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DO ISOMORPHIC STRUCTURAL MATRIX RINGS

HAVE ISOMORPHIC GRAPHS?

S. DǍSCǍLESCU AND L. VAN WYK

(Communicated by Lance W. Small)

Abstract. We first provide an example of a ring R such that all possible
2 × 2 structural matrix rings over R are isomorphic. However, we prove that
the underlying graphs of any two isomorphic structural matrix rings over a
semiprime Noetherian ring are isomorphic, i.e. the underlying Boolean matrix
B of a structural matrix ring M(B,R) over a semiprime Noetherian ring R can
be recovered, contrary to the fact that in general R cannot be recovered.

1. Introduction and preliminaries

Various authors have studied the relationship between two rings R and S for
which the full matrix rings Mn(R) and Mn(S) are isomorphic. For example, Chat-
ters [1] showed that one is very far from recovering the ring R from Mn(R), even
in the prime Noetherian case: he provided an uncountable family of pairwise non-
isomorphic such rings with isomorphic full 2× 2 matrix rings.

Certain subrings of Mn(R), for example tiled matrix rings, have also recently
received considerable attention (see [4]). A particular class of tiled matrix rings are
the structural matrix rings, having the tiles 0 or R. Instances of such rings have
been intensively studied. For example, the automorphisms of structural matrix
rings over certain rings were described in [2] and [3], and a left Artinian CI-prime
ring was characterised as a complete blocked triangular matrix ring over a division
ring in [5].

The properties of a structural matrix ring M(B,R), being a generalisation of
both a full matrix ring and an upper triangular matrix ring, are influenced by the
underlying Boolean matrix B (or, equivalently, the underlying graph) and the un-
derlying ring R. We noted in the first paragraph that it is not in general possible
to recover the ring R from Mn(R). However, it might be possible to recover the
Boolean matrix B from the structural matrix ring M(B,R). There are of course
trivial examples of isomorphic structural matrix rings over a ring R having Boolean
matrices of different orders, viz. consider any ring R for which R ∼= R ×R. More-
over, we provide an example of a ring R for which all the 2× 2 structural matrix
rings (i.e. the Boolean matrices have the same order) are isomorphic. However, for
certain rings this phenomenon cannot occur. The main result of this paper states

Received by the editors December 7, 1993 and, in revised form, November 3, 1994.
1991 Mathematics Subject Classification. Primary 16S50, 16P40, 16N60.
Key words and phrases. Structural matrix ring, semiprime Noetherian ring, Boolean matrix,

graph.

c©1996 American Mathematical Society

1385

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1386 S. DǍSCǍLESCU AND L. VAN WYK

that any two isomorphic structural matrix rings over a semiprime Noetherian ring
have conjugated Boolean matrices, i.e. one of them can be obtained from the other
by a permutation of the rows and columns, and this is equivalent to saying that
their associated graphs are isomorphic (Theorem 2.4). We conclude that the same
result holds over any commutative Noetherian ring (Corollary 2.5).

Throughout the paper every ring will be associative with identity, and the iden-
tity is assumed to be inherited by all subrings. We denote the prime radical of a
ring R by P(R) and the uniform dimension of R as a left R-module by u dimR.
By a Noetherian ring we mean a left noetherian ring, and by a Boolean matrix we
mean a reflexive and transitive n × n Boolean matrix B = [bi,j ], i.e. bi,j ∈ {0, 1},
bi,i = 1 for every i = 1, . . . , n, and if bi,j = bj,k = 1, then bi,k = 1. The order n of
B will be denoted by order(B). We call B blocked triangular if it is of the form

X1,1 X1,2 . . . X1,t

0 X2,2 . . . X2,t

...
. . .

. . .
...

0 . . . 0 Xt,t

 ,
where for every i ≤ j,Xi,j is an ni × nj (Boolean) matrix with all its entries equal,
and n1 + · · ·+ nt = n. Since we assume B to be reflexive, every entry of Xi,i is 1,
i = 1, . . . , t. We call Xi,j the (i, j)th block and Xi,k the ith diagonal block of B.
If every entry of Xi,j is 1 for all i ≤ j, then B is called complete blocked triangular
(see [5]).

