A NOTE ON SEMI-HOMOMORPHISMS OF RINGS

Y. FONG AND L. VAN WYK

Huq presented a general study of semi-homomorphisms of rings, following, amongst others, Kaplansky's study of semi-automorphisms of rings and Herstein's study of semi-homomorphisms of groups. Huq gave several "sufficient" conditions for a semi-homomorphism and a semi-monomorphism of rings to be a homomorphism and a monomorphism respectively. In this note we introduce semi-subgroups of groups, provide counterexamples to four of Huq's assertions and show how a minor, albeit forced, change to one of the conditions of the fourth assertion turns it into a special case of another theorem of Huq's.

1. PRELIMINARY RESULTS

Herstein [2] calls a mapping $\varphi \colon G \to H$ between two groups (written additively) a semi-homomorphism if

(1)
$$\varphi(a+b+a) = \varphi(a) + \varphi(b) + \varphi(a)$$

for all $a, b \in G$. Any homomorphism or anti-homomorphism is a semi-homomorphism, but the converse need not be true in general.

We call a subset K of a group A a semi-subgroup of A if $h+k+h\in K$ for all $h,k\in K$. The subset $\{k+a\mid k\in K\}$ of A, for some $a\in A$, will be denoted by K+a. The singleton $\{a\}$ is a semi-subgroup of A which is not a subgroup of A, for every $a\in A$ of order 2, and the image of every semi-homomorphism $\varphi\colon G\to H$ is a semi-subgroup of H. However, in the next paragraph we shall be interested in the subsets

$$H_{\varphi} = \{ \varphi(a+b) - \varphi(a) - \varphi(b) - \varphi(0) \mid a, b \in G \} \text{ and } H_{\varphi} + \varphi(0) \text{ of } H.$$

The result in the first part of the "proof" of [3, Lemma 4] will be used frequently in the sequel; so we state it as

LEMMA 1.1. If $\varphi \colon G \to H$ is a semi-homomorphism of abelian groups, then $2\varphi(a+b) = 2\varphi(a) + 2\varphi(b)$ for all $a,b \in G$.

Received 17 January 1989

The second author wishes to thank the NSC of the Republic of China and the CSIR of South Africa for a two months grant in accordance with a bilateral exchange agreement between the two institutions which made it possible for him to visit the National Cheng Kung University.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

2. Semi-homomorphisms and homomorphisms

We show that the condition,

(2)
$$\varphi(a+b) = \varphi(0) + \varphi(a) + \varphi(b)$$

for all $a,b \in G$, is stronger than (1) in general, but equivalent to (1) in the case where G and H are abelian and the semi-subgroup H_{φ} of H (see Lemma 2.2) contains no elements of order 2. It is also shown that if G and H are abelian, then a semi-homomorphism $\varphi \colon G \to H$ is a homomorphism if and only if the semi-subgroup $H_{\varphi} + \varphi(0)$ of H contains no elements of order 2.

LEMMA 2.1. If a mapping $\varphi \colon G \to H$ between groups satisfies (2), then φ is a semi-homomorphism.

PROOF: It follows from (2) that
$$2\varphi(0) = 0$$
, and so $\varphi(a+b+a) = \varphi(0) + \varphi(a+b) + \varphi(a) = \varphi(0) + \varphi(0) + \varphi(a) + \varphi(b) + \varphi(a) = \varphi(a) + \varphi(b) + \varphi(a)$.

Henceforth G and H will be abelian groups.

LEMMA 2.2. If $\varphi \colon G \to H$ is a semi-homomorphism, then H_{φ} and $H_{\varphi} + \varphi(0)$ are semi-subgroups of H.

PROOF: By Lemma 1.1 and the fact that
$$2\varphi(0) = 0$$
.

PROPOSITION 2.3. Let $\varphi \colon G \to H$ be a semi-homomorphism. If H_{φ} contains no elements of order 2, then φ satisfies (2).

PROOF: The result follows immediately since
$$2H_{\varphi} = 0$$
.

