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AUTOMORPHISMS OF SOME STRUCTURAL INFINITE MATRIX RINGS

ROKSANA SŁOWIK AND LEON VAN WYK

(Communicated by H. Radjavi)

Abstract. We define an analog of a structural matrix ring in the ring of column-finite infinite
matrices. We describe the form of its automorphisms.

1. Introduction and statement of results

Let MC f (F) denote the set of all N×N matrices over a field F such that every
column of each matrix has only a finite number of nonzero entries. These matrices are
called column-finite and the mentioned set forms an algebra. One of its subalgebras is
T∞(F) which consists of all infinite upper triangular matrices.

Let � be a preorder on N , i.e. a reflexive and transitive relation. Denoting the
entry in position (n,m) of a matrix x in MC f (F) by xnm , we define MC f (�,F) and
T∞(�,F) as follows:

MC f (�,F) :=
{
x ∈ MC f (F) : if (n,m) /∈ �, then xnm = 0

}
,

T∞(�,F) := {x ∈ T∞(F) : if (n,m) /∈ �, then xnm = 0} .

One can check that these are rings. We will call them structural infinite matrix
rings. Clearly T∞(F) = MC f (�,F) , where (n,m) ∈ � if and only if n � m .

Obviously, since � is reflexive, MC f (�,F) always contains D∞(F) – the ring of
all infinite diagonal matrices.

Note that the sets MC f (�,F) and T∞(�,F) are defined in the same manner as

Mk(�,F) = {x ∈ Mk(F) : if (n,m) /∈ �, then xnm = 0} ,

where Mk(F) is the ring of all k× k matrices over F . Mk(�,F) is called a structural
matrix ring and first appeared in [15]. Automorphisms of such rings were investigated
in quite a few papers, like [1, 3, 4].

In this article we will investigate automorphisms of some structural infinite ma-
trix rings. Before we formulate our results we introduce two relations.

If � is a given preorder, then by �sym we will understand the relation

(n,m) ∈ �sym ⇔ (n,m),(m,n) ∈ � .
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One can see that �sym is an equivalence relation. (See, for example, [15, p. 402]
and [16, p. 423], where the relation ∼B is used for a reflexive and transitive Boolean
matrix B .) Therefore we can divide N into the classes Cn such that ∪nCn = N and
n,m ∈Ck if and only if (n,m) ∈ �sym . We may even assume that MC f (�,F) is block
upper triangular (see, for example, [5, p. 1386] and [14, p. 5604]), and that if n < m ,
then the smallest element in Cn is less than the smallest element in Cm . In fact, these
assumptions imply that if n <m , then every element of Cn is smaller than every element
of Cm .

Notice that for any T∞(�,F) , the relation �sym has only one-element classes and
does not tell us much about our ring. Therefore we will also define another relation on
N by the following rule.

Let n1,n2, . . . ,nk be distinct natural numbers. If

∀1 � i, j � k (ni,n j) ∈ � ∨ (n j,ni) ∈ �, (1)

and
∀1 � i � k ∀m �= n1, . . . ,nk (ni,m) /∈ � ∧ (m,ni) /∈ �, (2)

then we put Bn = {n1,n2, . . . ,nk} , where n is the ordinal number of the class. Again,
if n < m , then the smallest element in Bn is less than the smallest element in Bm . If
conditions (1) and (2) hold for some infinite set {n1,n2, . . .} , then we also denote it
by Bn . (Note that the above relation is similar to ≡ρ from [17, p. 3679].)

For example, if

�= {(1,1),(2,2),(2,3),(3,3),(4,4)}∪{(n,m) : 5 � n � m} ,

then we can identify it with a symbolic matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
∗ ∗
∗
∗
∗ ∗ ∗ · · ·
∗ ∗
∗

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For this � we have B1 = {1} , B2 = {2,3} , B3 = {4} , B4 = {n ∈ N : n � 5} (and we
do not have any other classes). We can also see that Cn = {n} for all n ∈ N .

If we consider another example, more precisely⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ . . .
∗ ∗ . . .
∗

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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then we have C1 = {1} , C2 = {2,3} , Cn = {n+1} for n � 3, and B1 = {1,2,3} ,
B2 = {4,5,6, . . .} .

With every Bn and Cm we can identify the subrings which will be denoted by
S(Bn) and S(Cm) respectively, and are defined as follows:

S(Bn) :=
{
x ∈ MC f (�,F) : xpr = 0 if p /∈ Bn or r /∈ Bn

}
,

S(Cm) :=
{
x ∈ MC f (�,F) : xpr = 0 if p /∈Cm or r /∈Cm

}
.

It can be noticed that MC f (�,F) is some sort of direct sum of S(Bn)’s. (This is
analogous to the sum defined in [17, p. 3679] for the finite case.)

For the sake of convenience we will say that MC f (�,F) is a generalized direct
sum of S(Bn) and write MC f (�,F) =⊕n∈NS(Bn) . Note that from the definition of the
classes Bn it follows that S(Bn)S(Bm) = {0} for n �= m .

In our investigation some standard maps will appear. We introduce them here.

• If g ∈ MC f (�,F) is invertible, then we can define the map I nng by the rule
I nng(x) = g−1xg . It is simply an inner automorphism of the ring MC f (�,F) .

• For any automorphism σ of the field F we can define an automorphism of
MC f (�,F) as follows:

(σ(x))nm = σ(xnm).

The map σ is called an induced automorphism.

Note that in [2] it was proved that every automorphism of Tn(R) – the ring of
all n×n upper triangular matrices over a ring R is a composition of I nng (for
some invertible g ∈ Tn(R)) and σ (for some automorphism σ of the ring R).

Now we would like to generalize σ somewhat. Suppose that MC f (�,F) is
a generalized direct sum of some subrings S(Bn) = MC f (�n,F) . Clearly �n

∩ �m= /0 for n �= m . Then having a family of automorphisms (σn)n∈N of F we
can define the map (σn)n∈N as follows:

((σn)n∈N(x))i j =

{
σn(xi j) if (i, j) ∈ �n

0 otherwise.

We will call it a generalized induced automorphism.

For instance for C we have two automorphisms: σ1 – the identity, and σ2 – the
complex conjugation. If

�= {(1,1),(1,2),(2,1),(2,2)}∪{(n,m) : 3 � n � m} ,

then we can define σ2σ1 as follows:

σ2σ1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 0 0 0 · · ·
x21 x22 0 0 0

x33 x34 x35

x44 x45

x55
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 0 0 0 · · ·
x21 x22 0 0 0

x33 x34 x35

x44 x45

x55
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.



166 R. SŁOWIK AND L. VAN WYK

• If π is a permutation of N , then by π̂ we will understand a map such that

(π̂(x))π(n)π(m) = xnm.

• For the classes {Bn}n∈N and permutations π of N we define the maps Bπ
as follows: suppose that for some pairs of classes Bn = {n1,n2, . . .} , Bm =
{m1,m2, . . .} with n1 < n2 < .. . and m1 < m2 < .. . , there exists a permutation
π such that π(ni) = mi ; in this case Bπ is defined by the rule:

(Bπ(x))mimj = xnin j .

