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We call a ring strongly indecomposable if it cannot be represented

as a non-trivial (i.e. M /= 0) generalized triangular matrix ring(
R M

0 S

)
, for some rings R and S and some R-S-bimodule RMS .

Examples of such rings include rings with only the trivial idem-

potents 0 and 1, as well as endomorphism rings of vector spaces, or

more generally, semiprime indecomposable rings. We show that if

R and S are strongly indecomposable rings, then the triangulation

of the non-trivial generalized triangular matrix ring

(
R M

0 S

)
is

unique up to isomorphism; to be more precise, if ϕ :
(
R M

0 S

)
→(

R′ M′
0 S′

)
is an isomorphism, then there are isomorphisms ρ :

R → R′ and ψ : S → S′ such that χ := ϕ|M : M → M′ is an R-S-

bimodule isomorphism relative toρ andψ . In particular, this result

describes theautomorphismgroupsof suchupper triangularmatrix

rings

(
R M

0 S

)
.
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1. Introduction

Triangular matrix rings appear naturally in Lie theory of both nilpotent and solvable Lie algebras.

Since then they have become an important ring construction; indeed a main tool in the description of

semiprimary hereditary rings (see, for example, [7]). For this reason the isomorphism of triangular

matrix rings, in particular, the automorphism group of a triangular matrix ring, is an interesting

field of study. In this paper we compute the automorphism groups of certain generalized triangular

matrix rings. Recall that a ring R is a generalized upper triangular matrix ring of size n × n if there is

a decomposition 1 = e1 + · · · + en, where the ei’s are pairwise orthogonal idempotents such that

eiRej = 0 for all i > j. For further information on this topic we refer to [3,8,10,11].

The isomorphism problem, in the other words, the recovery of the underlying Boolean matrix

involved in a structural matrix ring, or equivalently, the underlying preordered set in an incidence

ring, is an essential aim in the investigation of generalized matrix rings, and was studied in [1,4,5].

The uniqueness of the tile in the non-diagonal position in a 2 × 2 upper triangular tiled matrix ring,

i.e. in position (1,2), was considered in [6]. However, as was shown by an example in [4], additional

conditions are necessary in order to obtain a positive result.

Consequently a search was initiated in [9] for a possible recovery. It was shown there for a gener-

alized triangular matrix ring A :=
(
R M

0 S

)
that if R and S have only the two trivial idempotents 0

and 1, for example, if R and S are indecomposable commutative rings or local rings (not necessarily

commutative), then R and S can be recovered up to isomorphism, and although it turns out (see Lemma

2.2) that M is independent of the choice of isomorphic copies of R and S in A, in general M cannot be

recovered in the ordinary sense of an R-S-bimodule, but it can indeed be recovered relative to an

automorphism of R and an automorphism of S.

It is the purpose of this paper to extend the latter result from the class of rings with only the

two trivial idempotents to the class of strongly indecomposable rings, which also includes the en-

domorphism ring of a vector space, or more generally, semiprime indecomposable rings. Our re-

sult provides a description of the automorphism group of such a generalized triangular matrix ring(
R M

0 S

)
. For commutative rings the concepts of indecomposability and strongly indecomposability

coincide.

2. Generalized triangular matrix rings

We say that a ring A with identity 1 (say) admits a generalized (upper) triangular matrix ring de-

compostion if there is a non-trivial idempotent e (i.e. e /= 0 and e /= 1) in A such that fAe = 0, with

f := 1 − e. Then e and f are orthogonal idempotents, i.e. ef = 0 = fe, and e + f = 1. Therefore,

a = (e + f )a(e + f ) = eae + eaf + faf (1)

for every a ∈ A. Consequently

A = eAe ⊕ eAf ⊕ fAf ,

and thus the following assertion follows immediately.

Lemma 2.1. A is isomorphic to the generalized triangular matrix ring(
eAe eAf

0 fAf

)
via ϕ : a �→

(
eae eaf

0 faf

)
, a ∈ A.

