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1. Introduction
Maxwell’s equations for electromagnetism are:

∂E

∂t
= −∇× E ∇ · E =

ρ

ε0

∇ ·B = 0 ∇×B− 1

c2
∂E

∂t
= µ0J



They have some funky solutions:

Electric field of a dipole:



They have some funky solutions:

Electric field of a dipole:



Magnetic field of a current-carrying loop:



Magnetic field of a solenoid:



Magnetic field of a toroidal solenoid:



Electric and magnetic fields of a moving point charge:



...the electric and magnetic fields can even unfurl in a Hopf
fibration!
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Maxwell’s equations allow for curious solutions characterized by
the property that all electric and magnetic field lines are closed
loops with any two electric (or magnetic) field lines linked. These
little-known solutions, constructed by Rañada1, are based on
the Hopf fibration. Here we analyse their physical properties to
investigate how they can be experimentally realized. We study
their time evolution and uncover, through a decomposition
into a spectrum of spherical harmonics, a remarkably simple
representation. Using this representation, first, a connection
is established to the Chandrasekhar–Kendall curl eigenstates2,
which are of broad importance in plasma physics and fluid
dynamics. Second, we show how a new class of knotted beams
of light can be derived, and third, we show that approximate
knots of light may be generated using tightly focused circularly
polarized laser beams. We predict theoretical extensions and
potential applications, in fields ranging from fluid dynamics,
topological optical solitons and particle trapping to cold atomic
gases and plasma confinement.

The concept of field lines whose tangents are the electric
or magnetic field is typically used to visualize static solutions
of Maxwell’s equations. Propagating solutions often have simple
field-line structures and so are not usually described in terms of
field lines. In the present work, we study a propagating field whose
defining and most striking property is the topological structure of
its electric and magnetic field lines.

An intriguing configuration for field lines is to be linked and/or
knotted. Two closed field lines c1(⌧), c2(⌧) are linked if they have
non-vanishing Gauss linking integral3–6,

L(c1,c2) = 1

4⇡

Z
dc1

d⌧1

· c1 �c2

|c1 �c2|3
⇥ dc2

d⌧2

d⌧1d⌧2,

whereas for a single field line c(⌧) the self-linking number, L(c,c),
is a measure of knottedness. The linking integral L can also be
computed visually by projecting the field lines onto a plane and
subsequently counting the crossings in an oriented way3. For
example, the lines in Fig. 1a have linking number 1, but do not
form a knot, whereas the blue and orange field lines in Fig. 4 below
are knotted and linked to each other. In the case of magnetic or
electric fields, averaging the linking integral over all field-line pairs
together with the self-linking number over all field lines gives rise
to the magnetic and electric helicities4,5:

hm =
Z

d3x A(x) ·B(x) he =
Z

d3x C(x) ·E(x), (1)

where B := r⇥A and E := r⇥C in free space.
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Figure 1 Construction of the Hopf fibration. a–c, Left column: A torus can be
constructed out of circles (fibres) in such a way that no two circles cross and each
circle is linked to every other one. a,b, Each circle in such a configuration wraps
once around each circumference of the torus. c, By nesting such tori into one
another, the whole of three dimensional space, including the point at r= 1
(R3 [1 ⇠ S3) can be filled with linked circles. There are two ‘special’ fibres: the
circle of unit radius that corresponds to the infinitely thin torus, and the straight line,
or circle of infinite radius, that corresponds to an infinitely large torus. These two
fibres will provide an economical way of characterizing the time evolution of the
configuration. Right column: The Hopf map maps such circles in R3 [1 ⇠ S3 to
points on the sphere S2 ⇠ C[1. Each circle is mapped to a point, each torus in
R3 [1 onto a (parallel) circle on S2. The circular (straight) special fibres are
mapped to the north (south) pole and will be referred to as the n (s) fibres. In the
present work, the fibres of two everywhere-orthogonal Hopf fibrations correspond to
electric and magnetic field lines (see Fig. 2 for t= 0).
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Light’s Ring-around-the-rosey
Can light travel only in straight lines? A new kind of light beam that travels along circles may 
soon provide an interesting twist to this question. 

Light is a box full of surprises. We now accept that light someti-
mes behaves more like a wave, and sometimes more like a par-
ticle. We also know that the speed of light in vacuum is always 
the same, regardless of the movement of the source and of the 
observer. However, the idea that light beams can travel not just 
along straight lines, but along circles may still sound unbelieva-
ble, although fascinating. Now William Irvine of New York Uni-
versity and Dirk Bouwmeester of the University of California at 
Santa Barbara have shown this to be theoretically possible, and 
they are on the way to demonstrate it experimentally. 