For instance, if MC f (�,F) is given by

�= {(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4)}∪{(n,m) : 5 � n � m}
and π = (1 2) , then

Bπ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12

x21 x22

x33 x34

x43 x44

x55 x56 · · ·
x66

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x33 x34

x43 x44

x11 x12

x21 x22

x55 x56 · · ·
x66

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

• We present here one more type of standard map that is defined only on triangular
matrices.

First we focus on k× k such matrices. Define J as the map on the ring Tk(F)
such that

(J (x))nm = xk+1−m,k+1−n.

It is a standard isomorphism of Tk(F) .

Let now S1 = S(Bn) , S2 = S(Bm) be isomorphic to the same subring S of ei-
ther T∞(F) or Tk(F) for some k ∈N . If φ is an isomorphism from S1 onto S
and ψ is an isomorphism from S onto S2 , then ψ ·J ·φ is an isomorphism of
S1 and S2 . We will denote this map by J as well. If, like in the class of maps
(σn)n∈N , our ring is a generalized direct sum of some S(Bn)’s and we would like
to apply J to some of them, then we will denote such map by (χn)n∈N , where
χn is applied to S(Bn) and can be equal to either J or the identity map.

Now we present our first result.

THEOREM 1. Let F be a field and let � be a preorder on N . The map φ is an
automorphism of T∞(�,F) = ⊕n∈NS(Bn) if and only if

φ = I nnt · (χn)n∈N · (σn)n∈N ·Bπ ,

where t is an invertible upper triangular matrix in T∞(�,F) , π ∈ S(N) is such that
S(Bn) ∼ S(Bπ(n)) for all n ∈ N , the map χn is either J or the identity map for all
n ∈ N , and (σn)n∈N is a family of automorphisms of F .
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Our next results concern some subrings of MC f (F) that may contain T∞(F) . The
first one consists of all matrices of the form(

g1 g2

0 g3

)
with g1 ∈ Mk(F), g3 ∈ T∞(F), (3)

where k can be arbitrary and Mk(F) denotes the ring of all k× k matrices over F .
The group of units of this ring was introduced in [18] and is called the Vershik-Kerov
group. Therefore, we will denote the ring of matrices of form (3) by MVK(F) .

We define one more subring of MC f (F) containing T∞(F) .
Consider the matrices x for which the number

sup
xnm �=0

(n−m) (4)

is finite and positive. These are the matrices of the shape depicted in Figure 1. It can be
checked that the set of all such matrices forms a ring. As it consists of all elements for
which the maximal (over the columns) number of nonzero coefficients under the main
diagonal is bounded, we will denote it by M↓ bound(F) .

Figure 1: Picture to the definition of M↓bound(F) . The supremum from Eq. (4) is here equal to
k .

… 

For these rings we have the following theorem:

THEOREM 2. Assume that F is a field of characteristic different from 2 and �
is a preorder on N such that MC f (�,F) = ⊕n∈NS(Bn) ⊆ M , where either M =
MVK(F) or M = M↓ bound(F) . If the map φ is an automorphism of MC f (�,F) , then

φ = I nng · (σn)n∈N · π̂,

for some invertible g ∈MC f (�,F) , some family (σn)n∈N of automorphisms of F , and
π ∈ S(N) .
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2. Preliminaries

We start with presenting the notation and some simple results.

2.1. Notation

By enm we mean the matrix with 1 in the position (n,m) and zeroes elsewhere.
The symbols e∞ , ek are used for identity matrices, infinite, and k× k , respec-

tively. When some arguments can be applied to infinite as well as to finite dimensional
matrices, we will write e instead of e∞ and ek .

By xc(n) we understand the n -th column of the matrix x . We write xT for the
transpose of x . If x is any square matrix and g any invertible matrix of the same size,
then we will write xg for the conjugation g−1xg .

For any MC f (�,F) or T∞(�,F) the invertible elements of these rings form mul-
tiplicative groups which will be denoted by GLC f (�,F) and T∞(�,F) respectively.

We also introduce some notation for subrings of T∞(F) . We put

D∞(F) = {x ∈ T∞(F) : xnm = 0 for n �= m} ,

N T∞(F) = {x ∈ T∞(F) : xnn = 0 for all n ∈ N} .

By S(N) we will understand the set (that indeed forms a group) of all permutations
of N , and by Sn - the group of all permutations of {1,2, . . . ,n} . We will use the symbol
supp for the support of a permutation.

If A and B are isomorphic rings, then we will write A ∼ B .
The characteristic of a field F will be denoted by char(F) and the group of its

automorphisms by A ut(F) .

2.2. Some general remarks

First we present some remarks that hold for all considered rings.

REMARK 1. For any field F , any preorder � and any automorphism φ of MC f (�
,F) we have, for every n :

1. φ(S(Bn)) = S(Bn′) , where S(Bn) and S(Bn′) are isomorphic to the same subring
of either T∞(F) or Tk(F) for some k ∈ N ;

2. φ(S(Cn)) = S(Cn′) , where S(Cn) and S(Cn′) are isomorphic to the same subring
of either T∞(F) or Tk(F) for some k ∈ N .

LEMMA 1. For any ring MC f (�,F) all the classes Cn are finite.

Proof. Suppose that the claim does not hold. Then for some n we have |Cn| = ∞ ,
say Cn = {nk : k ∈ N} . As S(Cn) ⊆ MC f (�,F) , we should then have ∑k∈N enkn1 ∈
MC f (�,F) . Yet, the matrix ∑k∈N enkn1 is not column-finite – a contradiction. Hence
|Cn| < ∞ . �
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Later we will need results about the automorphisms of finite dimensional structural
matrix rings. These were, in particular, described by S.P. Coelho. Here we cite her
theorem.

THEOREM 3. (Thm. C, [3]) Let S be a structural matrix algebra. Then

A utS = (C �G )�P.

According to our notation, this means that every automorphism of S has the form

I nng ·σ · π̂, (5)

where g ∈ S , σ is an automorphism of F , and π is a permutation of {1,2, . . . ,k} (we
assume here that the matrices in S are k× k ).

PROPOSITION 1. (Prop. 4.1, [3]; see also [16]) For any field F and any preorder� , the set {
x ∈ MC f (�,F) : xnm = 0 for (n,m) ∈ �sym

}
is the Jacobson radical of MC f (�,F) .

The proof of this lemma is the same as the proof of Proposition 4.1 from [3]. As
quite a few arguments are used there (in particular the proof uses Lemma 3.2 given in
the same paper) and the proof does not use the finite dimension of the considered ring,
we do not repeat it.

To get more information about radicals of structural matrix rings see [16, 12].

REMARK 2. It is well-known that if R is an arbitrary ring with unity 1 and φ is
an epimorphism of R , then φ(1) = 1 and φ(x) is invertible if x ∈ R is invertible.

Thus, in particular, if F is a field, � a preorder, and φ an epimorphism of the ring
MC f (�,F) , then

1. φ(e∞) = e∞ ,;

2. if x ∈ MC f (�,F) is invertible, then so is φ(x) .

In our proofs we are going to use some facts about idempotents. We start with
some facts about their diagonalization.