In order to show that (2) is stronger than (1) in general, we consider

Example 2.4. We shift for a brief moment from additive to multiplicative notation (composition of functions) in defining $\varphi \colon S_3 \to S_3 \times S_3$ by $\varphi(\alpha) = ((12)\alpha(12), (12)\alpha^{-1}(12))$ for every $\alpha \in S_3$, the symmetric group of degree 3. It is a routine check that φ is a semi-homomorphism; in fact, if π_i denotes the *i*th coordinate projection, i = 1, 2, then $\pi_1\varphi \colon S_3 \to S_3$ is a homomorphism and $\pi_2\varphi \colon S_3 \to S_3$ is an anti-homomorphism. Furthermore, $\varphi(1) = 1$, where 1 denotes the identity of S_3 , and so it is easy to see that the condition,

$$\varphi(\alpha\beta) = \varphi(1)\varphi(\alpha)\varphi(\beta)$$

for all $\alpha, \beta \in S_3$, is not satisfied.

THEOREM 2.5. A semi-homomorphism $\varphi: G \to H$ is a homomorphism if and only if the semi-subgroup $H_{\varphi} + \varphi(0)$ of H contains no elements of order 2.

PROOF: The result follows immediately as in Proposition 2.3, since $2(H_{\varphi} + \varphi(0)) = 0$.

3. Counterexamples to assertions in [3]

Hug calls a mapping $\varphi \colon R \to R'$ between two rings a semi-homomorphism if

$$\varphi \colon (R, +) o (R', +)$$
 is a semi-homomorphism of groups

and

(3)
$$\varphi(aba) = \varphi(a)\varphi(b)\varphi(a)$$

for all $a,b \in R$, that is $\varphi: (R, \cdot) \to (R', \cdot)$ is a semi-homomorphism of semigroups. Note that Ancochea [1] calls an additive automorphism $\varphi: R \to R$ satisfying

(4)
$$\varphi(ab) + \varphi(ba) = \varphi(a)\varphi(b) + \varphi(b)\varphi(a)$$

for all $a, b \in R$, a semi-automorphism of R. Kaplansky [4] proved that if R is a simple algebra of characteristic different from 2, then (3) is equivalent to (4), and otherwise stronger. In this paper we stick to Huq's definition of a semi-homomorphism of rings.

The first example in this section is a counterexample to [3, Lemma 4 and Corollary 5].

Example 3.1. Let Z_6 be the ring of integers modulo 6. Then $\varphi \colon Z_6 \to Z_6$, defined by $\varphi(x) = 3$ for all $x \in Z_6$, is easily seen to be a semi-homomorphism of rings. However, char $Z_6 = 6 \neq 2$, and by Theorem 2.5 φ is not a homomorphism of the underlying additive groups, since $(Z_6)_{\varphi} + \varphi(0) = \{3\}$ and $2 \cdot 3 = 0$, or equivalently, $\varphi(0) + \varphi(0) = 0 \neq 3 = \varphi(0+0)$. Also, $\varphi(-2 \cdot 0) = 3 \neq 0 = -2\varphi(0)$ (see [3, Corollary 5]).

Even if $\varphi \colon R \to R'$ is simultaneously a semi-monomorphism of rings and a homomorphism of the underlying multiplicative semigroups (R, \cdot) and (R', \cdot) , and char $R' \neq 2$, then [3, Lemma 4 and Corollary 5] need not be true, as seen in

Example 3.2. Consider the subring $\{0,2,4\}$ of Z_6 , and define $\varphi \colon \{0,2,4\} \to Z_6$ by $\varphi(x) = \overline{4x+3}$ for all $x \in \{0,2,4\}$, where \overline{a} denotes the remainder of a after division by 6. Then $\varphi(0) = 3$, and it can be easily verified that φ is a semi-monomorphism of rings. In fact $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x,y \in \{0,2,4\}$, but by Theorem 2.5 φ is not a homomorphism of the underlying additive groups.