The propagation of a light beam is like a couple’s dance, 
ZKHUH�WKH�SDUWQHUV�DUH�WKH�HOHFWULF�¿HOG�DQG�WKH�PDJQHWLF�¿HOG��

which twirl around each other while moving forward. As in any 
IRUP� RI� DUW�� WKLV� GDQFH� KDV� LWV� UXOHV�� WKH� HOHFWULF� ¿HOG� VKRXOG�

DOZD\V�EH�SHUSHQGLFXODU�WR�WKH�PDJQHWLF�¿HOG��DQG�ERWK�VKRXOG�

be perpendicular to the direction of propagation. These rules 
are forged in the Maxwell equations.

7KH� EHKDYLRU� RI� WKH� HOHFWULF� DQG�PDJQHWLF� ¿HOGV� LV� XVXDOO\�

quite simple. Consider, for example, one of the simplest light 
beams: a Gaussian light beam, such as the one generated by a 
laser pointer. If, for instance, the beam is pointing upwards, 
WKH�HOHFWULF�¿HOG�DQG�WKH�PDJQHWLF�¿HOG�ZLOO�OLH�RQ�WKH�KRUL]RQ-
tal plane; furthermore, at each moment in time, the lines of the 
HOHFWULF�¿HOG�ZLOO�DOO� OLH�SDUDOOHO�WR�HDFK�RWKHU��DQG�WKH�VDPH�LV�

WUXH�IRU�WKH�OLQHV�RI�WKH�PDJQHWLF�¿HOG��6LPLODU�EHKDYLRUV�FDQ�EH�

expected even when considering more exotic beams – such as 
Hermite-Gaussian, Laguerre-Gaussian, or Bessel beams. Howe-
ver, Maxwell equations allow for more complex structures, such 
as the ones proposed by Irvine and Bouwmeester.

The idea behind their work was initially developed a long 
WLPH�DJR�DQG�LQ�D�GLIIHUHQW�¿HOG��WKH�PDWKHPDWLFDO�¿HOG�RI�WR-
SRORJ\��,Q�������+HLQ]�+RSI�GLVFRYHUHG�D�PDWKHPDWLFDO�REMHFW��

QRZ� EHDULQJ� KLV� QDPH�� WKH�+RSI� ¿EUDWLRQ� >�@�� 7KLV� LV� D� GHHS�

mathematical concept that has found a wide variety of physical 
applications, from rigid body mechanics to magnetic monopoles 
and quantum information theory. The idea behind it is that it is 
SRVVLEOH�WR�¿OO�XS�WKH�VSDFH�ZLWK�FLUFOHV�VXFK�WKDW�QR�WZR�FLUFOHV�

cross, and, in addition, each circle is linked to every other one. 
In order to do this, Hopf started linking circles in such a way 
that they formed a torus – a donut, in more informal terms. You 
can create one yourself using keyrings: start linking keyrings to-
gether and eventually you will get something similar to what is 
shown in Figure 2. Clearly, the keyrings cannot cross and they 
are linked together.

,Q� WKLV�ZD\�+RSI�ZDV�DEOH� WR�¿OO�D� WRUXV��1RZ��ZKDW�DERXW�

WKH�UHVW�RI� WKH�VSDFH"�7KDW�ZDV�HDVLHU��DOO� WKH�VSDFH�FDQ�EH�¿-
lled with tori encapsulating them inside each other, as shown 
in Figure 3.

In 1989, Antonio Rañada from the Universidad Compluten-
VH�GH�0DGULG��6SDLQ��XQGHUVWRRG�WKDW�WKH�+RSI�¿EUDWLRQ�FRXOG�

EH�XVHG�WR�FUHDWH�D�QHZ�VROXWLRQ�RI�0D[ZHOO�HTXDWLRQV�>�@��1RZ��

Irvine and Bouwmeester have proposed a realistic way in which 
VXFK�D�VROXWLRQ�PD\�EH�UHDOL]HG��³7KH�LQVSLUDWLRQ�FDPH�IURP�D�

SDSHU�RI�5DxDGD�´�,UYLH�H[SODLQV��³7KH�PDLQ�UHDVRQ�WKDW�SXVKHG�

me to pursue this topic was pure curiosity. I have always been 
fascinated by the appearence of geomertical strucures in physi-

cal problems.”
In the Irvine and Bouwmeester’s proposal, the electric and 

PDJQHWLF�¿HOGV� DUH� WZR�+RSI�¿EUDWLRQV�� 6LQFH� WKH� OLJKW� EHDP�

has to obey the rules written in the Maxwell equations, the two 
¿EUDWLRQV� DUH�SODFHG�SHUSHQGLFXODUO\� WR� HDFK�RWKHU�� VXFK� WKDW�

WKH�HOHFWULF�¿HOG�OLQHV�DUH�DOZD\V�DW�ULJKW�DQJOHV�WR�WKH�PDJQHWLF�

¿HOG� OLQHV�� ,Q� WKLV�ZD\�� WKH� OLJKW�EHDP�ZRXOG�EH� IRUFHG� WR� IR-
OORZ�FLUFXODU�SDWKV��³7KH�PDLQ�GLIIHUHQFH�EHWZHHQ�WKHVH�EHDPV�

DQG�FRPPRQO\�XVHG�ODVHU�EHDPV�´�,UYLQH�UHPDUNV��³OLHV�LQ�WKH�

VWUXFWXUH�RI�WKH�SRODUL]DWLRQ��,Q�QRUPDO�EHDPV�WKH�SRODUL]DWLRQ�

is assumed to be 2D and not very rich in structure, while in this 
QHZ�NLQG�RI�EHDPV�WKH�SRODUL]DWLRQ�LV�JHQXLQHO\��'�´�,Q�RWKHU�

ZRUGV��WKLV�PHDQV�WKDW�WKH�HOHFWULF�DQG�PDJQHWLF�¿HOG�OLQHV�FDQ�

take a 3D shape and are not forced to lie in a plane, such as in 
Gaussian beams.

³7KLV�DUWLFOH�SUHVHQWV�D�FKDOOHQJH�´�VD\V�$QWWL�1LHPL�RI�8SS-
VDOD�8QLYHUVLW\�LQ�6ZHGHQ��³DQG�LW�ZLOO�EH�LQWHUHVWLQJ�WR�VHH�KRZ�

WKH�SURSRVDO� FDQ�EH� H[SHULPHQWDOO\� YHUL¿HG�DQG� UHODWHG� WR�DQ�

HDUOLHU� H[SHULPHQW� >�@�� ,Q� WKDW� DUWLFOH�� WKH� DXWKRUV� UHSRUWHG�

an observation of stable knotted structures in light, originally 
proposed by Sir Michael Berry.” And indeed Irvine is accepting 
the challenge, and he is now working on experimentally rea-
OL]LQJ� VXFK�EHDPV�� ³,� DP�DOVR� DQ� H[SHULPHQWDOLVW�� DQG�ZH� DUH�

QRZ�ZRUNLQJ�RQ�UHDOL]LQJ�WKLV�QHZ�NLQG�RI�OLJKW�EHDPV��PD\EH�

LQ�WKH�PLFURZDYH�UHJLPH�´�VD\V�,UYLQH��³$W�OLJKW�ZDYHOHQJWKV�LW�

will be possible, but it is still a major technological challenge. 
8VLQJ� D� VLQJOH� IUHTXHQF\� >D� FRQWLQXRXV� ODVHU� EHDP@� LW� VKRXOG�

Figure 1: A knotted light beam. The complex struc-
WXUH�RI�WKH�OLQHV�RI�WKH�HOHFWULF�ÀHOG�DQG�RI�WKH�PDJQHWLF�

ÀHOG�FDQ�EH�DSSUHFLDWHG��&RXUWHV\�RI�:LOOLDP�7��0��,UYLQH�

and Dirk Bouwmeester.



The Lorentz force law describes how charged particles
experience an electromagnetic field:

F = qE + v ×B.

The resulting trajectories are also interesting, even for
simple electromagnetic fields.



The Lorentz force law describes how charged particles
experience an electromagnetic field:

F = qE + v ×B.

The resulting trajectories are also interesting, even for
simple electromagnetic fields.



The particles can travel along the usual inverse square
orbits...



... they can spiral around a magnetic field...

...you can trap them this way in a magnetic bottle...



... they can spiral around a magnetic field...

...you can trap them this way in a magnetic bottle...



...or they can move along a cycloid...



...but secretly, the particles are
moving along straight lines in a
higher-dimensional space!



2. Connections on principal
bundles

Let G be a Lie group. A G-torsor is a manifold on which G
acts freely and transitively:

A principal G-bundle P is a ‘bundle’ of G-torsors over a
base space M :



A connection on a principal G-bundle is a gismo T which
allows you to lift (‘parallel transport’) paths in the base
space M to paths in P , in a manner compatible with the
G-action:



For instance, the frame bundle Fr(M) of a surface M ⊂ R3

is a principal U(1)-bundle:
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For instance, the frame bundle Fr(M) of a surface M ⊂ R3

is a principal U(1)-bundle:



For instance, the bundle of orthonormal frames Fr(M) of a
surface M ⊂ R3 is a principal U(1)-bundle:



For instance, the frame bundle Fr(M) of a surface M ⊂ R3

is a principal U(1)-bundle:
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For instance, the frame bundle Fr(M) of a surface M ⊂ R3

is a principal U(1)-bundle:



To parallel transport a frame along a curve γ in M , move it
infinitesimally in the direction of γ′(t) in R3, and then
project back to the tangent space of M :
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project back to the tangent space of M :



To parallel transport a frame along a curve γ in M , move it
infinitesimally in the direction of γ′(t) in R3, and then
project back to the tangent space of M :



Around lines of longitude, nothing much happens:



Similarly around the outer equator:

For these paths γ, the transported frames maintain a
constant angle with respect to the tangent vector γ′(t) of
the path. A path γ in M having this property is called a
geodesic in M .
An insect travelling along a geodesic feels no ‘force’.