LEMMA 2. ([13], Lemma 2.3) Let F be any field. If x ∈T∞(F) is an idempotent,
then there exists an invertible matrix t ∈ T∞(F) such that xt is a diagonal matrix.

From the construction of t given in the proof of the above lemma, we obtain:

COROLLARY 1. If for x∈T∞(F) from Lemma 2 we have x∈T∞(�,F) for some
preorder � , then t ∈ T∞(�,F) .
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Proof. From the proof of Lemma 2 we get that the consecutive columns of t can
be found as follows. The first of them is (1,0,0,0, . . .)T , so as D∞(F) ⊆ T∞(�,F) ,
we can informally say that the first column of t ‘is’ in T∞(�,F) . If the first n found
columns form a matrix tn such that (

tn 0
0 e∞

)

is in T∞(�,F) , then the (n+1)-th column is equal to

⎛
⎜⎜⎜⎝

(tnxc(n+1))1
...

(tnxc(n+1))n

z

⎞
⎟⎟⎟⎠ for some z ∈ {1,−1} .

As the matrices

(
tn 0
0 e∞

)
,

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · (xc(n+1))1 0 · · ·
...

...
0 · · · (xc(n+1))n 0 · · ·
0 · · · 0 0 · · ·
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

and ± en+1,n+1

are in T∞(�,F) , also the (n+1)-th column ‘is’ in T∞(�,F) . This means that for each
n , m we have (n,m) /∈� , then (tk)nm = 0 for all k∈N and consequently tnm = 0. Thus
t ∈ T∞(�,F) . �

Now we wish to generalize Lemma 2 a bit.

LEMMA 3. Let F be a field. If x ∈ MVK(F) is an idempotent, then there exists
an invertible matrix g ∈ MVK(F) such that xg is a diagonal matrix.

Proof. Since x ∈ MVK(F) , we can write that

x =
(

x1 x2

0 x3

)
with x1 ∈ Mk(F), x3 ∈ T∞(F)

for some k ∈ N . One knows that there exists some g1 ∈ Mk(F) such that xg1
1 is a

diagonal matrix d1 , i.e.

y := x

(
t1 0
0 e∞

)
=
(

d1 x′2
0 x3

)
.

Clearly, y is upper triangular. Hence, we can apply Lemma 2 to it and for some t we
have xg1t = yt ∈ D∞(F) . �
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LEMMA 4. Let F be a field. If x∈M↓ bound(F) is an idempotent, then there exists
an invertible matrix g ∈ M↓ bound(F) such that xg is a diagonal matrix.

Proof. As x ∈ M↓ bound(F) , we can assume that x is of the form as depicted in
Fig. 1. Define 1xp as follows:

(1xp)nm = x(p−1)k+n,(p−1)k+m

For example for k = 2 the matrices 1xp are blocks of x as depicted below:

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1x1 ∗ ∗ · · ·

∗ 1x2 ∗

∗ 1x3

∗ . . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For every 1xp there exists an extension field 1Fp of F and 1gp ∈ Mk(1Fp) such that
(1xp)1gp is a Jordan form of 1xp (for more details see [9] or some other classical text-
book). We define g1 by the rule

(g1)nm =

⎧⎪⎨
⎪⎩

(1gp)n′m′ if n = n′ +(p−1)k, m = m′ +(p−1)k
for some p ∈ N, 1 � n′,m′ � k

0 otherwise.

Consider now x1 := xg1 . Notice that in x1 the blocks that are on the same places as
1x1 , 1x2 , 1x3 , . . . used to be in x are now upper triangular, i.e. we have obtained some
0-s under the main diagonal.

Define now 2xp as follows:

(2xp)nm = (x1)(p−1)k+n+1,(p−1)k+m+1

For example for k = 2 we have

x1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ · · ·
0 2x1

∗
0 2x2

0
. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Again for every 2xp there exists an extension 2Fp and of F and 2gp ∈ Mk(2Fp) such
that 2x

2gp
p is a Jordan form of 2xp . We define g2 by

(g2)nm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2gp)n′m′ if n = n′ +1+(p−1)k, m = m′ +1+(p−1)k
for some p ∈ N, 1 � n′,m′ � k

1 if n = m = 1

0 otherwise.

In xg2
2 we have obtained some ‘new’ zero coefficients under the main diagonal. More-

over, as we multiply the block matrices, the coefficients we have obtained by the con-
jugation xg1 are still equal to 0.

Analogously, we define x3 , g3 , . . . , xk , gk and finally obtain that xgk
k = xg1g2···gk

is an upper triangular idempotent. Now we can apply Lemma 2 to this matrix – for
some t ∈ T∞(F) we have xg1g2···gkt ∈ D∞(F) . �

Now we can obtain some information about values of automorphisms of structural
infinite matrix rings.

LEMMA 5. Suppose that F is a field and � a preorder. If x is a rank one
idempotent from either M↓ bound(�,F) or MVK(�,F) , then there exists a matrix g
in M↓ bound(�,F) or MVK(�,F) respectively such that xg = ekk for some k ∈ N .

Proof. In the proof we will assume that x ∈ M↓ bound(F) ⊂ MC f (F) . The case
when x ∈ MVK(F) is exactly the same.

Since x has rank one and is in M↓ bound(�,F) , it must be of the form(
x1 x2

0 0

)
with x1 ∈ Mk(F)

for some k ∈ N . As x is idempotent we have x1x2 = x2 . One can check that

(
x1 x2

0 0

)( ek x2

0 e∞

)
=
(

x1 0
0 0

)
.

As (
ek x2

0 e∞

)
∈ M↓ bound(�,F),

it suffices to focus on x1 . Clearly x1 ∈Mk(�′,F) where �′ is a preorder on {1,2, . . . ,k}
such that (i, j) ∈ �′ if and only if (i, j) ∈ � and 1 � i, j � k .

From rank(x1) = 1 it follows that

x1 =

⎛
⎜⎜⎜⎜⎜⎝

α1β1 α1β2 · · · α1βk

α2β1 α2β2 · · · α2βk
...

...
αkβ1 αkβ2 · · · αkβk

⎞
⎟⎟⎟⎟⎟⎠

for some α1, . . . ,αk,β1, . . . ,βk ∈ F.
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There exist 1 � p,r � k such that αr,βp �= 0, otherwise x1 would be the zero matrix,
so the rank would not be equal to 1. Let π be thepermutation (1 r) if α1 = 0 and the
identity in the case when α1 �= 0. Let pπ be the permutation matrix determined by π .
We have

y1 := xp−1
π

1 =

⎛
⎜⎜⎜⎜⎜⎝

α ′
1β ′

1 α ′
1β ′

2 · · · α ′
1β ′

k
α ′

2β ′
1 α ′

2β ′
2 · · · α ′

2β ′
k

...
...

α ′
kβ ′

1 α ′
kβ ′

2 · · · α ′
kβ ′

k

⎞
⎟⎟⎟⎟⎟⎠

for some α ′
1, . . . ,α

′
k,β

′
1, . . . ,β

′
k ∈ F, α ′

1,β
′
1 �= 0.

The matrix y1 is in Mk(�′′,F) for some preorder �′′ . Now it suffices to prove that
there exists h1 ∈ Mk(�′′,F) such that yh1

1 = eii for some i ∈ N .
Assume that α ′

j1
, . . . ,α ′

js �= 0 (with j1 < j2 < .. . < js ) and the other α ′ -s are
equal to zero.

