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Let (R,S,RMS,SNR, f, g) be a general Morita context, and let T ¼
�
R RMS

SNR S

�
be the ring associated with this context. Similarly, let T 0 ¼ R0 M0

N0 S 0

� �
be

another Morita context ring. We study the set Iso(T,T 0) of ring isomor-
phisms from T to T 0. Our interest in this problem is motivated by: (i) the
problem to determine the automorphism group of the ring T, and (ii) the

recovery of the non-diagonal tiles problem for this type of generalizedmatrix
rings. We introduce two classes of isomorphisms from T to T 0, the disjoint
union of which is denoted by Iso0(T,T

0). We describe Iso0(T,T
0) by using

the Z-graded ring structure of T and T 0. Our main result characterizes

Iso0(T,T
0) as the set consisting of all semigraded isomorphisms and all anti-

semigraded isomorphisms fromT toT 0, provided that the ringsR0 and S0 are
indecomposable and at least one of M0 and N0 is nonzero; in particular,

Iso0(T,T
0) contains all graded isomorphisms and all anti-graded isomor-

phisms from T to T 0. We also present a situation where Iso0(T,T
0)¼

Iso(T,T 0). This is in the case where R,S,R0 and S0 are rings having only

trivial idempotents and all the Morita maps are zero. In particular, this
shows that the group of automorphisms of T is completely determined.

Keywords: Morita context; bimodule; graded ring; semigraded
isomorphism; automorphism

AMS Subject Classifications: 16W20; 16W50; 16S50; 15A33; 16D20

1. Introduction

Morita contexts appeared as a key ingredient in the work of Morita that described
equivalences between full categories of modules over rings with identities. One of the
fundamental results in this direction says that the categories of left modules over the
rings R and S are equivalent if and only if there exists a strict Morita context
connecting R and S.

Throughout the sequel (R,S, RMS, SNR, f, g) will be a general Morita context, i.e.
R and S are rings with identity, M is a left R, right S-bimodule, N is a left S, right
R-bimodule, f :M�SN!R is a morphism of R,R-bimodules and g :N�RM!S is
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a morphism of S,S-bimodules, such that if we denote [m, n] :¼ f(m� n) and (n,m) :¼
g(n�m), we have that

½m, n�m 0 ¼ mðn,m 0Þ and n½m, n 0� ¼ ðn,mÞn 0 ð1Þ

for all m,m0 2M and all n, n0 2N.
With such a Morita context we associate the ring T ¼ R M

N S

� �
with operations the

formal operations of 2� 2-matrices, using [ , ] and ( , ) in defining the multiplication
(see, e.g. [15, p. 12]), more precisely

r m

n s

� �
r 0 m 0

n 0 s 0

� �
¼

rr 0 þ ½m, n 0� rm 0 þms 0

nr 0 þ sn 0 ðn,m 0Þ þ ss 0

� �
:

T is called the Morita context ring associated with the given Morita context. Such
rings (especially in the case where both Morita maps f and g are zero, or even more
particularly when N¼ 0) have been intensively used to provide examples and
counterexamples in ring theory [15].

The aim of this article is to investigate isomorphisms between two Morita context
rings T as above and T 0 ¼ R0 M0

N0 S 0

� �
. This investigation is motivated by at least the

following two types of problems:

. What are the automorphisms of a Morita context ring T?

. Can we recover the tiles in Morita context rings? For example, if R M
N S

� �
and

R M0

N0 S

� �
are two isomorphic Morita context rings, when are M and M0

(respectively N and N0) isomorphic in some sense?

Automorphisms of various kinds of algebraic structures have been extensively
studied in the literature. Knowing the group of automorphisms of a certain object
can be key information about it. It is a very difficult problem to find all the
automorphisms of T. In fact, as we explain in Remark 4.8, Morita context rings are
up to isomorphism just the rings with non-trivial idempotents (indeed a very large
class of rings), and so there is virtually no hope of finding the automorphisms of T in
the general case. Even in a very particular case, where the rings R and S are the same
and both bimodules M and N are also R, while the Morita maps are just the
multiplication of the ring, the Morita ring is the full 2� 2 matrix ring M2(R), whose
automorphisms are known only for special rings R.

The Skolem–Noether theorem (see, e.g. [8] or [18]) states that if A is a simple
artinian algebra which is finite-dimensional over its centre F, then all F-
automorphisms of A are inner. Jøndrup [10] showed that if A is a simple artinian
algebra which is finite-dimensional over its centre F, then all F-automorphisms of the
ring Un(A) of n� n upper triangular matrices over such a ring A are also inner. (Note
that when n¼ 1, this is the Skolem–Noether theorem.) Jøndrup also computed the
automorphism groups of certain non-semiprime rings, for example,

U2ðk½X �Þ,
k½X � k½X,Y �
0 k½Y �

� �
,

where k is a field and X and Y are indeterminates. The automorphism groups of
k[X,Y ] and k hX,Y i (the free algebra) are known, and in fact equal [7].

Rosenberg and Zelinsky [17] obtained information about the extent to which
it can be true that not all automorphisms of central separable algebras are inner.

546 C. Boboc et al.
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These algebras constitute a class which is more general than the class of matrix

algebras Mn(R) over commutative rings R, considered by Isaacs [9], who showed
that, although not all R-algebra automorphisms of Mn(R) are inner, the extent of this

failure is somehow under control. For example, the commutator of any two

automorphisms and the nth power of each of them are inner.
For any algebra A over a commutative ring R such that every nontrivial

R-algebra endomorphism of A is an R-algebra automorphism, Barker and Kezlan [2]

showed that every R-algebra automorphism � of Un(A) factors as �¼ ’ , where ’ is

inner and  is an R-algebra automorphism of Un(A) which is induced (component-
wise) from some R-algebra automorphism of A, and they provided an example

showing that � itself need not be inner. Jøndrup [11] showed that the above

hypothesis on R-algebra endomorphisms of A, used in obtaining the factorization
�¼ ’ , can be removed in the case where A is a prime R-algebra.