Around the upper circle, the frame rotates around γ′(t):

An insect A travelling along this path experiences a kind of
‘centripetal force’.



Another insect B travelling along a geodesic in M reasons
that A is experienceing a ‘force to the left’.





We have a similar picture for the frame bundle Fr(S2) of S2:



3. Projected geodesics
We have seen how to define a connection on a surface
M ⊂ R3, and that this gives rise to the notion of geodesics
in M as curves whose tangent vector parallel transports
itself.

More generally, every Riemannian manifold has an
associated connection.

Now, let k be an inner product on g, and let π : P →M be
a principal G-bundle over a Riemannian manifold (M, g)
equipped with a connection ω. Then we can construct a
natural metric h on P :

h = π∗g + kω

So P becomes a Riemannian manifold in its own right.
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in M as curves whose tangent vector parallel transports
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More generally, every Riemannian manifold has an
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a principal G-bundle over a Riemannian manifold (M, g)
equipped with a connection ω. Then we can construct a
natural metric h on P :

h = π∗g + kω

So P becomes a Riemannian manifold in its own right.



What do geodesics in P look like, when projected to M?



Consider P = Fr(S2). What is this Riemannian manifold?

A frame on S2 can be thought of as an orthonormal basis
(e1, e2, e3) of vectors:

So - Fr(S2) is SO(3)! The projection map π : SO(3)→ S2

sends (e1, e2, e3) 7→ e1.
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Consider P = Fr(S2). What is this Riemannian manifold?

A frame on S2 can be thought of as an orthonormal basis
(e1, e2, e3) of vectors:

So - Fr(S2) is SO(3)! The projection map π : SO(3)→ S2

sends (e1, e2, e3) 7→ e1.



So, a particle moving around on SO(3) is the same thing as
a frame moving around on S2...a ‘charged particle’ on S2

with a hidden U(1) gauge degree of freedom!



We can ask that the ‘spinning velocity’ in the gauge
direction is constant.. this is called the charge q of the
‘charged particle’ on S2.



To give a geodesic γ on P = SO(3) we must give an initial
point γ(0) and an inital velocity γ′(0). Since we take the
charge to be constant, giving γ′(0) amounts to giving a
tangent vector v on S2.

What will happen?



If q = 0, the projection γ on S2 will just be a great circle
(i.e. a geodesic on S2):



If q 6= 0, the projection γ on S2 will steer away from the
great circle! It will be a ‘not-so-great circle’.



To understand this, consider ordinary parallel transport
along γ. The frame rotates clockwise!

Evidently, the charge of the particle precisely cancels this
rotation. An insect living on S2 reasons that the particle is
experiencing a force, but in fact the ‘charged particle’ is
travelling along a geodesic in the 3d space P ! The insect is
wrong!





4. The equation for γ



Let γ be a curve in a Riemannian manifold M . Choose an
orthonormal frame u0 at γ(0), and let u(s) be the parallel
transported ‘moving frame’ along γ. The acceleration

Dγ′

ds
∈ Tγ(s)M

of γ is the derivative of γ′(s) with respect to the moving
frame u(s).

Dγ′

ds
= 0 ⇔ γ is a geodesic in M .



Theorem. (See Bleecker). Let π : P →M be a principal
G-bundle equipped with a connection ω, and let γ be a
geodesic in P with respect to the bundle metric, with
corresponding curve γ = π ◦ γ in M . Then

Dγ′

ds
= QaΩi

αjγ
′jEi

where Q = Qαeα and Ωω = Ωα
ijφ

i ∧ φjeα.



For instance, let P be the trivial U(1)-bundle over
Minkowski spacetime R4, and A a connection (=vector
potential) on P . Then this reduces to the relativistic
Lorentz force law,

d

dt
(m0β) = qE · v,

d

dt
(m0βv) = q(E + v ×B).

Conclusion: electrically charged particles are moving along
geodesics in 5-dimensional space! Similarly, charged
particles in the standard model with gauge group
U(1)× SU(2)× SU(3) are moving along geodesics in 4 + 1
+ 3 + 8 = 16 dimensions!
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