We put h′1 = ek −∑s
i=2 α ′

ji
(α ′

1)
−1e ji1 . As α ′

j2
, . . . ,α ′

js �= 0, it follows that h′1 ∈
Mk(�′′,F) . Then

z1 := y
h′1
1 =

⎛
⎜⎜⎜⎝

γ1 γ2 · · · γn

0 0 · · · 0
...

...
0 0 · · · 0

⎞
⎟⎟⎟⎠ for some γ1,γ2, . . . ,γn ∈ F.

Moreover, as z1 is idempotent, γ1 = 1.

Now we put h′′1 = ek + ∑k
i=2 γie1i to get z

h′′1
1 = e11 . Obviously h′′1 ∈ Mk(�′′,F) .

From h′1h
′′
1 ∈ Mk(�′′,F) , we conclude that (h′1h

′′
1)

pπ ∈ Mk(�′,F) , and conse-
quently

h =
(

(h′1h
′′
1)

pπ 0
0 e∞

)
∈ M↓ bound(�,F).

Thus xgh = eπ−1(1)π−1(1) for some g,h ∈ M↓ bound(�,F) . �
The facts proven above are useful when we consider some properties of homomor-

phisms of different structural infinite matrix rings.

LEMMA 6. Let F be a field and � a preorder such that MC f (�,F) is contained
in M↓ bound(�,F) or MVK(�,F) . If φ is a homomorphism of MC f (�,F) , then there
exists g ∈ MC f (F) such that for all n ∈ N we have (φ(enn))g = ∑i∈In eii for some
disjoint sets In ⊂ N .

Proof. From Lemmas 3, 4 we know that for every n∈N there exists hn ∈MC f (F)
such that (φ(enn))hn = ∑i∈In eii for some sets In ⊆ N . Obviously, we focus on n ’s
satisfying In �= /0 . Consider the least element in the union ∪n∈NIn . It is in one of the
sets In , say in In1 . Let us put g1 = hn1 . We have (φ(en1n1))

hn1 = ∑i∈In1
eii . Notice that

from en1n1enn = ennen1n1 = 0 for all n �= n1 , we get

(φ(enn))iin1
= (φ(enn))in1 i = 0 for all in1 ∈ In1 , i �= in1 . (6)
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Consider now the minimal element in the set

⋃
n ∈ N

n �= n1

In.

Say it is in In2 . For hn2 we have ((φ(en2n2))
hn1 )hn2 = ∑i∈In2

eii . Moreover, by (6)

the matrix hn2 is such that ((φ(en1n1))
hn1 )hn2 is still equal to ∑i∈In1

eii . Define g2 as
hn1hn2 . Observe that as in1 – the minimal element in In1 is less than in2 – the minimal
element in In2 , the entries in the (in2 −1)×(in2 −1) left upper block of g1 are the same
as the entries in the (in2 −1)× (in2 −1) left upper block of g2 .

In the same way we construct the infinite sequence g1 , g2 , g3 , . . . . The matrix g
from the claim is defined by the condition gnm = (gk)nm , where k is any number such
that mini((φ(ekk)ii)hk �= 0) � max(n,m) . �

At the end of this section we observe that the matrices φ(enn) have a great meaning
for all the image of φ .

LEMMA 7. Suppose F is a field, S - any subring of MC f (F) . If φ is an epimor-
phism of S such that

• for every k ∈ N either there exists n ∈ N such that φ(ekk) = enn or φ(ekk) = 0 ,

• for every n ∈ N there exists k ∈ N such that φ(ekk) = enn ,

then φ is determined by the values that it takes at the matrices that have only a finite
number of nonzero entries.

Proof. To determine φ(x) we need to know (φ(x))nm for all n,m ∈ N . By the
assumption we have φ(ekk) = enn and φ(ell) = emm for some k , l . Then

(φ(x))nm = (ennφ(x)emm)nm = [φ(ekk)φ(x)φ(ell)]nm

= (φ(ekkxell))nm = (φ(xklekl))nm

and the claim follows. �

3. Upper triangular matrices

Before we begin, let us note that the automorphisms of algebras of triangular (or
somehow connected to triangular) matrices are of interest to many researchers; for in-
stance they were investigated in [2, 11, 10].

3.1. Proof of Theorem 1

We start this section with a proposition that is a corollary from Proposition 1 cited
in the preliminary section.
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PROPOSITION 2. Suppose that F is a field and � - a preorder. The set N T∞(F)∩
T∞(�,F) is the Jacobson radical of T∞(�,F) .

From the preceding proposition and properties of homomorphisms we get now

COROLLARY 2. Let F be a field and � a preorder. If φ is a homomorphism of
T∞(�,F) , then

φ(T∞(�,F)∩N T∞(F)) ⊆ T∞(�,F)∩N T∞(F).

Now we will get back to our maps.

LEMMA 8. Let F be a field, � a preorder, and φ an epimorphism of T∞(�,F)
such that for every n the matrix φ(enn) is diagonal. Then for every k ∈ N there exists
n ∈ N such that φ(enn) = ekk .

Proof. Suppose first that, for some n∈N , φ(enn) = ∑i∈In eii with |In|> 1. Denote
by in the least element in In . As φ is onto, there exists d ∈ T∞(�,F) such that
φ(d) = einin . By Corollary 2 we may assume that d is diagonal. Notice now that

einin = einin ∑
i∈In

eii = φ(d)φ(enn) = φ(denn).

Therefore we may assume that d = αenn for some α ∈ F∗ . Clearly, α �= 1. Moreover
we have φ(α2enn) = (φ(αenn))2 = einin , so φ(α2enn)− φ(αenn) = 0. Consider now
the matrix a := e∞ +(α2−α −1)enn . As α �= 0,1, we have that a is invertible, so, by
Remark 2, φ(a) is also invertible. However,

(φ(a))inin = (eininφ(a))inin = (φ(αenn)φ(a))inin = (φ(αenna))inin
= (φ((α2 −α)enn))inin = 0,

contradicting the invertibility of φ(a) .
Therefore, for every n , either φ(enn) = ekk for some k ∈ N or φ(enn) = 0.
Moreover, as φ is onto, for every k there must exist n such that φ(enn) = ekk . �
From the above lemma we can easily obtain

LEMMA 9. For any field F , any preorder � , any epimorphism φ of T∞(�,F)
such that for every k the matrix φ(ekk) is equal to either 0 or enn for some n∈ N , and
x ∈ T∞(�,F) we have

(φ(x))nn = φ(xkkekk)nn,

where k is a number such that φ(ekk) = enn .

