isomorphism for c = 0. �

We recall that a complete upper block triangular matrix ring over a ring � is a ring of
the form

A =

⎛
⎜⎜⎝

Md1(�) Md1,d2(�) · · · Md1,dp (�)

0 Md2(�) · · · Md2,dp (�)

· · · · · · · · · · · ·
0 0 · · · Mdp (�)

⎞
⎟⎟⎠

for some positive integers p ≥ 2, d1, d2, . . . , dp. If all the blocks are of size 1, i.e. d1 =
. . . = dp = 1, this is just an upper triangular matrix ring.

Corollary 3.3 Let � be a 2-torsionfree ring and let T be a complete upper block
triangular matrix ring over �. Then for any Jordan isomorphism ϕ : T → U , where U is
a ring, there exists a central idempotent c ∈ � such that ϕ|cT is a ring isomorphism and
ϕ|(1−c)T is a ring anti-isomorphism. Thus, ϕ is the direct sum of a ring isomorphism and a
ring anti-isomorphism. In particular, if � has only trivial central idempotents, ϕ is either
an isomorphism of rings or an anti-isomorphism of rings.

Proof We regard T as a triangular ring

(
R M
0 S

)
, where R is the first diagonal block of

T , say of size p × p, S is the complete upper block triangular matrix ring, say of size q ×q ,
obtained from T by deleting the first p rows and the first p columns, and M = Mp,q(�).
Let C be the centre of �. By direct computation, or by using [8, Propositions 2.1 and 3.1],
we see that M is faithful as a left R-module and also as a right S-module, and that the
sub-bimodules of M which are direct summands of M are of the form Mp,q(I ), where I
is a two-sided ideal of �. Then, a decomposition of M as a direct sum of sub-bimodules
reduces to a decomposition of � as a direct sum of ideals. Therefore, a direct summand
of the bimodule M is of the form cM for some idempotent c ∈ C . Now we just apply
Theorem 3.1. �

In the particular case of upper triangular matrix rings, Corollary 3.3 was proved in
[5, Main Theorem 1]. The fact that a Jordan isomorphism from an upper triangular matrix
ring over a 2-torsionfree ring � having only trivial idempotents is either a ring isomorphism
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296 C. Boboc et al.

or a ring anti-isomorphism was proved in [4] for commutative �, and in [7, Theorem 3.2]
in general.
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