Other papers on automorphisms of algebras of upper triangular matrices,

automorphisms of structural matrix algebras and automorphisms of other types of

subalgebras of full matrix algebras include, for example, [4,5,12,14].
As far as the possible recovery of the tiles is concerned, it was shown in [6] that it

can happen that

R R

R R

� �
’

R 0

R R

� �
’

R R

0 R

� �
’

R 0

0 R

� �

for certain rings R, so the tiles in the non-diagonal positions of a Morita context ring

cannot be recovered in general. However, in [13] a positive recovery result in this vein
was obtained for a generalized triangular matrix ring R RMS

0 S

� �
over rings R and S

having only the idempotents 0 and 1, in particular, over indecomposable commu-

tative rings or over local rings (not necessarily commutative). In addition, the
automorphism group of such a generalized triangular matrix ring was obtained. In

[1] this result was extended to the case where the diagonal rings R and S are strongly

indecomposable (not necessarily commutative) rings, which include rings with only
the trivial idempotents, as well as endomorphism rings of vector spaces, or more

generally, semiprime indecomposable rings. We note that strongly indecomposable

rings are called semicentral reduced rings in [3].
In this sequel, we consider ring isomorphisms between two Morita context rings

T and T 0. We denote the set of all such isomorphisms by Iso(T,T 0). We introduce

two classes Iso00ðT,T
0Þ and Iso10ðT,T

0Þ of such isomorphisms. The disjoint union of

these two classes is denoted by Iso0(T,T
0). As Remark 2.5 shows, Iso0(T,T

0) is much
smaller than Iso(T,T 0) if [ , ] 6¼ 0 or ( , ) 6¼ 0. In the case where T 0 ¼T, we denote

Iso0(T,T ) by Aut0(T ), and we show that it is a subgroup of Aut(T ), and Iso00ðT,T Þ

is a normal subgroup of Aut0(T ).
For understanding Iso0(T,T

0) we emphasize the structure of T and T 0 as Z-
graded rings. There are some other isomorphisms associated with this graded

structure: the set of graded isomorphisms, denoted by Isoþg ðT,T
0Þ, and the set of

anti-graded isomorphisms, denoted by Iso�g ðT,T
0Þ (which we define in Section 3).

We consider IsogðT,T
0Þ ¼ Isoþg ðT,T

0Þ [ Iso�g ðT,T
0Þ. In the case where T 0 ¼T,

Autg(T )¼ Isog(T,T ) is a subgroup of Aut(T ). We show that in the case where

one of the Morita contexts with which T and T 0 are associated is strict, we have that
Iso0(T,T

0)� Isog(T,T
0).
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D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
St

el
le

nb
os

ch
] 

at
 0

4:
42

 1
9 

A
pr

il 
20

12
 



The new concepts of a semigraded isomorphism and an anti-semigraded
isomorphism are introduced in Definition 3.5, and our main result describes
Iso0(T,T

0) in terms of these isomorphisms from T to T 0 in the case where the rings R0

and S0 in the Morita context ring T 0 are indecomposable and at least one of the
bimodules M0 and N0 is nonzero. To be precise, Theorem 3.6 says that, under these
conditions, Iso00ðT,T

0Þ is the set of all semigraded isomorphisms from T to T 0, and
Iso10ðT,T

0Þ is the set of all anti-semigraded isomorphisms from T to T 0, and so
Isog(T,T

0)� Iso0(T,T
0). In particular, this result can be seen as a way to recover tiles

from certain types of isomorphisms.
In the last section, we present a situation where Iso0(T,T

0)¼ Iso(T,T 0). This is in
the case where R, S, R0 and S0 are rings having only trivial idempotents, and all the
Morita maps are zero. In particular, this shows that the tiles can be recovered from
any isomorphism (not only from semigraded or anti-semigraded ones), and also that
the group of automorphisms of T is completely determined.

Throughout this article by ring we understand a ring with identity 1 6¼ 0.

2. Two classes of isomorphisms between Morita context rings

Let (R,S, RMS, SNR, f, g) be a Morita context, with [ , ] and ( , ) the maps defined as in
Section 1, and let T be the associated Morita context ring. Consider another Morita
context ðR0,S 0, R0M

0
S 0 , S 0N

0
R0 , f

0, g 0Þ, and for simplicity we denote also by [ , ] and ( , ) the
maps defined by this second Morita context, and let T 0 be the associated Morita
context ring.

Recall that if � :R!R0 and �2S!S0 are ring isomorphisms, we say that a
morphism u : (M,þ )! (M0,þ ) is a �–�-bimodule isomorphism if

uðrmsÞ ¼ �ðrÞuðmÞ�ðsÞ

for all m2M, r2R, s2S. This is in fact equivalent to the fact that u is an
isomorphism of R–S-bimodules when M0 is regarded as such a bimodule via � and �.

We consider two classes of ring isomorphisms between the Morita context rings T
and T 0, constructed in the following two propositions.

PROPOSITION 2.1 Let ð�, �, u, v,m 00, n
0
0Þ be a 6-tuple such that � :R!R0 and � :S!S0

are ring isomorphisms, u :M!M0 is a �–�-bimodule isomorphism, v :N!N0 is a �–�-
bimodule isomorphism, and m 00 2M

0 and n 00 2N
0 are fixed elements, such that the

following conditions are satisfied:

(i) ½m 00,N
0� ¼ 0 and ðN0,m 00Þ ¼ 0,

(ii) ½M0, n 00� ¼ 0 and ðn 00,M
0Þ ¼ 0,

(iii) [u(m), v(n)]¼ �([m, n]) and (v(n), u(m))¼ �((n,m)) for all m2M, n2N.

Then the map � :T!T 0 defined by

�
r m

n s

� �� �
¼

�ðrÞ �ðrÞm 00 �m 00�ðsÞ þ uðmÞ

n 00�ðrÞ � �ðsÞn
0
0 þ vðnÞ �ðsÞ

� �

is a ring isomorphism.

Proof The additivity (respectively the injectivity) of �, �, u and v ensure that � is
additive (respectively injective).

548 C. Boboc et al.
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Next, let r1, r22R, s1, s22S, m1,m22M, n1, n22N. For the multiplicativity of �
we only show that the entries of

�
r1 m1

n1 s1

� �� �
�

r2 m2

n2 s2

� �� �
and �

r1r2 þ ½m1, n2� r1m2 þm1s2

n1r2 þ s1n2 ðn1,m2Þ þ s1s2

� �� �

in position (1, 2) are equal, since the equality in the other positions can be checked in

a similar way. These are, respectively,

�ðr1Þ ð�ðr2Þm
0
0 �m 00�ðs2Þ þ uðm2Þ

�
þ ð�ðr1Þm

0
0 �m 00�ðs1Þ þ uðm1Þ

�
�ðs2Þ

and

�ðr1Þ ðr1r2 þ ½m1, n2�
�
m 00 �m 00� ððn1,m2Þ þ s1s2

�
þ uðr1m2 þm1s2Þ:

Using the hypotheses of the proposition, both these expressions simplify to

�ðr1Þ�ðr2Þm
0
0 þ �ðr1Þuðm2Þ �m 00�ðs1Þ�ðs2Þ þ uðm1Þ�ðs2Þ:

To see that � is onto, let r 0 m 0

n 0 s 0

� �
2T 0. The surjectivity of �, �, u and v implies that

there are r2R, s2S, m2M and n2N such that �ðrÞ ¼ r 0, �ðsÞ ¼ s 0,

uðmÞ ¼ m 0 � �ðrÞm 00 þm 00�ðsÞ and vðnÞ ¼ n 0 � n 00�ðrÞ þ �ðsÞn
0
0, and so

�
r m

n s

� �� �

¼
�ðrÞ �ðrÞm 00�m 00�ðsÞþ ðm

0 ��ðrÞm 00þm 00�ðsÞÞ

n 00�ðrÞ� �ðsÞn
0
0þðn

0 �n 00�ðrÞþ �ðsÞn
0
0Þ �ðsÞ

� �

¼
r 0 m 0

n 0 s 0

� �
,

which concludes the proof. g

PROPOSITION 2.2 Let ð�, �,�, �,m 0�, n
0
�Þ be a 6-tuple with � :R!S0 and � :S!R0

ring isomorphisms, � : (M,þ)! (N0,þ ) and � : (N,þ)! (M0,þ ) group isomorphisms

such that �(rms)¼ �(r)�(m)�(s) and �(snr)¼ �(s)�(n)�(r) for all m2M, n2N, r2R,

s2S, and m 0� 2M
0 and n 0� 2N

0 are fixed elements, such that the following properties are

satisfied:

(i) ½m 0�,N
0� ¼ 0 and ðN0,m 0�Þ ¼ 0,

(ii) ½M0, n 0�� ¼ 0 and ðn 0�,M
0Þ ¼ 0,

(iii) (�(m), �(n))¼ �([m, n]) and [�(n), �(m)]¼ �((n,m)) for all m2M, n2N.