Proof. By Lemma 8 we have

(φ(x))nn = (ennφ(x)enn)nn = (φ(ekk)φ(x)φ(ekk))nn = (φ(xkkekk)nn. (7)

�
From the two latter lemmas we can derive some more consequences.
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LEMMA 10. Let F be a field , � a preorder and φ a homomorphismof T∞(�,F)
such that, for every k ∈ N , φ(ekk) is equal to either 0 or enn for some n, and for every
n ∈ N there exists exactly one k such that φ(ekk) = enn . For any n < m, α ∈ F , we
have one of the following cases:

1. φ(αenm) = α ′en′m′ in the case when (n,m)∈ � , φ(enn) = en′n′ , φ(emm) = em′m′ ,
and n′ < m′ ;

2. φ(αenm) = α ′em′n′ in the case when (n,m)∈ � , φ(enn) = en′n′ , φ(emm) = em′m′ ,
and m′ < n′ ;

3. φ(αenm) = 0 in the case when either φ(enn) = 0 or φ(emm) = 0 , or (n,m) /∈ � .

(Note that the coefficients α ′ in points (1), (2) of the claim may be equal to 0.)

Proof. This follows easily from the fact that enn+αenm and emm+αenm are idem-
potents. Clearly, if (n,m) /∈ � , then the latter two matrices are not in T∞(�,F) , so
there is not point in discussing their images. Let us then assume that (n,m) ∈ � . Once
again we repeat that, by Corollary 2,

φ(αenm) ∈ N T∞(F). (8)

If φ(enn) = 0, then φ(enn)+φ(αenm) is idempotent only in the case when φ(αenm) =
0. The same holds when φ(emm) = 0.

Consider now the case when φ(enn) = en′n′ , φ(emm) = em′m′ . We have

en′n′ + en′n′φ(αenm)+ φ(αenm)en′n′ +(φ(αenm))2 = en′n′ + φ(αenm), (9a)

em′m′ + em′m′φ(αenm)+ φ(αenm)em′m′ +(φ(αenm))2 = em′m′ + φ(αenm), (9b)

which force

en′n′φ(αenm)+ φ(αenm)en′n′ = em′m′φ(αenm)+ φ(αenm)em′m′ .

From the above equality we get φ(αenm)= α1en′m′ +α2em′n′ . Since φ(αenm)∈T∞(F) ,
α1 = 0 for n′ > m′ and α2 = 0 if n′ < m′ . �

Now we can prove our first main result.

Proof of Theorem 1. From Lemmas 6 and 8 we know that there exists t ∈ T∞(�,
F) such that for every n ∈ N either (φ(enn))t = 0 or (φ(enn))t = eknkn . Moreover, as
φ is injective, for every n the second possibility holds.

Consider ψ = I nnt ·φ instead of φ . Let us focus on the classes {Bn}n∈N . It is
easily seen that if ψ(ekk) = ek′k′ , ψ(ell) = el′l′ and the numbers k , l are in the same
class, then k′ , l′ also should be in the same class, and conversely. Therefore we should
have ψ(Bn) = Bm for Bn ∼ Bm . Hence there exists π ∈ S(N) such that for every n we
have ψ(Bn) = Bπ(n) . As we have stated before, π satisfies the condition Bn ∼ Bπ(n)
for every n .

Hence, we need to consider automorphisms from S(Bn) to S(Bm) , where S(Bn) ,
S(Bm) are both isomorphic to the same subring of either Tk(F) (for a fixed k ) or
T∞(F) , that contains Dk(F) or D∞(F) , respectively.
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Let Bn = {i1, i2, . . . , ik} , Bm = { j1, j2, . . . , jk} . For k distinct jpr ’s (1 � r � k )
we have

φ(ei1i1) = e jp1 jp1
, φ(ei2i2) = e jp2 jp2

, . . . , φ(eikik ) = e jpk jpk

and
φ(αeisis) = α1e jps jpr

+ α2e jpr jps
with α1α2 = 0, α1 + α2 �= 0. (10)

By (10) and the fact that emm +αemk +βenm +αβenk is idempotent for any n < m < k
we have either jp1 < jp2 < · · · < jpk or jp1 > jp2 > · · · > jpk , so either jp1 = j1 ,
jp2 = j2 , . . . , jpk = jk or jp1 = jk , jp2 = jk−1 , . . . , jpk = j1 .

If the second posibility holds, let us apply to the images of our blocks the map J .
The infinite dimensional case is almost the same, but clearly in that case we can

only have jp1 = j1 , jp2 = j2 , jp3 = j3 , . . .
Now it suffices to consider automorphisms ψ ′ such that ψ ′ : Tk(F) → Tk(F) or

ψ ′ : T∞(F) → T∞(F) and ψ ′(αei j) = α ′ei j .
We can write that ψ ′(αei j) = fi j(α)ei j for some fi j : F → F . From

ψ ′(αei j) = ψ ′(αeii · ei j) = ψ ′(ei j ·αe j j)

we get
fi j(α) = fii(α) fi j(1) = f j j(α) fi j(1). (11)

If fi j(1) = 0, then we have fi j(α) = 0 for α ∈ F . Notice that, as i , j are in the same
class for each i there exists j such that fi j �= 0, so by (11) fii = f j j . Let us write f1
for all fii .

Moreover, if fi j(1) �= 0, then fi j(α) �= 0 for α �= 0. We have then fi j(α) =
f1(α) fi j(1) .

We will show now that in our ring there exists an upper triangular matrix t satis-
fying the following conditions:

• tii = 1 for all i ,

• for every i and j , if fi j(1) �= 0, then ( fi j(1)ei j)t = ei j .

We construct this t using induction on columns.
First we set t1 = t ′1 = e .
Now we look for t2 of the form e+ t12e12 such that

( f12(1)e12)t2 =

{
e12 if f12(1) �= 0

0 if f12(1) = 0.

From the calculations it follows that the coefficient t12 must satisfy the condition

f12(1) =

{
1+ t12 if f12(1) �= 0

t12 if f12(1) = 0.
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Hence

t12 =

{
f12(1)−1 if f12(1) �= 0

0 if f12(1) = 0,

and t2 is now determined. We put t ′2 = t ′1t2 . It can be seen that t ′2 is in Tk(�,F) or in
T∞(�,F) respectively.

Next we consider (S(Bπ(n)))t
′
2 . Obviously, the functions fi j might have changed,

so we denote them now by f (2)
i j . Clearly, if f12(1) �= 0, then f (2)

12 (1) = 1.
Suppose that we have constructed the sequences t1 , t2 , . . . , tl and t ′1 , t ′2 , . . . , t ′l

such that f (l)
i j (1) for 1 � i, j � l is equal to either 1 or 0. Now we wish to find tl+1

such that tl+1 = e∞ +∑l
i=1 ti,l+1ei,l+1 and satisfying the condition that f (l+1)

i j (1) will be
equal to either 1 or 0. From the condition

( f (l)
i,l+1(1)ei,l+1)tl+1 =

{
ei,l+1 if f (l)

i,l+1(1) �= 0

0 if f (l)
i,l+1(1) = 0,

we get

ti,l+1 =

{
f (l)
i,l+1 −1 if f (l)

i,l+1(1) �= 0

0 if f (l)
i,l+1(1) = 0.