If R and S are rings with identity and RMS is an arbitrary unitary R-S-bimodule, then one can form

a generalized triangular matrix ring

A :=
(
R M

0 S

)
=
{(

r m

0 s

)
: r ∈ R, s ∈ S, m ∈ M

}
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with the usual matrix addition and the multiplication induced by the bimodule actions and the usual

rule for matrix multiplication. If we denote the idempotent

(
1 0

0 0

)
in A by e, then it follows that

eAe =
{(

r 0

0 0

)
: r ∈ R

}
∼= R, (2)

and so we can identify eAe with R, and similarly, eAf and fAf with M and S respectively, where f =
1 − e =

(
0 0

0 1

)
. It is worth noting that if one starts with commutative rings R and S and a bimodule

RMS , then, although there is no need to distinguish between left and right modules for commutative

rings, the action of S on M from the left, induced by multiplication in A, is trivial, i.e. (fAf )(eAf ) = 0.
We point out that if a ring A admits a generalized triangular matrix ring decomposition, then such

a decomposition is, in general, not unique. In fact, for any element x ∈ eAf , set

ex := e + x and fx := 1 − ex = f − x.

Since x = exf , we have that

ex = x = xf ,

and similarly,

xe = 0 = fx, and x2 = 0. (3)

Therefore,

e2x = e2 + ex + xe + x2 = e + x = ex and f 2x = f .

Also,

exe = (e + x)e = e, eex = ex, ffx = f and fxf = fx. (4)

Lemma 2.2. (i) exAex = {u + ux : u ∈ eAe} ∼= eAe

(ii) exAfx = eAf

(iii) fxAfx = {v − xv : v ∈ fAf } ∼= fAf

(iv) fxAex = 0.

Proof. (i) For a ∈ Awe obtain from (1) and (3) that

exaex = (e + x)(eae + eaf + faf )(e + x)
= (eae + eaf + xaf )(e + x)
= eae + eaex,

which shows that exAex = {u + ux : u ∈ eAe}. Define ϕ : eAe → {u + ux : u ∈ eAe} by ϕ(u) = u +
ux, u ∈ eAe. Clearly,ϕ is additive and onto. Ifϕ(u) = 0, then, keeping inmind that x ∈ eAf and fe = 0,

we obtain that

u = ue = ue + uxe = (u + ux)e = ϕ(u)e = 0,

and soϕ is 1-1. Next, if u′ ∈ eAe, then using xu′ = 0 it follows thatϕ(u)ϕ(u′) = (u + ux)(u′ + u′x) =
uu′ + uu′x, showing that ϕ is multiplicative.

(ii) Since eAf , exAfx ⊆ A, we conclude from (4) that exAfx ⊇ ex(eAf )fx = eAf ⊇ e(exAfx)f = exAfx.
(iii) Similar to the proof of (i).

(iv) By (4), fxAex = (f − x)(eAe + eAf + fAf )(e + x) = (fAf − xAf )(e + x) = 0. �

3. Isomorphism of generalized triangular matrix rings

We call a ring Awith 1 strongly (upper) indecomposable if, whenever there is a nonzero idempotent

e in A with (1 − e)Ae = 0, then e = 1. (We note that such a ring is called a semicentral reduced ring
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in [2].) One can dually define a generalized lower triangular matrix ring decomposition, as well as

strongly (lower) indecomposability.

Remark. Note that strong indecomposability is indeed a stronger concept than indecomposability.

To wit, the 2 × 2 upper triangular matrix ring U2(k) :=
(
k k

0 k

)
over a field k is not strongly (upper)

indecomposable, since (1 − e)U2(k)e = 0withe =
(
1 0

0 0

)
.However,noting that theonlynon-trivial

idempotents in U2(k) are of the form

(
1 x

0 0

)
or

(
0 x

0 1

)
for an arbitrary element x in the field k,

it can be verified that there is no non-trivial idempotent e in U2(k) such that (1 − e)U2(k)e = 0 =
eU2(k)(1 − e), and so we obtain the well known fact that U2(k) is indeed an indecomposable ring.