Then the map  :T!T 0 defined by

 
r m

n s

� �� �
¼

�ðsÞ m 0��ðrÞ � �ðsÞm
0
� þ �ðnÞ

�ðrÞn 0� � n 0��ðsÞ þ �ðmÞ �ðrÞ

� �

is a ring isomorphism.

Proof Similar to the proof of Proposition 2.1. g

We denote by Iso00ðT,T
0Þ and Iso10ðT,T

0Þ the sets of ring isomorphisms defined in

Propositions 2.1 and 2.2 respectively. Of course, Iso00ðT,T
0Þ and Iso10ðT,T

0Þ may be
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empty; for instance, in the case where the ring R is isomorphic neither to R0 nor to S0,

both these sets are empty. In any case we have that Iso00ðT,T
0Þ \ Iso10ðT,T

0Þ ¼ ;.

We denote

Iso0ðT,T
0Þ ¼ Iso00ðT,T

0Þ [ Iso10ðT,T
0Þ:

In the particular case where T 0 ¼T, the isomorphisms defined in Propositions 2.1

and 2.2 are automorphisms of the ring T. We denote Aut00ðT Þ ¼ Iso00ðT,T Þ,

Aut10ðT Þ ¼ Iso10ðT,T Þ and Aut0(T )¼ Iso0(T,T ). Clearly Aut00ðT Þ 6¼ ;, since it

always contains the identity morphism, while Aut10ðT Þ may be empty (e.g. in the

case where R and S are not isomorphic).
Direct verification yields the following two results.

PROPOSITION 2.3 Let T,T 0,T 00 be the Morita context rings associated with the Morita

contexts (R,S,M,N, f, g), (R0,S0,M0,N0, f 0, g 0), (R00,S00,M00,N00, f 00, g00), respectively.

Let �2 Iso00ðT,T
0Þ and � 0 2 Iso00ðT

0,T 00Þ, with � and �0 corresponding to the 6-tuples

ð�, �, u, v,m 00, n
0
0Þ and ð�

0, � 0, u 0, v 0,m000, n
00
0Þ, respectively, and let  2 Iso10ðT,T

0Þ and

 0 2 Iso10ðT
0,T 00Þ, with  and  0 corresponding to the 6-tuples ð�, �,�, �,m 0�, n

0
�Þ and

(�0, �0,�0, �0,m00�, n
00
�), respectively. Then

(i) � 0 � �, 0 �  2 Iso00ðT,T
00Þ,��1 2 Iso00ðT

0,T Þ, � 0 �  , 0 � �2 Iso10ðT,T
00Þ,

 �1 2 Iso10ðT
0,T Þ.

(ii) The six isomorphisms in (i) correspond to the following 6-tuples respectively:

� 0 � �$ ð� 0 � �, � 0 � �, u 0 � u, v 0 � v,m000 þ u 0ðm 00Þ, n
00
0 þ v 0ðn 00ÞÞ,

 0 �  $ ð� 0 � �, � 0 � �, � 0 � �,� 0 � �, � 0ðn 0�Þ �m00�,�
0ðm 0�Þ � n00�Þ,

��1 $ ð��1, ��1, u�1, v�1, u�1ð�m 00Þ, v
�1ð�n 00ÞÞ,

� 0 �  $ ð� 0 � �, � 0 � �, v 0 � �, u 0 � �, u 0ðm 0�Þ �m000, v
0ðn 0�Þ � n000Þ,

 0 � �$ ð� 0 � �, � 0 � �,� 0 � u, � 0 � v, � 0ðn 00Þ þm00�,�
0ðm 00Þ þ n00�ÞÞ,

 �1 $ ð��1, ��1, ��1,��1,��1ðn 0�Þ, �
�1ðm 0�ÞÞ:

COROLLARY 2.4 Aut0(T ) is a subgroup of Aut(T ) and Aut00ðT Þ is a normal subgroup

of Aut0(T ).

Let us note that if (R,S,M,N, f, g) is a Morita context, and T ¼ R M
N S

� �
is the

associated Morita context ring, then (S,R,N,M, g, f ) is also a Morita context, and

we denote by T�1 ¼ S N
M R

� �
its associated Morita context ring. Clearly the map

	T : T! T�1, 	T
r m

n s

� �� �
¼

s n

m r

� �

is a ring isomorphism. In fact, 	T 2 Iso
1
0ðT,T

�1Þ. Moreover, we have that

	�1T ¼ 	T�1 . Hence, it is easy to see from Proposition 2.3 that

Iso10ðT,T
0Þ ¼ Iso00ðT

�1,T 0Þ	T ¼ 	
�1
T 0 Iso

0
0ðT, ðT

0Þ
�1
Þ ð2Þ

The following shows that in general Iso0(T,T
0) 6¼ Iso(T,T 0).

Remark 2.5 Let (R,S,M,N, f, g) and (R0,S0,M0,N0, f 0, g 0) be Morita contexts and

consider the associated Morita context rings T and T 0. Assume that T’T 0. We show

550 C. Boboc et al.
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that if Iso0(T,T
0)¼ Iso(T,T 0), the set of all ring isomorphisms from T to T 0, then

necessarily f, g, f 0 and g 0 are 0 (thus all the maps [ , ] and ( , ) from the two contexts are
zero). Indeed, we also have that Iso0(T

0,T )¼ Iso(T 0,T ). Since T’T 0, we have that

AutðT Þ ¼ f�1 � �2 j �1 2 IsoðT
0,T Þ,�2 2 IsoðT,T

0Þg

¼ f�1 � �2 j �1 2 Iso0ðT
0,T Þ,�2 2 Iso0ðT,T

0Þg

� Aut0ðT Þ,

and so Aut0(T )¼Aut(T ).
Now let m2M. Then 1 m

0 1

� �
2UðT Þ, and let 
2Aut(T ) be the associated inner

automorphism. Then



0 0

n 0

� �� �
¼

1 m

0 1

� �
0 0

n 0

� �
1 �m

0 1

� �

¼
½m, n� �½m, n�m

n �ðn,mÞ

� �

for every n2N. As Aut0(T )¼Aut(T ), 
 must be either in Aut00ðT Þ or in Aut10ðT Þ,
and so 
 0 0

N 0

� �	 �
is either contained in 0 0

N 0

� �
or in 0 M

0 0

� �
. This shows that [m, n]¼ 0 and

(n,m)¼ 0 for all m2M and all n2N. Thus f¼ 0 and g¼ 0. By symmetry one gets also
that f 0 ¼ 0 and g 0 ¼ 0.