If B = [bi,j ] is a Boolean matrix and σ ∈ Sn a permutation (of the set {1, . . . , n}),
then we denote by σ(B) the Boolean matrix with bi,j in position (σ(i), σ(j)), i, j =
1, . . . , n. It is easy to see that for any Boolean matrix B there is a permutation
σ ∈ Sn such that σ(B) is blocked triangular. If ϕ([rij ]), [rij ] ∈ M(B,R), is the
matrix with rij in position (σ(i), σ(j)), then ϕ : M(B,R) → M(σ(B), R) is a ring
isomorphism. Here, M(B,R) is the structural matrix ring (associated with B and
R), i.e. the subring of Mn(R) comprising all matrices having 0 in the position (k, l)
whenever bk,l = 0.

With any Boolean matrix B we associate a directed graph Γ(B) with vertices
1, . . . , n and an arc from i to j (1 ≤ i, j ≤ n) whenever bi,j = 1. We denote the
undirected graph associated with Γ(B) by Γ′(B). A connected component of B is
the (square) submatrix of B determined by a connected component of Γ′(B), and
B is called connected if Γ′(B) is connected. Henceforth graph will mean directed
graph. If B1 and B2 are Boolean matrices, then clearly the graphs Γ(B1) and Γ(B2)
are isomorphic if and only if there is a permutatin σ ∈ Sn such that B2 = σ(B1).

We start by providing an example of a ring R such that all possible 2×2 structural
matrix rings over R are isomorphic.

Example 1.1. We construct a ring R such that[
R 0
0 R

]
∼=
[
R R
0 R

]
∼=
[
R 0
R R

]
∼=
[
R R
R R

]
∼= R.(1)

To this end, let I := {p : p ∈ [0, 1) and p has a finite representation in base 2}.
(We mean that if p = p1/2 + · · · + pm/2

m for some m, with p1, . . . , pm ∈ {0, 1},
then the representation of p is 0.p1 · · · pm.) Let MI(K) be the ring of column-finite
I×I matrices over K,K a ring, i.e. every column of a matrix in MI(K) has at most
a finite number of nonzero entries. Let S be the subring of MI(K) comprising the
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matrices with 0 in position (p, q) whenever pi = 1 and qi = 0 for some i ≥ 1 (with
q = 0.q1 · · · qn). Let V (= [vp,q]),W,X, Y ∈MI(K), and define

ϕ :

[
MI(K) MI(K)
MI(K) MI(K)

]
→MI(K)

by setting

ϕ

([
V W
X Y

])
=: Z,

where Z is defined by

z0.0p1···pm,0.0q1···qn = v0.p1···pm,0.q1···qn ,

z0.0p1···pm,0.1q1···qn = w0.p1···pm,0.q1···qn ,

z0.1p1···pm,0.0q1···qn = x0.p1···pm,0.q1···qn ,

z0.1p1···pm,0.1q1···qn = y0.p1···pm,0.q1···qn .

Then direct verification shows that ϕ is a ring isomorphism, and the restriction of
ϕ to [ S S

0 S ] has the image S. Hence we have a ring S such that

S ∼=
[
S S
0 S

]
.(2)

Let J be an infinite set and set T := SJ , the direct product of J copies of S.
Then clearly by (2)

T × T ∼= T ∼=
[
S S
0 S

]J
∼=
[
SJ SJ

0 SJ

]
=

[
T T
0 T

]
.(3)

If R := MJ (T ), then clearly by (3)

R ∼= MJ (T × T ) ∼= MJ(T )×MJ (T ) = R×R.(4)

Furthermore, by (3)

R ∼= MJ

([
T T
0 T

])
∼=
[
MJ(T ) MJ (T )

0 MJ (T )

]
=

[
R R
0 R

]
.(5)

Moreover, since J is infinite, we have

MJ (T ) ∼=
[
MJ (T ) MJ (T )
MJ (T ) MJ (T )

]
, i.e. R ∼=

[
R R
R R

]
,(6)

and so (1) follows from (4), (5) and (6).