Now we put t ′l+1 = t ′l tl+1 . Again, we can see that t ′l+1 ∈ T∞(�,F) .
One can check that the first l columns of t ′l+1 are the same as the first l columns

of t ′l . Thus, it can be noticed that the desired t fulfills the condition ti j = (t ′j)i j .
Observe that this t was found to ensure fi j(1) = 1 only for the functions from the

subring S(Bπ(n)) . Denote it then by tπ(n) . As S(Bn)S(Bm) = {0} , from the construction
of tπ(n) it follows that all the tπ(n) ’s commute and

tπ(n)tπ(m) = tπ(n) + tπ(m)− e∞ for any n �= m. (12)

Now we have (ψ(αei j))t = f1(α)ei j . From ψ((α + β )eii) = ψ(αeii)+ ψ(βeii) ,
ψ((α ·β )eii) = ψ(αeii) ·ψ(βeii) , surjectivity of ψ , and fact that ψ preserves invertible
matrices, we obtain that f1 is an automorphism of F .

Hence, we can write that

φ = I nnt · (χn ·I nntπ(n) ·σn)n∈N ·Bπ .

We can replace χn ·I nntπ(n) with I nnt′π(n)
· χn , and by (12) we can also replace

(I nnt′π(n)
)n with I nnt′ , where

t ′i j =

{
(t ′π(n))i j if i, j ∈ Bn

0 otherwise.

Thus we have

φ = I nnt ·I nnt′ · (χn ·σn)n∈N ·Bπ = I nnt′′ · (χn)n∈N · (σn)n∈N ·Bπ

for the matrices of the form αenm . The result for the matrices with a finite number of
nonzero entries follows from additivity. By Lemma 7 this completes the proof. �
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3.2. Consequences and examples

In this paragraph we will give some more comments about homomorphisms of the
rings T∞(�,F) .

First we would like to notice that using the argumentation from the proof of The-
orem 1 it is easy to formulate

COROLLARY 3. Let F be a field and � a preorder. If the map φ is an epimor-
phism of T∞(�,F)=⊕n∈NS(Bn) , then φ is of the form φ =I nnt ·ψ with ψ satisfying
the condition that for every n ∈ N we have ψ(S(Bn)) ⊆ ∪mS(Bm) , where S(Bn) is iso-
morphic to a ring Tn′(�,F) and the S(Bm)’s are isomorphic to rings Tnm(�,F) , and
∑m nm � n′.

Figure 2: Picture depicting the images of Bi of φ . Here the yellow block is B1 , the green is
B2 and the blue one is B3 (next blocks are not shown in the picture), and we have φ(B1) = B1 ,
φ(B2) = B3 , φ(B3) = B2 .

 

φ 

An example of how such a map can act is given in Figure 3. Another example is
given below.

EXAMPLE 1. Let

�= {(1,1)}∪{(2,2),(2,3),(3,3)}∪{(4,4),(4,5),(4,6),(5,5),(5,6),(6,6)}∪ . . . ,

i.e. we identify T∞(�,F) with the symbolic matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
∗ ∗
∗
∗ ∗ ∗
∗ ∗
∗

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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Figure 3: Picture depicting some exemplary epimorphism of T∞(�,F) . Here φ(B1) is equal
to B2∪B3 (the images of other classes are not shown in the picture).

 

φ 

where each block (and each class Bn ) is 1 bigger than the preceding block.
An example of an epimorphism of such ring can be φ given as below:

φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11

x22 x23

x33

x44 x45 x46

x55 x56

x66

x77 x78 x79 x7,10

x88 x89 x8,10

x99 x9,10

x10,10
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x66

x55 x45

x44

x77 x78 x79

x88 x89

x99

x11,11 x11,12 x11,13 x11,14

x12,12 x12,13 x12,14

x13,13 x13,14

x14,14
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Another corollary from our results proven in this section concerns the group of
automorphisms of T∞(�,F) . We have
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THEOREM 4. Let F be a field, � - a preorder. The group of automorphisms of
T∞(�,F) = ⊕n∈NS(Bn) is isomorphic to a subgroup of

T∞(�,F) � ((ZN
2 × (A ut(F))N) �Perm),

where Perm is a subgroup of S(N) satisfying the condition: if π ∈ Perm, then
Bn ∼ Bπ(n) .

Proof. First observe that

• the group of all inner automorphisms of T∞(�,F) is isomorphic to the group
T∞(�,F) ,

• the group of all automorphisms of T∞(�,F) of the form (χn)n∈N is isomorphic
to a subgroup of ZN

2 (note that this group does not have to be equal to ZN
2 ),

• the group of all automorphisms of T∞(�,F) of the form (σn)n∈N is isomorphic
to the group A ut(F)N ,

• the group of all automorphisms of T∞(�,F) of the form Bπ is isomorphic to
some subgroup Perm of S(N) (again, usually it is not equal to S(N)).

Moreover, it can be noticed that the groups G1 , G2 that are isomorphic to Z
N
2 and

(A ut(F))N satisfy the conditions that G1 ∩G2 consists only of the identity map and
we have G1G2 = G2G1 .

Now notice that

((χn)n · (σn)n ·Bπ) · ((χ ′
n)n · (σ ′

n)n ·Bπ ′) = (χn ·σn)n ·Bπ · (χ ′
n ·σ ′

n)n ·Bπ ′

= (χn ·σn · χ ′
π(n) ·σ ′

π(n))n ·Bπ ·Bπ ′

= (χn · χ ′
π(n))n · (σn ·σ ′

π(n))n ·Bππ ′ .

Hence we have obtained that the group of these maps ψ is isomorphic to a sub-
group of (ZN

2 × (A ut(F))N) �Perm .
Analogously

(I nnt ·ψ) · (I nnt′ ·ψ ′) = I nnt ·I nnψ(t′) ·ψ ·ψ ′ = I nntψ(t′) · (ψ ·ψ ′),

so our group is isomorphic to a subgroup of

T∞(�,F) � ((ZN
2 × (A ut(F))N) �Perm).

Thus, the claim follows. �

EXAMPLE 2. Let � = {(n,n) : n ∈ N}∪{(2,3),(4,5)} . In this case the matrices
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in T∞(�,F) are of the ‘shape’:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
∗ ∗
∗
∗ ∗
∗
∗
∗

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We have B1 = {1} , B2 = {2,3} , B3 = {4,5} , Bn = {n+2} for n � 4.
One can see that we can permute B2 only with B3 and itself, and the other classes

with each other. Hence

Perm = {π1π2 : π1 ∈ {id, (23)} , 2,3 /∈ supp(π2)} . (13)

Now notice that regardless of whether φ maps B2 to B2 or B3 , we always can (but we
do not have to) apply J to φ(B2) , φ(B3) . Clearly, in each case, the automorphisms
of F applied to our classes are arbitrary.

According to that,

A ut(T∞(�,F)) ∼ (T∞(�,F) � ((Z2
2× (A ut(F))N) �Perm)),

where Perm is given by formula (13).

EXAMPLE 3. Now we choose � as follows.

�= {(n,n) : n ∈ N}∪{(1,2),(1,3),(4,6),(5,6)}∪{(n,m) : 7 � n < m}

In this case we have B1 = {1,2,3} , B2 = {4,5,6} , B3 = {n : n � 7} .
Obviously φ(B3) = B3 and φ(B1) is either B1 or B2 . If φ(B1) = B1 , the map J

is not applied, whereas if φ(B1) = B2 the map J has to be applied. Therefore, the
subgroup of the maps ψ is isomorphic to{

((0,0,0),(A ut(F))3),((1,1,0),(A ut(F))3)
}∼ (Z2 × (A ut(F))3).