3. Isomorphisms associated with the graded structure of Morita context rings

We keep the notation as in Section 2. For basic concepts about graded rings we refer
to [16]. A ring A is Z-graded if A¼	i2ZAi, a direct sum of additive subgroups, such
that AiAj�Aiþj for any i, j2Z.

The Morita context ring T ¼ R M
N S

� �
has a structure of a Z-graded ring with

homogeneous components

T�1 ¼
0 0
N 0

� �
, T0 ¼

R 0
0 S

� �
, T1 ¼

0 M
0 0

� �

and Ti¼ 0 for every i =2 {�1, 0, 1}. Therefore if T 0 is another Morita context ring, we
can consider two classes of ring isomorphisms from T to T 0, related to the graded
structure, as follows:

. Graded isomorphisms, which are isomorphisms � :T!T 0 such that
�ðTiÞ � T 0i for all i2Z. We denote by Isoþg ðT,T

0Þ the set of all such
isomorphisms.

. Anti-graded isomorphisms, which are isomorphisms � :T!T 0 such that
�ðTiÞ � T 0�i for all i2Z. We denote by Iso�g ðT,T

0Þ the set of all such
isomorphisms.

We denote by IsogðT,T
0Þ ¼ Isoþg ðT,T

0Þ [ Iso�g ðT,T
0Þ. It is clear that if M 6¼ 0 or

N 6¼ 0, then the sets Isoþg ðT,T
0Þ and Iso�g ðT,T

0Þ are disjoint. If M¼ 0 and N¼ 0, we
have that Isoþg ðT,T

0Þ ¼ Iso�g ðT,T
0Þ. Obviously, Isog(T,T

0) can be empty, for
instance in the case where the rings T and T 0 are not isomorphic.

In the particular case where T 0 ¼T, we use the notation Autþg ðT Þ ¼ Isoþg ðT,T Þ,
Aut�g ðT Þ ¼ Iso�g ðT,T Þ and AutgðT Þ ¼ Autþg ðT Þ [Aut�g ðT Þ. We note that Autþg ðT Þ
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is always non-empty, since it contains the identity morphism, while Aut�g ðT Þ may be
empty. It is easy to see that Autg(T ) is a subgroup of Aut(T ), and Autþg ðT Þ is a
normal subgroup of Autg(T ).

We recall that a Morita context (R,S,M,N, f, g) is strict if f and g are surjective,
and this implies that f and g are isomorphisms. In this case, the bilinear maps [ , ] and
( , ) are left and right non-degenerate (i.e. for example if [m,N]¼ 0 for some m2M,
then m¼ 0). Let us note that if Iso0(T,T

0) 6¼ ;, then the Morita context with which T
is associated is strict if and only if so is the Morita context with which T 0 is
associated. Indeed, if there exists �2 Iso00ðT,T

0Þ, associated with the 6-tuple
ð�, �, u, v,m 00, n

0
0Þ, then the relations [u(m), v(n)]¼ � ([m, n]) and (v(n), u(m))¼ �((n,m)),

combined with the surjectivity of u, v, �, �, show that f and g are surjective if and only
if f 0 and g 0 are surjective. Similarly in the case where there exists �2 Iso10ðT,T

0Þ.

PROPOSITION 3.1 If the Morita context with which T (or T 0) is associated is strict,
then Iso0(T,T

0)� Isog(T ).

Proof If Iso0(T,T
0)¼;, the result is clear. If Iso0(T,T

0) 6¼ ;, then by the remark
preceding this proposition, the Morita context with which T is associated is strict if
and only if so is the Morita context with which T 0 is associated. Therefore we can
assume that both these contexts are strict.

Let �2 Iso00ðT,T
0Þ be associated with the 6-tuple ð�, �, u, v,m 00, n

0
0Þ. Since the

Morita context is strict, the condition ½m 00,N
0� ¼ 0 implies that m 00 ¼ 0. Similarly,

n 00 ¼ 0. Then � r m
n s

� �	 �
¼
�
�ðrÞ uðmÞ
vðnÞ �ðsÞ

�
, and so �2 Isoþg ðT,T

0Þ. Similarly, any

�2 Iso10ðT,T
0Þ is of the form � r m

n s

� �	 �
¼ �ðsÞ �ðnÞ

�ðmÞ �ðrÞ

h i
for some �, �,�, �, and so

�2 Iso�g ðT,T
0Þ. g

We recall that a ring A is called indecomposable if it is not isomorphic to a direct
product of two rings with identity; this is equivalent to the fact that the only central
idempotents of A are 0 and 1. We will need the following simple fact.

LEMMA 3.2 Let T ¼ R M
N S

� �
be a Morita context ring. Then the central idempotent

elements of T are the matrices of the form r 0
0 s

� �
, where r and s are central idempotents

of R and S respectively, such that rm¼ms for all m2M, and sn¼ nr for all n2N.

Proof By looking at the commutation relations with 1 0
0 0

� �
, we see that a central

element of T must be of the form X ¼ r 0
0 s

� �
, and it is clear that rmust be central in R,

and s must be central in S. If moreover X is an idempotent, then r and s are central
idempotents in R and S, respectively. Looking at the commutation relations with an
elements of the form 0 m

n 0

� �
, we get that rm¼ms for all m2M, and sn¼ nr for all

n2N. Clearly any such matrix r 0
0 s

� �
is a central idempotent of T. g

An immediate consequence is the following.

COROLLARY 3.3 Let T ¼ R M
N S

� �
be a Morita context ring such that R and S are

indecomposable rings and not both M and N are zero. Then T is an indecomposable ring.

Another consequence of Lemma 3.2 shows that T can be indecomposable
without both R and S being so.

Example 3.4 Let R be a ring which is not indecomposable, and S¼Z. Let M¼R,
regarded as an R–Z-bimodule, and N¼ 0. Then using Lemma 3.2, it is easy to see
that T does not have non-trivial central idempotents, and so it is indecomposable.
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At this point we introduce two new types of isomorphisms related to the graded

structure of T and T 0.

Definition 3.5 Let � :T!T 0 be an isomorphism between the Morita context rings

T and T 0. Then � is called

. a semigraded isomorphism if �ðTiÞ � T 0i for all i2 {�1, 1},

. an anti-semigraded isomorphism if �ðTiÞ � T 0�i for all i2 {�1, 1}.

Now we can prove the main result of this section.

THEOREM 3.6 Let T ¼ R M
N S

� �
and T 0 ¼ R0 M0

N0 S 0

� �
be Morita context rings such that R0

and S0 are indecomposable rings, and at least one of M0 and N0 is nonzero. Then the

following assertions hold:

. Iso00ðT,T
0Þ is the set of all semigraded isomorphisms from T to T 0.