2. Structural matrix rings over semiprime Noetherian rings

We first take care of the orders of the diagonal blocks of the underlying Boolean
matrices of two isomorphic structural matrix rings over a Noetherian ring.

Lemma 2.1. Let B1 and B2 be blocked triangular Boolean matrices, and let R be
a Noetherian ring such that M(B1, R) ∼= M(B2, R). If n1, . . . , nt and m1, . . . ,ms

are the orders of the diagonal blocks of B1 and B2 respectively, then t = s and there
is a permutation σ ∈ St such that mi = nσ(i), i = 1, . . . , t.
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Proof. By [7, Theorem 2.7] P(M(Bi, R)) comprises the matrices inM(Bi, R) having
elements of P(R) on the diagonal blocks of Bi, i = 1, 2. Therefore

Mn1(R/P(R))× · · · ×Mnt(R/P(R)) ∼= M(B1, R)/P(M(B1, R))

∼= M(B2, R)/P(M(B2, R)) ∼= Mm1(R/P(R))× · · · ×Mms(R/P(R)).
(7)

By Goldie’s theorem R/P(R) has a (left) quotient ring Q which is semisimple
Artinian, and by (7) Mn1(Q)× · · · ×Mnt(Q) ∼= Mm1(Q)× · · · ×Mms(Q). Writing
Q as a finite direct product of full matrix rings over division rings, the desired
result follows from the uniqueness of the representation in the Wedderburn-Artin
theorem.

The next lemma provides the “bricks” of a structural matrix ring.

Lemma 2.2. If B is a connected Boolean matrix and R an indecomposable ring,
then M(B,R) is an indecomposable ring.

Proof. Since B is connected, it follows readily that Cen(M(B,R)) = Cen(R) · In,
where In denotes the (n×n) identity matrix and Cen(R) denotes the center of R. If
M(B,R) is decomposable, then In is the sum of two non-zero central idempotents
in M(B,R), and this implies that 1 (the identity of R) is the sum of two non-zero
central idempotents in R; a contradiction.

We note that if ϕ : R1 × · · · ×Rn → R′1 × · · · ×R′m is a ring isomorphism, with
R1, . . . , Rn andR′1, . . . , R

′
m indecomposable rings, then m = n since n is the number

of central primitive idempotents in R1 × · · · × Rn. Furthermore, induction on n
shows that there is a permutation σ ∈ Sn such that ϕ(Ri) = R′σ(i), i = 1, . . . , n.

Next we establish the desired result for the “bricks” of equal order, even over
possibly different underlying rings. However, since Lemma 2.3 holds even if B1 and
B2 are not connected, we formulate it as such.

Lemma 2.3. Let B1 and B2 be Boolean matrices of order n, and let R1 and R2

be indecomposable semiprime Noetherian rings such that M(B1, R1) ∼= M(B2, R2).
Then the graphs Γ(B1) and Γ(B2) are isomorphic.

Proof. The discussion preceding Example 1.1 shows that we may assume that
B1 and B2 are blocked triangular, and that it suffices to obtain a permutation
σ ∈ Sn such that B2 = σ(B1). Let ϕ : M(B1, R1) → M(B2, R2) be a ring iso-
morphism, and let n1, . . . , nt and m1, . . . ,ms be the orders of the diagonal blocks
of B1 and B2 respectively. We obtain, as in Lemma 2.1, the induced isomorphism
ϕ : M(B1, R1)/P(M(B1, R1)) → M(B2, R2)/P(M(B2, R2)), and we may consider
ϕ, without loss of generality, as an isomorphism from Mn1(R1) × · · · ×Mnt(R1)
to Mm1(R2) × · · · ×Mms(R2). Hence the uniform dimensions of these two direct
products of rings are equal, i.e. (n1 + · · ·+nt) ·u dimR1 = (m1 + · · ·+ms) ·u dimR2.
By hypothesis B1 and B2 have the same order, and so u dimR1 = u dimR2. Since
R1 and R2 are indecomposable, every full matrix ring over R1 or over R2 is in-
decomposable. The paragraph following the proof of Lemma 2.2 now shows that
t = s and that there is a permutation θ ∈ St such that