Hence
T∞(�,F) � (Z2× (A ut(F))3).

We conclude this section with one more comment.
In the proof of Theorem 1 we have shown that if ψ(αei j) = α ′ei j , then there exists

a matrix t such that (ψ(ei j))t is equal to either ei j or 0. It should be mentioned that
in the case when the ring can be written as a generalized direct sum of subrings that are
isomorphic to (the whole) Tk(F) (for possibly various k ∈ N) or T∞(F) , then we can
also choose t to be diagonal.
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4. Proof of Theorem 2

4.1. Proof of the theorem

Also in this case we start with some lemmas.

LEMMA 11. Let F be a field of characteristic different from 2 and let � be a
preorder such that MC f (�,F) is contained in MVK(F) or M↓ bound(F) . If φ is an
automorphism of MC f (�,F) such that for all n∈N the matrices φ(enn) are diagonal,
then there exists π ∈ S(N) such that φ(enn) = eπ(n)π(n) .

Proof. From Lemma 6 we know that φ(enn)= ∑i∈In eii for some pairwaise disjoint
sets In . Moreover, as φ is injective, we have In �= /0 . Hence, we need to prove that
|In| = 1 and ∪n∈NIn = N .

Suppose first that for some n we have |In| > 1. Let in be the least element in In .
As φ is onto, there exists x ∈ MC f (�,F) such that φ(x) = einin . Clearly, x �= enn .
One can see that φ(x) and φ(enn)−φ(x) are idempotents, so as φ is an automorphism,
their preimages are idempotents as well. Hence, we have

x2 = x (14)

enn− ennx− xenn + x2 = enn− x. (15)

Substituting (14) into (15) we get 2x = xenn +ennx . The latter yields x = αenn for some
α ∈ F \ {0,1} . Moreover we have φ(α2enn) = (φ(αenn))2 = einin , so φ(α2enn)−
φ(αenn) = 0. Let a := e∞ +(α2 −α −1)enn . Since α �= 0,1, a is invertible. Hence,
by Remark 2, φ(a) should be invertible as well. However

(φ(a))in in = eininφ(a) = φ(αenn)φ(a) = φ(αenna) = φ((α2 −α)enn) = 0,

so φ(a) is not invertible – a contradiction.
Therefore for every n , either φ(enn) = ekk for some k ∈ N , or φ(enn) = 0.
Suppose now that ∪n∈NIn �= N . Let k /∈∪n∈NIn . There exists x∈MC f (�,F) , x �=

enn for all n∈N , such that φ(x) = ekk . Hence, for all n∈N the matrices φ(enn)+φ(x)
and φ(x) are idempotents. Again, as φ is a bijection, we must have

x2 = x
enn + ennx+ xenn + x2 = enn + x for all n ∈ N,

which forces ennx+ xenn = 0 for all n ∈ N . Hence, x should be diagonal. Moroeover,
as char(F) �= 2, we must have x = 0, which is a contradiction.

Summing up, φ(enn) = eπ(n)π(n) for some π ∈ S(N) . �

LEMMA 12. Suppose that F is a field such that char(F) �= 2 , � is a preorder,
and MC f (�,F) is contained in M↓ bound(F) or MVK(F) . If φ is an automorphism
of MC f (�,F) , then there exist g ∈ MC f (�,F) and π ∈ S(N) such that for all n ∈ N

we have (φ(enn))g = eπ(n)π(n) .
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Proof. From Lemmas 3 and 4 we know that there exists g ∈ MC f (F) such that
(φ(enn))g are diagonal. From Lemma 11 we have learned that in this case we must
have (φ(enn))g = eπ(n)π(n) for some π ∈ S(N) . Now notice that, by Lemma 5, g is
in MC f (�,F) . This completes the proof. �

LEMMA 13. If F is a field, � a preorder, and φ an automorphism of the ring
MC f (�,F) such that for some φ ∈ S(N) we have φ(enn) = eπ(n)π(n) for every n ∈ N ,
then

1. (φ(x))π(n)π(n) = (φ(xnnenn))π(n)π(n) for all n ∈ N;

2. for any (n,m)∈� we have φ(αenm) = α1eπ(n)π(m)+α2eπ(m)π(n) with α1α2 = 0 ,
α1 + α2 �= 0 .

Proof. The first point follows from (7). The second point is a consequence of
equations (9a), (9b), the fact that eπ(n)π(n) + α1eπ(n)π(m) + α2eπ(m)π(n) can be idempo-
tent only if α1α2 = 0, and bijectivity of φ . �

Now we prove our second and third main result.

Proof of Theorem 2. According to Lemma 12, for some matrix g ∈ MC f (�,F)
we have φ = I nng ·ψ , where ψ(enn) = eπ(n)π(n) for all n∈N and π ∈ S(N) . Consider
then ψ .

By Remark 1, ψ(S(Bn)) = S(Bn′) for S(Bn) ∼ S(Bn′) . Consider then the isomor-
phic pairs S(Bn) , S(Bn′) .

Let S(Bn) ⊃ S(Ci1),S(Ci2), . . . , and S(Bn′) ⊃ S(Ci′1),S(Ci′2), . . . . Again, by Re-
mark 1, for every p there exists r such that ψ(S(Cip)) =Ci′r . From Lemma 1 we know
that S(Cip) , S(Ci′r) are isomorphic to the same subring of Mk(F) for some finite k , i.e.

S(Cip) ∼ Mk(�′,F), S(Ci′r) ∼ Mk(�′′,F), Mk(�′,F) ∼ Mk(�′′,F).

From the last relation it follows that there exists a permutation π ′ of {1,2, . . . ,k} such
that π ′(�′) =�′′ . From this and Theorem 3 we obtain then that S(Ci′r) = I nng ·σ · π̂ ′ .
As g , σ and π ′ are determined for Cip , we can denote them by I nngip

, σip , π ′
ip .

Let (i, j) ∈ � , i ∈Cip1
, j ∈Cip2

with p2 �= p1 . Then

σip1
(α)ψ(ei j) = ψ(αeii)ψ(ei j) = ψ(αeii · ei j) = ψ(αei j)

= ψ(ei j ·αe j j) = ψ(ei j)ψ(αe j j) = σip2
ψ(ei j).

Since ψ(ei j) �= 0, the above equation forces σip1
(α) = σip2

(α) for all α ∈ F . As all
the classes Cip are contained in one class Bn , we have σip1

= σip2
for any ip1 , ip2 .

Hence, we can write that

φ = I nng · (I nngn ·σn · π̂n)n∈N ·Bπ
= I nng ·I nng′ · (σn)n∈N · π̂ ′ ·Bπ = I nng′′ · (σn)n∈N · π̂ ′′. �
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4.2. The automorphism group and some examples

Just as in the previous section from Theorem 2 we get

THEOREM 5. Suppose that F is a field, � is a preorder and MC f (�,F) =
⊕n∈NS(Bn) is contained in MVK(F) or M↓ bound(F) . The group of automorphisms
of MC f (�,F) is isomorphic to a subgroup of

GLC f (�,F) � [(A ut(F))N �S(N)].