. Iso10ðT,T
0Þ is the set of all anti-semigraded isomorphisms from T to T 0.

In particular, Isog(T,T
0)� Iso0(T,T

0).

Proof (1) It is clear that any �2 Iso00ðT,T
0Þ is a semigraded isomorphism.

Let � be a semigraded isomorphism from T to T 0. Then there exist u :M!M0

and v :N!N0 such that

�
0 m

0 0

� �� �
¼

0 uðmÞ

0 0

� �
ð3Þ

for every m2M, and

�
0 0

n 0

� �� �
¼

0 0

vðnÞ 0

� �
ð4Þ

for every n2N. Clearly u and v are injective additive morphisms.

Let � 1 0
0 0

� �	 �
¼

r 0
0

m 0
0

n 0
0

s 0
0

h i
. Since 1 0

0 0

� �
is an idempotent in T, we have that r 0

0
m 0

0

n 0
0

s 0
0

h i
is an

idempotent in T 0, which in particular implies that

ðr 00Þ
2
þ ½m 00, n

0
0� ¼ r 00 ð5Þ

and

ðs 00Þ
2
þ ðn 00,m

0
0Þ ¼ s 00: ð6Þ

Since 1 0
0 0

� �
T 0 0

0 1

� �
¼ 0 M

0 0

� �
, by applying � we get that

r 00 m 00
n 00 s 00

� �
T 0

1� r 00 �m 00
�n 00 1� s 00

� �
�

0 M0

0 0

� �
: ð7Þ

Equation (7) also shows that for every m0 2M0,

r 00 m 00

n 00 s 00

" #
0 m 0

0 0

" #
1� r 00 �m 00

�n 00 1� s 00

" #
¼
�r 00½m

0,n 00� r 00m
0ð1� s 00Þ

�ðn 00,m
0Þn 00 ðn

0
0,m

0Þð1� s 00Þ

" #
2

0 M0

0 0

" #
,
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implying that

r 00½m
0, n 00� ¼ 0 ð8Þ

and

ðn 00,m
0Þð1� s 00Þ ¼ 0: ð9Þ

Also, we have that for every n0 2N0,

r 00 m 00

n 00 s 00

" #
0 0

n 0 0

" #
1� r 00 �m 00

�n 00 1� s 00

" #
¼
½m 00, n

0�ð1� r 00Þ �½m
0
0,n
0�m 00

s 00n
0ð1� r 00Þ �s 00ðn

0,m 00Þ

" #
2

0 M0

0 0

" #
,

implying that

½m 00, n
0�ð1� r 00Þ ¼ 0 ð10Þ

and

s 00ðn
0,m 00Þ ¼ 0: ð11Þ

Similarly, by using the fact that

1� r 00 �m 00

�n 00 1� s 00

" #
T 0

r 00 m 00

n 00 s 00

" #
�

0 0

N0 0

" #
,

we obtain that

½m 00, n
0�r 00 ¼ 0 ð12Þ

and

ð1� s 00Þðn
0,m 00Þ ¼ 0, ð13Þ

as well as that

ð1� r 00Þ½m
0, n 00� ¼ 0 ð14Þ

and

ðn 00,m
0Þs 00 ¼ 0 ð15Þ

for every m0 2M0 and n0 2N0.
Adding in pairs relations (8) and (14), (9) and (15), (10) and (12), (11) and (13),

we see that

½m 0, n 00� ¼ 0, ðn 00,m
0Þ ¼ 0, ½m 00, n

0� ¼ 0, ðn 0,m 00Þ ¼ 0, ð16Þ

for every m0 2M0 and n0 2N0.
Now if we use (16) in (5) and (6), we find that r 00 is an idempotent of R0, and s 00 is

an idempotent of S0.
If we apply � to the relation 1 0

0 0

� �
0 m
0 0

� �
¼ 0 m

0 0

� �
, where m2M, we obtain that

r 00uðmÞ ¼ uðmÞ ð17Þ

for every m2M.
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Similarly, if we apply � to the relation 0 m
0 0

� �
1 0
0 0

� �
¼ 0, we obtain that

uðmÞs 00 ¼ 0 ð18Þ

for every m2M.
Similarly, we get that

vðnÞr 00 ¼ vðnÞ ð19Þ

and

s 00vðnÞ ¼ 0 ð20Þ

for every n2N.
Now fix some a 0 2R0, b 0 2S0. Since � is surjective, there exists r p

q s

h i
2T such that

�
	�

r p
q s

��
¼ a 0 0

0 b 0

� �
. Then � r 0

0 s

� �	 �
¼
�

a 0 �uð pÞ
�vðqÞ b 0

�
. Apply � to the relation

1 0
0 0

� �
r 0
0 s

� �
¼

r 0
0 s

� �
1 0
0 0

� �

and get

r 00 m 00
n 00 s 00

� �
a 0 �uð pÞ

�vðqÞ b 0

� �
¼

a 0 �uð pÞ

�vðqÞ b 0

� �
r 00 m 00
n 00 s 00

� �
:

In particular, this implies that

r 00a
0 � ½m 00, vðqÞ� ¼ a 0r 00 � ½uð pÞ, n

0
0�,

which in view of (16) shows that r 00a
0 ¼ a 0r 00. Also we get that

�ðn 00, uð pÞÞ þ s 00b
0 ¼ �ðvðqÞ,m 00Þ þ b 0s 00,

which shows that s 00b
0 ¼ b 0s 00. Thus r

0
0 is a central idempotent in R0 and s 00 is a central

idempotent in S0. Since R0 and S0 are indecomposable rings, we conclude that r 00 must

be either 0 or 1 and s 00 must be either 0 or 1.
On the other hand, T 0 is an indecomposable ring by Corollary 3.3. This implies

that not both M and N are zero, otherwise T’R�S, which is not indecomposable.
Since r 00uðmÞ ¼ uðmÞ for all m2M by (17), vðnÞr 00 ¼ vðnÞ for all n2N by (19), and

at least one ofM and N is nonzero, we cannot have r 00 ¼ 0 (otherwise u or v could not

be injective); therefore, r 00 ¼ 1. Similarly, since uðmÞs 00 ¼ 0 for all m2M by (18), and

s 00vðnÞ ¼ 0 for all n2N by (20), we must have s 00 ¼ 0. We have obtained that

�
1 0
0 0

� �� �
¼

1 m 00
n 00 0

� �
:

Next, let r2R. Then

�
r 0

0 0

� �� �
¼

r 01 m 01

n 01 s 01

� �

for some r 01 2R
0,m 01 2M

0, n 01 2N
0 and s 01 2S

0. Apply � to the relations

r 0
0 0

� �
1 0
0 0

� �
¼

r 0
0 0

� �
¼

1 0
0 0

� �
r 0
0 0

� �
,
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and obtain that

r 01 m 01

n 01 s 01

� �
1 m 00
n 00 0

� �
¼

r 01 m 01

n 01 s 01

� �
¼

1 m 00
n 00 0

� �
r 01 m 01

n 01 s 01

� �
,

and so, using (16), we obtain that

r 01 r 01m
0
0

n 01 þ s 01n
0
0 0

� �
¼

r 01 m 01
n 01 s 01

� �
¼

r 01 m 01 þm 00s
0
1

n 00r
0
1 0

� �
:

This shows that

m 01 ¼ r 01m
0
0, s 01 ¼ 0, n 01 ¼ n 00r

0
1,

and so

�
r 0

0 0

� �� �
¼

r 01 r 01m
0
0

n 00r
0
1 0

� �
:

Consequently, if we define � :R!R0 by �ðrÞ ¼ r 01, then

�
r 0
0 0

� �� �
¼

�ðrÞ �ðrÞm 00
n 00�ðrÞ 0

� �
ð21Þ

for all r2R. Moreover, it is clear from (21) that � is additive and injective.
Applying � to

r1 0

0 0

� �
r2 0

0 0

� �
¼

r1r2 0

0 0

� �
, r1, r2 2R,

we get

�ðr1Þ �ðr1Þm
0
0

n 00�ðr1Þ 0

� �
�ðr2Þ �ðr2Þm

0
0

n 00�ðr2Þ 0

� �
¼

�ðr1r2Þ �ðr1r2Þm
0
0

n 00�ðr1r2Þ 0

� �
:

Looking at position (1,1), and taking into account that ½�ðr1Þm
0
0, n
0
0�ðr2Þ� ¼

�ðr1Þ½m
0
0, n
0
0��ðr2Þ ¼ 0, we find that � is multiplicative. Therefore � is an injective

ring morphism.
Now

�
0 0

0 1

� �� �
¼

0 �m 00

�n 00 1

� �
,

and so similar arguments as above provide a map � :S!S0 such that

�
0 0

0 s

� �� �
¼

0 �m 00�ðsÞ

��ðsÞn 00 �ðsÞ

� �
ð22Þ

for all s2S. Also, we obtain in a similar way to � that � is an injective ring morphism.
We conclude from (3), (4), (21) and (22) that

�
r m

n s

� �� �
¼

�ðrÞ �ðrÞm 00 �m 00�ðsÞ þ uðmÞ

n 00�ðrÞ � �ðsÞn
0
0 þ vðnÞ �ðsÞ

� �
ð23Þ

for all r2R, s2S, m2M, n2N.
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We have that � and � are surjective. Indeed, let r 0 2R0, s 0 2S0. Then there exists
r m
n s

� �
2T such that

r 0 0

0 s 0

� �
¼ �

r m

n s

� �� �
¼

�ðrÞ �ðrÞm 00 �m 00�ðsÞ þ uðmÞ

n 00�ðrÞ � �ðsÞn
0
0 þ vðnÞ �ðsÞ

� �
,

and so �(r)¼ r 0 and �(s)¼ s 0. Therefore � :R!R0 and � :S!S0 are ring

isomorphisms.
We also have that u and v are surjective. Indeed, for m0 2M0 and n0 2N0 there is

r m
n s

� �
2T such that

0 m 0

n 0 0

� �
¼ �

r m

n s

� �� �
¼

�ðrÞ �ðrÞm 00 �m 00�ðsÞ þ uðmÞ

n 00�ðrÞ � �ðsÞn
0
0 þ vðnÞ �ðsÞ

� �
:

Since � and � are injective, we get that r¼ 0 and s¼ 0, and then m0 ¼ u(m)

and n0 ¼ v(n).
Next we show that u is a �–�-bimodule isomorphism, i.e. u(rms)¼ �(r)u(m)�(s) for

all r2R, m2M, s2S, and v is a �–�-bimodule isomorphism. Let r2R, and let

m2M. If we apply � to

r 0

0 0

� �
0 m

0 0

� �
¼

0 rm

0 0

� �
,

then by (23)

�ðrÞ �ðrÞm 00
n 00�ðrÞ 0

� �
0 uðmÞ

0 0

� �
¼

0 uðrmÞ

0 0

� �
,

and so it follows from position (1, 2) that

uðrmÞ ¼ �ðrÞuðmÞ:

Similarly,

uðmsÞ ¼ uðmÞ�ðsÞ, vðsnÞ ¼ �ðsÞvðnÞ and vðnrÞ ¼ vðnÞ�ðrÞ

for all r2R, s2S, m2M, n2N.
Finally we show that (iii) in Proposition 2.1 is satisfied. Let m2M, n2N.

Applying � to

0 m

0 0

� �
0 0

n 0

� �
¼
½m, n� 0

0 0

� �
,

we obtain that

0 uðmÞ

0 0

� �
0 0

vðnÞ 0

� �
¼

�ð½m, n�Þ �ð½m, n�Þm 00
n 00�ð½m, n�Þ 0

� �
,

and so [u(m), v(n)]¼ �([m, n]). Similarly, (v(n), u(m))¼ �((n,m)). We thus conclude

that �2 Iso00ðT,T
0Þ.

(2) It is clear that any �2 Iso10ðT,T
0Þ is an anti-semigraded isomorphism.

Conversely, let � be an anti-semigraded isomorphism from T to T 0. If 	T :T!T�1 is

the canonical isomorphism, then �	�1T : T�1! T 0 is a semigraded isomorphism,
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so by the first part of the theorem we have that �	�1T 2 Iso
0
0ðT
�1,T 0Þ. Then

�2 Iso00ðT
�1,T 0Þ	T ¼ Iso10ðT,T

0Þ by the first equality in equation (2). g

Remark 3.7 Assume that R, S, R0 and S0 are indecomposable rings, and all ofM, N,
M0 and N0 are zero. Then identifying T¼R�S and T 0 ¼R0 �S0, it is easy to see that
any isomorphism � :T!T 0 is either of the form �(r, s)¼ (�(r), �(s)) for some
isomorphisms � :R!R0 and � :S!S0, or of the form �(r, s)¼ (�(s), �(r)) for some
isomorphisms � :R!S0 and � :S!R0. Therefore we have that
IsoðT,T 0Þ ¼ IsogðT,T

0Þ ¼ Isoþg ðT,T
0Þ ¼ Iso�g ðT,T

0Þ, and this is the set of all
semigraded isomorphisms from T to T 0 (and also the set of all anti-semigraded
isomorphisms from T to T 0). Also it is the disjoint union of Iso00ðT,T

0Þ and
Iso10ðT,T

0Þ, so Iso(T,T 0)¼ Isog(T,T
0)¼ Iso0(T,T

0).

COROLLARY 3.8 If R, S, R0 and S0 are indecomposable, then Isog(T,T
0)� Iso0(T,T

0).

Proof The result is clear if Isog(T,T
0)¼;. Assume now that Isog(T,T

0) is non-
empty, implying that T and T 0 are isomorphic. If not both M0 and N0 are zero, then
the result follows from Theorem 3.6. If M0 ¼ 0 and N0 ¼ 0, then we also must have
M¼ 0 and N¼ 0 (otherwise T is indecomposable by Corollary 3.3, while T 0 is not
so), and the result follows from Remark 3.7. g

COROLLARY 3.9 If R,S,R0 and S0 are indecomposable rings and the Morita context
with which T (or T 0) is associated is strict, then Isog(T,T

0)¼ Iso0(T,T
0).