ϕ(Mni(R1)) = Mmθ(i)(R2),(8)

i = 1, . . . , t. Looking again at the uniform dimensions (ofMni(R1) andMmθ(i)(R2)),
we have ni · u dimR1 = mθ(i) · u dimR2, and so ni = mθ(i).
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Let σ ∈ Sn be the permutation induced by θ, i.e. the elements involved in the ith
diagonal block of B1 (viz. n1+· · ·+ni−1+1, n1+· · ·+ni−1+2, . . . , n1+· · ·+ni−1+ni)
are mapped to the elements involved in the θ(i)th diagonal block of B2 (preserving
the order of the elements). Denote by ei (respectively fi), i = 1, . . . , t, the idempo-
tents in M(B1, R1) (respectively M(B2, R2)) associated with the diagonal blocks of
B1 (respectivelyB2), i.e. ei = En1+···+ni−1+1+En1+···+ni−1+2+· · ·+En1+···+ni−1+ni ,
i = 1, . . . , t, where Ek denotes the standard matrix unit (with 1 in position (k, k)
and 0 elsewhere). Let ei and fi denote the images of the ei’s and the fi’s in the fac-
tor rings M(B1, R1)/P(M(B1, R1)) and M(B2, R2)/P(M(B2, R2)) respectively. By
(8) ϕ(ei) = fθ(i), and so ϕ(ei) = fθ(i) + ai for some ai ∈ P(M(B2, R2)). Since R2 is
Noetherian, it is clear that M(B2, R2) is Noetherian, and so P(M(B2, R2)) is nilpo-
tent, say ahi = 0. Consequently ϕ(ei) = (fθ(i) + ai)

h ∈M(B2, R2)fθ(i)M(B2, R2).
Now let k, l ∈ {l, . . . , n} be such that B1 has 1 in position (k, l), and suppose

the positions (k, k) and (l, l) are respectively in the ith and jth diagonal blocks of
B1. Then eiM(B1, R1)ej 6= {0}, which implies that

{0} 6= ϕ(eiM(B1, R1)ej) = ϕ(ei)ϕ(M(B1, R1))ϕ(ej)

⊆M(B2, R2)fθ(i)M(B2, R2)fθ(j)M(B2, R2).

Therefore fθ(i)M(B2, R2)fθ(j) 6= {0}, which means that B2 has 1’s in the positions
of its (θ(i), θ(j))th block, in particular in position (σ(k), σ(l)).

Repeating the above argument with ϕ−1 we conclude that B2 = σ(B1).

The foregoing results lead to the main result of the sequel:

Theorem 2.4. Let R be a semiprime Noetherian ring, and let B1 and B2 be
Boolean matrices such that M(B1, R) and M(B2, R) are isomorphic rings. Then
the graphs Γ(B1) and Γ(B2) are isomorphic.

Proof. We assume again that B1 and B2 are blocked triangular. By Lemma 2.1 B1

and B2 have the same order n (say). It suffices to show that there is a permutation
σ ∈ Sn such that B2 = σ(B1). Let B′1, . . . , B

′
p and B∗1 , . . . , B

∗
q be the connected

components of B1 and B2 respectively. We may write R as a direct product A1 ×
· · · × At of indecomposable semiprime Noetherian rings. Let ϕ : M(B1, R) →
M(B2, R) be an isomorphism. Then we may regard ϕ as an isomorphism from

p∏
i=1

 t∏
j=1

M(B′i, Aj)

 to

q∏
i=1

 t∏
j=1

M(B∗i , Aj)

 .(9)

By Lemma 2.2 all the factors in (9) are indecomposable, and so the paragraph
following the proof of Lemma 2.2 shows that p = q.