Clearly a ring having only the trivial idempotents 0 and 1 is strongly indecomposable, as is the

endomorphism ring of a vector space, or more generally:

Proposition 3.1. If A is a semiprime indecomposable ring, then A is strongly indecomposable.

Proof. Let ebe anonzero idempotent inA such that (1 − e)Ae = 0.Then it follows readily from (1) that

eA(1 − e) is an ideal of A. Since (eA(1 − e))2 = 0, the semiprimeness of A implies that eA(1 − e) = 0.

We conclude from the indecomposability of A that e = 1, and so A is strongly indecomposable. �

Theorem 3.2. Let Ai :=
(
Ri Mi

0 Si

)
, i = 1, 2, be a generalized triangular matrix ring, and consider a

function ϕ : A1 → A2. Assume that one of the pairs (Ri, Si) consists of strongly indecomposable rings.
(I) If ϕ is an isomorphism, then M1 = 0 if and only if M2 = 0, in which case either R1 ∼= R2 and

S1 ∼= S2, or R1 ∼= S2 and S1 ∼= R2.
(II) If M1 /= 0 and M2 /= 0, then ϕ is an isomorphism if and only if there is a quadruple (ρ ,ψ , m,χ),
where ρ : R1 → R2 and ψ : S1 → S2 are ring isomorphisms, m ∈ M2 and χ : M1 → M2 is an R1-

S1-bimodule isomorphism relative to ρ andψ , such that

ϕ

(
r w

0 s

)
=
(
ρ(r) ρ(r)m + χ(w)− mψ(s)
0 ψ(s)

)
for all

(
r w

0 s

)
∈ A1.

In particular, χ is the restriction ϕ|M1
of ϕ to M1.

(II′) (Alternative formulation of II) If M1 /= 0 and M2 /= 0, then ϕ is an isomorphism if and only if

there is a triple (ρ ,ψ , m), whereρ : R1 → R2 andψ : S1 → S2 are ring isomorphisms, m ∈ M2 and

ϕ|M1
: M1 → M2 is an R1-S1-bimodule isomorphism relative to ρ andψ , such that

ϕ

(
r w

0 s

)
=
(
ρ(r) ρ(r)m + ϕ|M1

(w)− mψ(s)

0 ψ(s)

)
for all

(
r w

0 s

)
∈ A1.

We divide the proof of part I of Theorem 3.2 essentially into a number of lemmas, namely Lemmas

3.3–3.5. In these, as well as in the statements of Corollaries 3.6 and 3.7, we assume, without stating it

each time, that

ϕ : A1 → A2 is an isomorphism,

with Ai =
(
Ri Mi

0 Si

)
a generalized triangular matrix ring, i = 1, 2.

Lemma 3.3. If R1 is strongly indecomposable, then

ϕ

(
1 0

0 0

)
=
(
α αm
0 0

)
or

(
0 mβ
0 β

)

for some α ∈ R2, β ∈ S2, m ∈ M2.
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Proof. Set e :=
(
1 0

0 0

)
∈ A1 and ϕ(e) =:

(
α m

0 β

)
for some α ∈ R2,β ∈ S2 andm ∈ M2. Since

(
α2 αm + mβ

0 β2

)
=
(
α m

0 β

)2

= (ϕ(e))2 = ϕ(e),

it follows that

α2 = α, β2 = β and αm + mβ = m. (5)

Hence,

ϕ(e) = C + D =: E, (6)

with

C :=
(
α αm
0 0

)
and D :=

(
0 mβ
0 β

)
. (7)

Multiplying the last equation in (5) from the left by α, we deduce that αmβ = 0, and so we conclude

from (5) and (7) that

C2 = C, D2 = D and CD = 0 = DC. (8)

Since C = (C + D)C(C + D) and D = (C + D)D(C + D), it follows that C, D ∈ EA2E = ϕ(eA1e).
Consequently (2) implies that there are elements a, b ∈ R1 such that

ϕ

(
a 0

0 0

)
= C and ϕ

(
b 0

0 0

)
= D. (9)

We conclude from (6), (8) and (9) that

a2 = a, b2 = b, ab = 0 = ba and a + b = 1.