Proof It follows from Proposition 3.1 and Corollary 3.8. g

Remark 3.10 If R and S are not indecomposable, then Autg(T ) is not necessarily
contained in Aut0(T ). Indeed, consider, for example, the case where R¼S�S,
M¼ 0 and N¼ 0. Then we can identify T with S�S�S , and the map � :T!T,
�(s1, s2, s3)¼ (s1, s3, s2), s1, s2, s32S, is an automorphism of T, which is clearly graded,
since T¼T0, but it is easy to see that � =2Aut0(T ).

4. Automorphisms in the case of zero Morita maps

Let T ¼ R M
N S

� �
and T 0 ¼ R0 M0

N0 S 0

� �
be Morita context rings. We have seen that in

general Iso0(T,T
0) is smaller than Iso(T,T 0). Remark 2.5 shows that if

Iso0(T,T
0)¼ Iso(T,T 0) 6¼ ;, then necessarily all the Morita maps in both Morita

contexts are zero. In this section we show that the converse also holds, provided that
the rings R and S have only 0 and 1 as idempotents.

Throughout this section T and T 0 will be Morita context rings as above such that
R,S,R0 and S0 have only 0 and 1 as idempotents, and the Morita maps are zero in
each of the two contexts with which T and T 0 are associated.

First note that a matrix r m
n s

� �
in T is idempotent if and only if

r2 ¼ r, s2 ¼ s, rmþms ¼ m and nrþ sn ¼ n:

Therefore, apart from the trivial idempotents 0 0
0 0

� �
and 1 0

0 1

� �
, the other idempotents

of T are of the form

1 m

n 0

� �
or

0 m

n 1

� �
: ð24Þ
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The two types of idempotents in (24) will henceforth be called type 1 idempotents

and type 2 idempotents, respectively.
We look at the action of an isomorphism � :T!T 0 on an idempotent E2T of

the form

1 m

0 0

� �
,

1 0

n 0

� �
,

0 m

0 1

� �
or

0 0

n 1

� �
:

Note that the first two are type 1 idempotents, and the last two are type 2

idempotents. Since � is injective and �(E) is also an idempotent, we have that �(E)
has one of the forms in (24) inside the ring T 0.

LEMMA 4.1 If there exists m12M such that � maps the type 1 idempotent 1 m1

0 0

� �
to a

type 2 idempotent, then

(a) � maps every type 1 idempotent of the form 1 m
0 0

� �
to a type 2 idempotent; and

(b) there is a fixed element a 02 2M
0 and a map v2: M!N0 such that, for all m2M,

�
1 m
0 0

� �� �
¼

0 a 02
v2ðmÞ 1

� �
:

Proof Let � 1 m1

0 0

� �	 �
¼
� 0 m 0

1

n 0
1

1

�
for some m 01 2M

0, n 01 2N
0.

(a) Suppose there is an m2M such that � 1 m
0 0

� �	 �
is a type 1 idempotent,

i.e. � 1 m
0 0

� �	 �
¼ 1 m 0

n 0 0

� �
for some m0 2M0, n0 2N0. Since 1 m1

0 0

� �
1 m
0 0

� �
¼ 1 m

0 0

� �
,

applying � yields

0 m 01
n 01 1

� �
1 m 0

n 0 0

� �
¼

1 m 0

n 0 0

� �
: ð25Þ

Equating the entries in position (1, 1) in (25), we get that 0¼ 1, a contradiction.

Hence, � maps every type 1 idempotent of the form 1 m
0 0

� �
to a type 2 idempotent.

(b) By (a), there are maps 	2: M!M0 and v2: M!N0 such that

�
1 m

0 0

� �� �
¼

0 	2ðmÞ

v2ðmÞ 1

� �

for all m2M. Let m and m0 be arbitrary elements of M. Applying � to
1 m0

0 0

� �
1 m
0 0

� �
¼ 1 m

0 0

� �
, we obtain that

0 	2ðm0Þ

v2ðm0Þ 1

� �
0 	2ðmÞ

v2ðmÞ 1

� �
¼

0 	2ðmÞ

v2ðmÞ 1

� �
:

Position (1, 2) shows that 	2(m)¼	2(m0). Consequently, 	2 is a constant function,

say 	2ðmÞ ¼ a 02 for some fixed a 02 2M
0, which concludes the proof. g

COROLLARY 4.2 If there is an m2M such that � maps the type 1 idempotent 1 m
0 0

� �
to

a type 1 idempotent, then

(a) � maps every type 1 idempotent of the form 1 m
0 0

� �
to a type 1 idempotent; and

(b) there is a fixed element b 01 2N
0 and a map u1: M!M0 such that for all m2M,

�
1 m

0 0

� �� �
¼

1 u1ðmÞ

b 01 0

� �
:

Proof (a) This is an immediate consequence of Lemma 4.1(a).
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(b) By (a), there are maps u1: M!M0 and �1: M!N0 such that

�
1 m

0 0

� �� �
¼

1 u1ðmÞ

�1ðmÞ 0

� �

for any m2M. Proceeding as in the proof of Lemma 4.1(b), but using position (2, 1)

instead of position (1, 2), the desired result follows. g

The foregoing results are summarized in:

PROPOSITION 4.3 Either there is a map u1: M!M0 and a fixed element b 01 2N
0 such

that � maps every type 1 idempotent of the form 1 m
0 0

� �
to a type 1 idempotent of the

form
�
1 u1ðmÞ
b 0
1

0

�
, or there is a map v2: M!N0 and a fixed element a 02 2M

0 such that �
maps every type 1 idempotent of the form 1 m

0 0

� �
to a type 2 idempotent of the form� 0 a 0

2

v2ðmÞ 1

�
.

Similar arguments yield the following result for the action of � on type 1

idempotents of the form 1 0
n 0

� �
:

PROPOSITION 4.4 For all n2N, either � 1 0
n 0

� �	 �
¼
� 1 a 0

1

v1ðnÞ 0

�
for some fixed a 01 2M

0 and

some map v1: N!N0, or � 1 0
n 0

� �	 �
¼
�
0 u2ðnÞ
b 0
2

1

�
for some fixed b 02 2N

0 and some

map u2 :N!M0.

Setting m¼ 0 in 1 m
0 0

� �
in Proposition 4.3 and setting n¼ 0 in 1 0

n 0

� �
in Proposition

4.4, we obtain in both cases the type 1 idempotent 1 0
0 0

� �
, and so if we consider

positions (1, 1) and (2, 2) of the possible actions of � on 1 0
0 0

� �
as described in these

two propositions, we arrive at:

COROLLARY 4.5 For all m2M and all n2N, either

ðI 0Þ �
1 m

0 0

� �� �
¼

1 u1ðmÞ

v1ð0Þ 0

� �
and �

1 0

n 0

� �� �
¼

1 u1ð0Þ

v1ðnÞ 0

� �

for some maps u1: M!M0 and v1 :N!N0, or

ðI00Þ �
1 m

0 0

� �� �
¼

0 u2ð0Þ

v2ðmÞ 1

� �
and �

1 0

n 0

� �� �
¼

0 u2ðnÞ

v2ð0Þ 1

� �

for some maps u2: N!M0 and v2: M!N0.