It should be remarked that [3, Lemma 4 and Corollary 5] are true in case the codomain of the semi-homomorphism is a division ring D (say), since if char $D \neq 2$, then D contains no elements of order 2.

By Theorem 2.5 correct versions of [3, Lemma 4 and Corollary 5] read as follows:

LEMMA 3.3. A semi-homomorphism $\varphi: R \to R'$ of rings will be a homomorphism of the underlying additive groups if the semi-subgroup R'_{φ} of (R', +) contains no elements of order 2.

COROLLARY 3.4. For a semi-homomorphism $\varphi: R \to R'$ such that the semi-subgroup R'_{φ} of (R', +) contains no elements of order 2, we have $\varphi(-na) = -n\varphi(a)$ for every integer n and every $a \in R$.

By Lemma 1.1 and Theorem 2.5 the condition in Corollary 3.4 that R'_{φ} contains no elements of order 2, can be replaced by the condition that the semi-subgroup $\{\varphi(2a) - 2\varphi(a) \mid a \in R\}$ of R', which is contained in R'_{φ} , contains no elements of order 2.

The next example is a counterexample to [3, Theorem 11]:

Example 3.5. Let $\varphi: \mathbb{Z}_6 \to \mathbb{Z}_6$ be defined by $\varphi(x) = \overline{4x+3}$ for all $x \in \mathbb{Z}_6$. It is easy to verify that the conditions of [3, Theorem 11] are satisfied. In fact, $\varphi: (\mathbb{Z}_6, \cdot) \to (\mathbb{Z}_6, \cdot)$ is a homomorphism of semigroups as in Example 3.2. However, by Theorem 2.5 φ is not a homomorphism. (The mentioning of an anti-homomorphism in [3, Theorem 11] is irrelevant, since R and R' are assumed to be commutative.)

A correct version of [3, Theorem 11] reads as follows:

THEOREM 3.6. For commutative rings R and R' with identities, if $\varphi \colon R \to R'$ is an identity-preserving semi-homomorphism and the semi-subgroup R'_{φ} of R' contains no elements of order 2, then φ is a homomorphism.

We come now to [3, Theorem 10]. In order to exhibit a counterexample to this assertion, one needs, as will be shown shortly, a semi-monomorphism of rings with identities which maps 0 into 0, 1 into 1 and, above all, which is a homomorphism of the underlying multiplicative semigroups. (Note that in all the counterexamples so far 0 was not mapped into 0.)

Example 3.7. We consider the field $F := \mathbb{Z}_2[x]/(x^3 + x + 1)$ with 8 elements, that is the congruence classes in $\mathbb{Z}_2[x]$ modulo the ideal $(x^3 + x + 1)$. Define $\varphi \colon F \to F \times \mathbb{Z}_3$ by

$$\varphi(\beta) = (0, 0), \quad \text{if } \beta = 0$$
$$(\beta^{-1}, 0), \quad \text{if } \beta \neq 0.$$

Then φ is clearly a semi-homomorphism of the underlying additive groups, since char F=2. Moreover, setting $[x]=:\alpha$, where [x] denotes the congruence class of x, we get $\varphi(1+\alpha)=\alpha^2+\alpha\neq\alpha^2=1+\alpha^2+1=\varphi(1)+\varphi(\alpha)$, and so φ is not a homomorphism of the underlying additive groups. It is early verified that φ is a homomorphism of the underlying multiplicative semigroups, and so condition (iii) of [3,

П

Theorem 10] is satisfied. Furthermore, char $F \times \mathbb{Z}_3 = 6 \neq 2$ and $\varphi(F) = F \times 0$ is a subfield of $F \times \mathbb{Z}_3$ (with identity (1,0)). (It is clear from the "proof" of [3, Theorem 10] that Huq terms a division ring a skew field.) Finally, φ is 1-1, and so we have established a counterexample to [3, Theorem 10].