Since

D

(
p q

0 r

)
C =

(
0 mβ
0 β

)(
p q

0 r

)(
α αm
0 0

)

=
(
0 mβr
0 βr

)(
α αm
0 0

)
=
(
0 0

0 0

)

for every

(
p q

0 r

)
∈ A2, it follows from (9) that

ϕ

(
bR1a 0

0 0

)
= ϕ

((
b 0

0 0

)
A1

(
a 0

0 0

))
= DA2C = 0,

forcing bR1a to be 0. Since R1 is strongly indecomposable, we deduce that a = 0 or b = 0, and so the

desired result follows from (6) and (9). �

Lemma 3.4. If R1 and S1 are strongly indecomposable, then

ϕ

(
1 0

0 0

)
=
(
1 m

0 0

)
or

(
0 m

0 1

)

for some m ∈ M2.

Proof. By Lemma 3.3,

ϕ(e) =
(
α αm
0 0

)
or

(
0 mβ
0 β

)

and so
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ϕ

(
0 0

0 1

)
= ϕ(1 − e) =

(
1 0

0 1

)
−
(
α αm
0 0

)
= C′ + D′, (10)

with

C′ :=
(
1 − α 0

0 0

)
and D′ :=

(
0 −αm
0 1

)
, (11)

or

ϕ

(
0 0

0 1

)
= ϕ(1 − e) =

(
1 0

0 1

)
−
(
0 mβ
0 β

)
= C′ + D′, (12)

with

C′ :=
(
1 −mβ
0 0

)
and D′ :=

(
0 0

0 1 − β

)
. (13)

Without loss of generality, assume the second possibility, i.e. assume that (12) and (13) hold. Since

(C′)2 = C′, (D′)2 = D′ and C′D′ = 0 = D′C′,
arguments similar to the ones above show that C′, D′ ∈ ϕ((1 − e)A1(1 − e)), that there are elements

c, d ∈ S1 such that

ϕ

(
0 0

0 c

)
= C′ andϕ

(
0 0

0 d

)
= D′,

and that

ϕ

(
0 0

0 dS1c

)
= D′A2C

′ = 0,

forcing dS1c to be 0. The strongly indecomposability of S1 implies that c = 0 or d = 0, which in turn

leads to(
0 0

0 0

)
= ϕ

(
0 0

0 c

)
= C′ =

(
1 −mβ
0 0

)
(14)

or (
0 0

0 0

)
= ϕ

(
0 0

0 d

)
= D′ =

(
0 0

0 1 − β

)
. (15)

Since 1 /= 0, we conclude that (14) cannot hold, and so (15) must be true, i.e. β = 1. �

The following result should be seen against the background of Example 1.1 in [4], where it was

shown that it can happen that all possible 2 × 2 structural matrix rings over a ring R are isomorphic

to one another; in particular, it is possible that(
R R

0 R

)
∼=

(
R 0

0 R

)
.

Lemma 3.5. If R1 and S1 are strongly indecomposable, then M1 = 0 if and only if M2 = 0, in which case

either R1 ∼= R2 and S1 ∼= S2, or R1 ∼= S2 and S1 ∼= R2.

Proof. Assume thatM1 = 0, and use the notation e =
(
1 0

0 0

)
∈ A1 and ϕ(e) = E, as before. By (2),

eA1e =
(
R1 0

0 0

)
, and so eA1e � A1 (i.e. eA1e is an ideal of A1), which implies that EA2E � A2.