Proof. As in the proof of Theorem 4 we notice that

• the group of inner automorphisms of MC f (�,F) is isomorphic to GLC f (�,F) ,

• the group of all automorphisms of the form (σn)n∈N is isomorphic to (A ut(F))N ,

• the group of all π̂ is isomorphic to a subgroup of S(N) ,

and we have

((σn)n∈N · π̂) · ((σ ′
n)n∈N · π̂ ′) = (σn)n∈N · (σ ′

π(n))n∈N · π̂ · π̂ ′ = (σn ·σ ′
π(n))n∈N · (π̂ · π̂ ′),

and

(I nng ·ψ) · (I nng′ ·ψ ′) = I nng ·I nnψ(g′) ·ψ ·ψ ′ = I nngψ(g′) · (ψ ·ψ ′),

so the result follows. �
Let us present some automorphism groups for a few rings.

EXAMPLE 4. Let �= {(n,n) : n ∈ N}∪ {(1,2),(4,3)} , so we identify the ring
MC f (�,F) with ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗
∗
∗
∗ ∗

∗
∗

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We have B1 = {1,2} , B2 = {3,4} , Bn = {n+2} for n � 3, so automorphisms can
permute S(B1) and S(B2) with each other, but with no other subring, and permute Bn

for n � 3 with each other. Hence, we have the following group of permutations:

Perm = {π1π2 : π1 ∈ {id, (1 4)(2 3)} , 1,2,3,4 /∈ supp(π2)}
and

A ut(MC f (�,F)) ∼ G � GLC f (�,F) � [(A ut(F))N �Perm].

It can be noticed that G is isomorphic to

[(T2(F))2 � [(A ut(F))2 �S2]]× [(A ut(F))N �S(N)].
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EXAMPLE 5. Consider the ring MC f (�,F) , where

�= {(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4)}∪{(n,m) : 5 � n � m} ,

i.e. MC f (�,F) is of the following ‘shape’:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗ · · ·
∗ ∗
∗

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The group of its automorphisms is isomorphic to the direct product of automorphisms
of the matrices of the form ⎛

⎜⎜⎝
∗ ∗
∗ ∗

∗ ∗
∗ ∗

⎞
⎟⎟⎠

and the group of automorphisms of T∞(F) .
For the second ring the group of automorphisms is T∞(F) �A ut(F) , whereas for

the first
(GL2(F))2 � [(A ut(F))2 �Perm],

where

Perm = {π ∈ S4 : either π(1),π(2) ∈ {1,2} or π(1),π(2) ∈ {3,4}} .

5. Some additional comments

We end the paper with a few more remarks.
1. Additional to Propositions 2, 3 from [8] (see also [7]) the two propositions

below can be proven.

PROPOSITION 3. If � is a preorder on N and R is an associative ring, then the
following conditions are equivalent.

1. � is a linear order.

2. MC f (�,R) is a permutation conjugate of T∞(F) .

PROPOSITION 4. If � is a preorder on N and R is associative ring, then the
following conditions are equivalent.

1. � is an order.
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2. MC f (�,R) is the intersection of some permutation conjugates of T∞(R) .

The proofs are adapted from [7].

Proof of Proposition 3. Suppose that (1) holds and consider (N,�) , where � is a
natural order on N . Then (N,�) and (N,�) are isomorphic. Let π be an isomorphism
between them. Then for p ∈ MC f (R) defined by the rule pnm = δ (m,π(n)) we have
pMC f (�,F)p−1 = T∞(F) .

On the other hand, if for some permutation matrix p∈MC f (R) we have the equal-
ity pMC f (�,R)p−1 = T∞(R) , then MC f (�,R) and T∞(R) are isomorphic, and so are
(N,�) , (N,�) . Thus, � must be a linear order. �

Proof of Proposition 4. It is known (see e.g. [6, p. 41]) that every order is an
intersection of some linear orders. Hence, MC f (�,R) is an intersection of some
MC f (�,R) , where � are linear orders. Consequently, by Proposition 3, it is an in-
tersection of some conjugates of T∞(R) . �

2. The proofs presented in Sections 3, 4 are based on the form of the elements
φ(enn) and fact that these matrices can be diagonalized. Hence, it is natural to ask under
which conditions an infinite matrix is diagonalizable. Some answers to this question are
given in [19].
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[5] S. DĂSCĂLESCU, L. VAN WYK, Do isomorphic structural matrix rings have isomorphic graphs?,
Proc. Amer. Math. Soc. 124, 5 (1996), 1385–1391.

[6] S. FOLDES, Fundamental structures of ring and discrete mathematics, Wiley, New York, 1994.
[7] S. FOLDES, G. MELETIOU, On incidence rings and triangular matrices, Rutcor Res. Report, vol.

2002, no. 35, 2002.
[8] S. FOLDES, G. MELETIOU, Some remarks on structural matrix rings and matrices with ideal entries,

Miskolc Math. Notes 12, 1 (2011), 25–29.
[9] R. A. HORN, C. R. JOHNSON, Matrix analysis, Cambridge University Press, Cambridge, 1990.

[10] S. JØNDRUP, The group of automorphisms of certain subalgebras of matrix algebras, J. Algebra 141,
1 (1991), 106–114.

[11] T. P. KEZLAN, A note on algebra automorphisms of triangular matrices over commutative rings,
Linear Algebra Appl. 135, (1990), 181–184.



188 R. SŁOWIK AND L. VAN WYK

[12] A. D. SANDS, Radicals of structural matrix rings, Quaestiones Mathematicae 13, 1 (1990), 77–81.
[13] R. SŁOWIK, Maps on infinite triangular matrices preserving idempotents, Linear Multilinear Algebra

62, 7 (2014), 938–964.
[14] K. C. SMITH, L. VAN WYK, An internal characterisation of structural matrix rings, Comm. Algebra

22, 14 (1994), 5599–5622.
[15] L. VAN WYK, Maximal left ideals in structural matrix rings, Comm. Algebra 16, 2 (1988), 399–419.
[16] L. VAN WYK, Special radicals in structural matrix rings, Comm. Algebra 16, 2 (1988), 421–435.
[17] L. VAN WYK, A link between a natural centralizer and the smallest essential ideal in structural matrix

rings, Comm. Algebra 27, 8 (1999), 3675–3683.
[18] A. M. VERSHIK, S. V. KEROV, On an infinite-dimensional group over a finite field (in Russian),

Funktsional. Anal. i Prilozhen. 32, 3 (1998), 3–10; English translation in Funct. Anal. Appl. 32, 3
(1998), 147–152 (1999).

[19] S. WANG, The Jordan normal form of infinite matrices, Chinese Sci. Bull. 441, 23 (1996), 1943–1945.

(Received February 28, 2015) Roksana Słowik
Kaszubska 23, 44-100 Gliwice, Poland
e-mail: roksana.slowik@gmail.com

Leon van Wyk
Department of Mathematical Sciences (Mathematics Division)

Stellenbosch University
P/Bag X1, Matieland 7602, Stellenbosch, South Africa

e-mail: LvW@sun.ac.za

Operators and Matrices
www.ele-math.com
oam@ele-math.com