Now we proceed by induction on p. If p = 1, thenB1 = B′1, B2 = B∗1 , and we have
M(B1, A1) ∼= M(B2, Aj) for some j, and so it suffices to invoke Lemma 2.3 according
to which there is a permutation σ ∈ Sn such that B2 = σ(B1). Next, let p > 1, and
assume that the desired result holds if the number of diagonal blocks is≤ p. We may
assume, without loss of generality, that u dimA1 = max({u dimAj : 1 ≤ j ≤ t})
and that order(B′1) = max({order(B′i) : 1 ≤ i ≤ p} ∪ {order(B∗i ) : 1 ≤ i ≤ p}). As
before we have M(B′1, A1) ∼= M(B∗h, Ak) for some h and some k, and factorising by
the prime radicals and considering the uniform dimensions of these two structural
matrix rings, we conclude that B′1 andB∗h have the same order (and that u dimA1 =
u dimAk). By Lemma 2.3 there is a bijection θ between the set of elements involved
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in B′1 (the first diagonal block of B1) and the set of elements involved in B∗h (the
hth diagonal block of B2). Hence M(B′1, Aj)

∼= M(B∗h, Aj) for every j, j = 1, . . . , t.
Consequently, by (9)

p∏
i=2

 t∏
j=1

M(B′i, Aj)

 ∼= p∏
i=1

(i6=h)

 t∏
j=1

M(B∗i , Aj)

 ,

and so the induction hypothesis gets us home.

Corollary 2.5. Let R be a commutative Noetherian ring, and let B1 and B2 be
Boolean matrices such that M(B1, R) and M(B2, R) are isomorphic rings. Then
the graphs Γ(B1) and Γ(B2) are isomorphic.

Proof. As in the previous proof we let B′1, . . . , B
′
p denote the connected components

of B1, and I1, . . . , Ip denote the diagonal identities associated with B′1, . . . , B
′
p, i.e.

I1 + · · ·+ Ip is the identity of M(B1, R). Then Cen(M(B1, R)) = R ·I1×· · ·×R ·Ip,
and P(Cen(M(B1, R))) = P(R) · I1 × · · · × P(R) · Ip. The two-sided ideal K1 of
M(B1, R) generated by P(R) · I1 × · · · × P(R) · Ip is just M(B1,P(R)), i.e. the
set of matrices in M(B1, R) with entries from P(R). If ϕ : M(B1, R) → M(B2, R)
denotes an isomorphism, then ϕ(K1) = K2, withK2 the two-sided ideal ofM(B2, R)
generated by P(Cen(M(B2, R))). Hence

M(B1, R/P(R)) ∼= M(B1, R)/K1
∼= M(B2, R)/K2

∼= M(B2, R/P(R)),

and so the result follows from Theorem 2.4.

If we drop the condition of being Noetherian in Corollary 2.5, then even if we
require equal orders for B1 and B2, the graphs Γ(B1) and Γ(B2) need not be
isomorphic. For example, let R be commutative such that R ∼= R × R. Then
M2(R)×R×R×R ∼= M2(R)×M2(R)×R.

Theorem 2.4 also provides a uniqueness result for the representation of a left
Artinian CI-prime ring (see the definition of a complete blocked triangular Boolean
matrix in Section 1 and the corresponding definition of a complete blocked trian-
gular matrix ring in [5]).

Corollary 2.6. Let D1 and D2 be division rings such that the complete blocked
triangular matrix rings M(B1, D1) and M(B2, D2) are isomorphic. Then B1 = B2

and D1
∼= D2.

Proof. Factorising by the prime radicals, the uniqueness of the representation in the
Wedderburn-Artin theorem ensures that D1

∼= D2. Now apply Theorem 2.4, and
note that if the graphs Γ(B1) and Γ(B2) are isomorphic, with B1 and B2 complete
blocked triangular Boolean matrices, then B1 = B2.

We conclude by mentioning that we are of the opinion that the condition of being
semiprime can be dropped in Theorem 2.4, but we have neither been able to come
up with a proof, nor have we been able to find a counterexample.
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