Invoking Lemma 3.4, we first consider the case E =
(
1 m

0 0

)
for somem ∈ M2. If x is an arbitrary

element inM2, then using

(
0 x

0 0

)
as an element in A2 and the fact that EA2E � A2,we conclude that
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(
0 x

0 0

)
=
(
1 m

0 0

)(
0 x

0 0

)
∈ (EA2E)A2 ⊆ EA2E. (16)

Since E is the identity of the ring EA2E, it follows that(
0 x

0 0

)(
1 m

0 0

)
=
(
0 x

0 0

)
. (17)

However, matrix multiplication tells us that

(
0 x

0 0

)(
1 m

0 0

)
=
(
0 0

0 0

)
, and so x = 0. Therefore,

M2 = 0.

Next we consider the second possibility in Lemma 3.4, i.e. E =
(
0 m

0 1

)
for some m ∈ M2. Using(

0 x

0 0

)(
0 m

0 1

)
and

(
0 m

0 1

)(
0 x

0 0

)
in (16) and (17) respectively, similar arguments as before

show again thatM2 = 0.
Conversely, supposeM2 = 0. Then by Lemma 3.4,

E =
(
1 0

0 0

)
or

(
0 0

0 1

)
, (18)

and so EA2E =
(
R2 0

0 0

)
or

(
0 0

0 S2

)
, which are both ideals of A2 (since M2 = 0). Hence, eA1e =

ϕ−1(EA2E) � A1, and using

(
1 0

0 0

)(
0 x

0 0

)
and

(
0 x

0 0

)(
1 0

0 0

)
in (16) and (17) respectively, with

e the identity of the ring eA1e and x an arbitrary element of A1, we deduce thatM1 = 0.
The last part of the statement of Lemma 3.5 is clear from (18). �

The ideas in the proof of Lemma 3.5 serve to a large extent in proving the following result, which

we state separately, since it will be the starting point of the proof of the main part of Theorem 3.2.

Corollary 3.6. If ϕ(e) =
(
0 m

0 1

)
for some m ∈ M2, then M2 = 0.

Proof. SinceeA1 =
(
R1 M1

0 0

)
� A1,wehave thatEA2 � A2.Hence,A2(EA2E) = (A2(EA2))E ⊆ (EA2)E

and (EA2E)A2 = E((A2E)A2)) ⊆ E(A2E), implying that EA2E � A2. The proof is concluded by adapting

the appropriate arguments in the proof of Lemma 3.5. �

The foregoing results give rise to

Corollary 3.7. If M1 /= 0 and M2 /= 0, then ϕ(e) =
(
1 m

0 0

)
for some m ∈ M2.

We are now in a position to complete the proof of Theorem 4.

Proof of part II of Theorem 3.2. Since the “if" part is direct verification, it suffices to prove the “only

if" part of II.

To this end, assume that R1 and R2 are strongly indecomposable, that M1 and M2 are nonzero

and that ϕ is an isomorphism. Let m be the fixed element in M2 for which ϕ(e) =
(
1 m

0 0

)
, as in

Corollary 3.7.

Let x ∈ M1,which by the remark following (2) is isomorphic to eA1(1 − e) =
(
0 M1

0 0

)
. By Lemma

2, ex :=
(
1 x

0 0

)
and e0 :=

(
1 0

0 0

)
= e play the same role for a generalized triangular matrix ring
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decomposition of A1. Hence Corollary 3.7 implies that ϕ(ex) =
(
1 n

0 0

)
for some element n ∈ M2

which is uniquely determined by x. Thus we have obtained a function

ξ : M1 → M2 by setting ξ(x) := n.

Define a new function

χ : M1 → M2 by setting χ(x) := ξ(x)− m = n − m.