We are going to show that a minor, albeit forced, change to condition (i), together with conditions (ii) and (iii), of [3, Theorem 10], turn it into a special case of [3, Theorem 12]. A few preliminary consequences of conditions (ii) and (iii) are first needed:

LEMMA 3.8. Let $\varphi: R \to R'$ be a semi-monomorphism of rings such that conditions (ii) and (iii) of [3, Theorem 10] are satisfied. Then $\varphi(0) = 0$.

PROOF: Suppose that $\varphi(0) \neq 0$. Recall that $2\varphi(0) = 0$, since φ is an additive semi-homomorphism. Therefore, $-\varphi(0) = \varphi(0)$, and so by condition (iii), with y = 0,

$$\varphi(0) = \varphi(0)[\varphi(0)]^{-1} = 1,$$

where 1 denotes the identity of the skew field $\varphi(R)$. However, $\varphi(a) = 0$ for some $a \in R$, since $0 \in \varphi(R)$, a skew field. But then

$$0 \neq \varphi(0) = \varphi(0a0) = \varphi(0)\varphi(a)\varphi(0) = 0,$$

which completes the proof.

COROLLARY 3.9. Let φ satisfy the conditions of Lemma 3.8. Then $\varphi: (R \setminus \{0\}, \cdot) \to (\varphi(R) \setminus \{0\}, \cdot)$ is an isomorphism of groups, and so R is a skew field.

PROOF: It follows from condition (iii) that $\varphi(yz) = \varphi(yzy)[\varphi(y)]^{-1} = \varphi(y)\varphi(z)\varphi(y)[\varphi(y)]^{-1} = \varphi(y)\varphi(z)$ for all $y,z \in R \setminus \{0\}$, and so φ is a homomorphism of semigroups. But φ is 1-1, and so φ is an isomorphism, which implies that $(R \setminus \{0\}, \cdot)$ is a group, as $(\varphi(R) \setminus \{0\}, \cdot)$ is a group. Therefore R is a skew field.

It follows from Corollary 3.9 that $\varphi(1) = 1$, where 1 denotes the identities of the skew fields R and $\varphi(R)$, and so we immediately get

PROPOSITION 3.10. Let φ satisfy the conditions of Lemma 3.8. Then $\varphi \colon R \to \varphi(R)$ is an identity-preserving semi-monomorphism of skew fields and $\varphi \colon (R \setminus \{0\}, \cdot) \to (\varphi(R) \setminus \{0\}, \cdot)$ is a homomorphism of groups.

If we now change condition (i) of [3, Theorem 10] to the condition

$$\operatorname{char} \varphi(R) \neq 2,$$

then by Proposition 3.10 the following theorem, which is a correct version of [3, Theorem 10], is merely a special case of [3, Theorem 12]:

THEOREM 3.11. A semi-monomorphism $\varphi \colon R \to R'$ of rings will be a monomorphism, if

- (i) $\operatorname{char} \varphi(R) \neq 2$
- (ii) $\varphi(R)$ is a skew subfield of R' and
- (iii) $\varphi(2y + yz) 2\varphi(y) = \varphi(yzy)[\varphi(y)]^{-1}$.

We conclude with a remark concerning semi-subgroups:

If a semi-subgroup K of a group A is not a subgroup of A, then we call K a non-subgroup of A. Non-subgroups seem to have a very interesting structure, and we hope to give a characterisation of the non-subgroups of finite abelian groups in a forthcoming paper.

REFERENCES

- G. Ancochea, 'Le théorème de von Staudt en geometrie projective quaternionienne', J. Reine Angew. Math. 184 (1942), 192-198.
- [2] I.N. Herstein, 'Semi-homomorphisms of groups', Canad. J. Math. 20 (1968), 384-388.
- [3] S.A. Huq, 'Semi-homomorphisms of rings', Bull. Austral. Math. Soc. 36 (1987), 121-125.
- [4] I. Kaplansky, 'Semi-homomorphisms of rings', Duke Math. J. 14 (1947), 521-525.

Department of Mathematics National Cheng Kung University 70102 Tainan, Taiwan Republic of China Department of Mathematics University of Stellenbosch 7600 Stellenbosch Republic of South Africa