We set

m 00 :¼ u1ð0Þ and n 00 :¼ v1ð0Þ,

where u1 and v1 are as in Corollary 4.5.
Turning our attention to type 2 idempotents of the form 0 n

n 1

� �
and 0 0

n 1

� �
, it can be

verified as above that

COROLLARY 4.6 For all m2M and all n2N, either

ðII 0Þ �
0 m

0 1

� �� �
¼

0 h1ðmÞ

p1ð0Þ 1

� �
and �

0 0

n 1

� �� �
¼

0 h1ð0Þ

p1ðnÞ 1

� �

for some maps h1: M!M0 and p1: N!N0, or
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ðII00Þ �
0 m

0 1

� �� �
¼

1 h2ð0Þ

p2ðmÞ 0

� �
and �

0 0

n 1

� �� �
¼

1 h2ðnÞ

p2ð0Þ 0

� �

for some maps h2: N!M0 and p2: M!N0.

THEOREM 4.7 Let R,S,R0 and S0 be rings having only trivial idempotents, M an R–S-

bimodule, N an S–R-bimodule, M0 an R0–S0-bimodule and N0 an S0–R0-bimodule. Let

T ¼ R M
N S

� �
and T 0 ¼ R0 M0

N0 S 0

� �
be the associated Morita context rings, where the contexts

are considered with both Morita maps equal to zero. Then Iso0(T,T
0)¼ Iso(T,T 0).

Proof The result is clear if lso(T,T 0)¼;. Assume that Iso(T,T 0) is non-empty,

i.e. T and T 0 are isomorphic. If both M and N are zero, then T’R�S is not

indecomposable. This forces M0 and N0 to be zero, otherwise T 0 would be

indecomposable by Corollary 3.3. Now Iso0(T,T
0)¼ Iso(T,T 0) by Remark 3.7.

Assume now that at least one of M and N is non-zero. Then as above we cannot

have both M0 and N0 equal to zero. Let � :T!T 0 be a ring isomorphism. Since
1 0
0 0

� �
þ 0 0

0 1

� �
¼ 1 0

0 1

� �
, it follows from Corollaries 4.5–4.6, by considering position

(2,2), that (I 0) and (II00) cannot simultaneously hold; neither can (I00) and (II0)

simultaneously hold. Therefore, either (I 0) and (II0) are true, or (I00) and (II00) are true.
We first consider

(I 0) and (II0): For every m2M,

�
0 m

0 0

� �� �
¼ �

1 m

0 0

� �� �
þ �

0 0

0 1

� �� �
� �

1 0

0 1

� �� �

¼
1 u1ðmÞ

v1ð0Þ 0

� �
þ

0 h1ð0Þ

p1ð0Þ 1

� �
�

1 0

0 1

� �

¼
0 u1ðmÞ þ h1ð0Þ

v1ð0Þ þ p1ð0Þ 0

� �
,

and setting m¼ 0, we conclude that

h1ð0Þ ¼ �m
0
0:

Hence, defining u: M!M0 by uðmÞ ¼ u1ðmÞ �m 00, it follows that

�
0 m

0 0

� �� �
¼

0 uðmÞ

0 0

� �
ð26Þ

for all m2M.
Similarly, considering the equality

�
0 0

n 0

� �� �
¼ �

1 0

n 0

� �� �
þ �

0 0

0 1

� �� �
� �

1 0

0 1

� �� �

and defining v :N!N0 by v(n)¼ v1(n)� v1(0), it follows as above that

�
0 0

n 0

� �
¼

0 0

vðnÞ 0

� �
, ð27Þ

for all all n2N.
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Equations (26) and (27) show that �(T1)�T1 and �(T�1)�T�1. Thus �:T!T 0 is

a semigraded isomorphism, hence �2 Iso00ðT,T
0Þ by Theorem 3.6.

The other possible situation is

(I00) and (II00): Then  ¼ �	�1T : T�1! T 0 is a ring isomorphism between the Morita

context rings T�1 and T 0, and it is easy to see that  acts on the particular

idempotents (of T�1) that we consider according to the case (I 0) and (II0). Then

applying the result in the first part of the proof, we find that  2 Iso00ðT
�1,T 0Þ. Now

using (2) we get that � ¼  	T 2 Iso
1
0ðT,T

0Þ. g

Remark 4.8 (1) We first note that any ring A which has a non-trivial idempotent e is

isomorphic to a Morita context ring. To see this, we consider the Peirce

decomposition associated with the complete system of orthogonal idempotents

{e,1� e}; more precisely,

A ¼ eAe	 eAð1� eÞ 	 ð1� eÞAe	 ð1� eÞAð1� eÞ

as additive groups. Moreover, eAe is a ring with identity element e, (1� e)A(1� e) is

a ring with identity element 1� e, eA(1� e) is a left eAe, right (1� e)A(1� e)-

bimodule with actions defined by the multiplication of the ring A, and similarly

(1� e)Ae is a left (1� e)A(1� e), right eAe-bimodule. We have a Morita context

(eAe, (1� e)A(1� e), eA(1� e), (1� e)Ae, f, g), where f and g are induced by the

multiplication of A. It is easy to see that the above decomposition as additive groups

induces in fact an isomorphism of rings

A ’
eAe eAð1� eÞ

ð1� eÞAe ð1� eÞað1� eÞ

� �
:

A ring T ¼ R M
N S

� �
associated with a general Morita context is an instance of a ring

with non-trivial idempotents, since e :¼ 1 0
0 0

� �
is such an idempotent. It is clear that

eTe ¼
R 0

0 0

� �
’ R, ð1� eÞTð1� eÞ ¼

0 0

0 S

� �
’ S,

eTð1� eÞ ¼
0 M

0 0

� �
’M, ð1� eÞTe ¼

0 0

N 0

� �
’ N:

We conclude that a ring has non-trivial idempotents if and only if it is isomorphic to

a Morita context ring.
(2) In [1], a ring R is called strongly indecomposable if it is not isomorphic to a

ring of the form A X
0 B

� �
, where A and B are rings, and X is a nonzero left A, right

B-bimodule. The automorphism group of a generalized triangular matrix ring
R RMS

0 S

� �
over strongly indecomposable rings R and S is computed in [1].

As we explained in the first part of the remark, a ring does not have non-trivial

idempotents if and only if it is not isomorphic to a Morita context ring, so this is a

4-corner version of the ‘strongly indecomposable ring’ concept of [1]. Thus our

Theorem 4.7 can be seen as a result similar to Theorem 3.2 of [1] for 4-corners

generalized matrix rings.
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