Since

ϕ

(
0 x

0 0

)
= ϕ

((
1 x

0 0

)
−
(
1 0

0 0

))
= ϕ

(
1 x

0 0

)
− ϕ

(
1 0

0 0

)

=
(
1 n

0 0

)
−
(
1 m

0 0

)

=
(
0 n − m

0 0

)
,

we deduce that

ϕ(x) = χ(x) for every x ∈ M1, (19)

i.e. χ is precisely the restriction ϕ|M1
of ϕ to M1.

Denoting ϕ(e) =
(
1 m

0 0

)
by ēm (instead of E), and 1 − e by f , it follows that

ϕ(f ) = ϕ

(
0 0

0 1

)
=
(
1 0

0 1

)
− ϕ

(
1 0

0 0

)
=
(
0 −m

0 1

)
=: f̄m.

Hence Lemma 2.2 implies that

R1 ∼= eA1e ∼= ϕ(eA1e) = ēmA2ēm ∼= R2,

and

S1 ∼= fA1f ∼= ϕ(fA1f ) = f̄mA2 f̄m ∼= S2.

For r ∈ R1, w ∈ M1 and s ∈ S1 we have(
r 0

0 0

)(
0 w

0 0

)(
0 0

0 s

)
=
(
0 rws

0 0

)
,

and so, identifying this matrix in

(
R1 M1

0 S1

)
again with rws ∈ M1, we deduce from (19) that

χ(rws) = ϕ(rws) = ϕ(r)ϕ(w)ϕ(s) = ϕ(r)χ(w)ϕ(s) = ρ(r)χ(w)ψ(s), (20)

if

ρ := ϕ|R1 :→ ēmA2ēm =
{(

a am

0 0

)
: a ∈ R2

}
∼= R2 (21)

and

ψ := ϕ|S1 :→ f̄mA2 f̄m =
{(

0 −mb

0 b

)
: b ∈ S2

}
∼= S2, (22)

where, by Lemma 2.2, the last isomorphisms in (21) and (22) are given by(
a am

0 0

)
�→ a and

(
0 −mb

0 b

)
�→ b

respectively. Therefore (20) implies thatχ : M1 → M2 is a is an R1-S1-bimodule isomorphism relative

to ρ andψ , and

ϕ

(
r w

0 s

)
= ϕ

(
r 0

0 0

)
+ ϕ

(
0 w

0 0

)
+ ϕ

(
0 0

0 s

)

=
(
ρ(r) ρ(r)m
0 0

)
+
(
0 χ(m)
0 0

)
+
(
0 −mψ(s)
0 ψ(s)

)

=
(
ρ(r) ρ(r)m + χ(w)− mψ(s)
0 ψ(s)

)
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for all

(
r w

0 s

)
∈
(
R1 M1

0 S1

)
, which completes the proof. �

Corollary 3.8. Let A :=
(
R M

0 S

)
be a generalized triangular matrix ring, with M /= 0 and R and S

strongly indecomposable. Then the automorphism group Aut(A) of A is a subgroup of the direct product

of Aut(R), Aut(S), M (as an abelian group) and Aut(M), consisting of the quadruples (ρ ,ψ , m,χ), where

ρ ∈ Aut(R), ψ ∈ Aut(S), m ∈ M and χ ∈ Aut(M), such that χ is an R − S-bimodule automorphism of

M relative to ρ andψ.

Example 3.9. 1. Let R = S = Zp be the prime field of characteristic p, and let M be an elemen-

tary abelian p-group M. Then for the generalized triangular matrix ring

(
Zp M

0 Zp

)
we have Aut(

Zp M

0 Zp

)
= M ⊕ Aut(M). (Recall that the automorphism group of a finite elementary abelian p-

group is the full general linear group GL(n,Zp) of appropriate size (n say) over the field Zp of p

elements.)

2. Let R = S = F , with F = Q or F = R, the fields of rational numbers or real numbers, and let V

be a vector space over F . Then Aut

(
F V

0 F

)
= V ⊕ GL(FV).

3. Let R = Q and S = R, and let V be a vector space over R. Then Aut

(
Q V

0 R

)
= V ⊕ GL(VR).
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