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1. Introduction

Maxwell’s equations for electromagnetism are:
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They have some funky solutions:



They have some funky solutions:

Electric field of a dipole:




Magnetic field of a current-carrying loop:




Magnetic field of a solenoid:




Magnetic field of a toroidal solenoid:




Electric and magnetic fields of a moving point charge:
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...the electric and magnetic fields can even unfurl in a Hopf
fibration!
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The Lorentz force law describes how charged particles
experience an electromagnetic field:

F =qE + v x B.



The Lorentz force law describes how charged particles
experience an electromagnetic field:

F =qE + v x B.

The resulting trajectories are also interesting, even for
simple electromagnetic fields.



The particles can travel along the usual inverse square
orbits...
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.. they can spiral around a magnetic field...




... they can spiral around a magnetic field...




...or they can move along a cycloid...
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...but secretly, the particles are
movmg along straight lines in a
higher-dimensional space!



2. Connections on principal
bundles

Let G be a Lie group. A G-torsor is a manifold on which G
acts freely and transitively:
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A principal G-bundle P is a ‘bundle’ of G-torsors over a
base space M:
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A connection on a principal G-bundle is a gismo T which
allows you to lift (‘parallel transport’) paths in the base
space M to paths in P, in a manner compatible with the
G-action:




For instance, the frame bundle Fr(M) of a surface M C R?
is a principal U(1)-bundle:
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For instance, the bundle of orthonormal frames Fr(M) of a
surface M C R? is a principal U(1)-bundle:
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To parallel transport a frame along a curve v in M, move it
infinitesimally in the direction of 7/(¢) in R3, and then
project back to the tangent space of M:
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To parallel transport a frame along a curve v in M, move it
infinitesimally in the direction of 7/(¢) in R3, and then
project back to the tangent space of M:




Around lines of longitude, nothing much happens:




Similarly around the outer equator:

For these paths v, the transported frames maintain a
constant angle with respect to the tangent vector +'(¢) of
the path. A path v in M having this property is called a
geodesic in M.

An insect travelling along a geodesic feels no ‘force’.



Around the upper circle, the frame rotates around ~'(t):

An insect A travelling along this path experiences a kind of
‘centripetal force’.



Another insect B travelling along a geodesic in M reasons
that A is experienceing a ‘force to the left’.
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We have a similar picture for the frame bundle Fr(5?) of S?:




3. Projected geodesics

We have seen how to define a connection on a surface

M C R3, and that this gives rise to the notion of geodesics
in M as curves whose tangent vector parallel transports
itself.
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3. Projected geodesics

We have seen how to define a connection on a surface

M C R3, and that this gives rise to the notion of geodesics
in M as curves whose tangent vector parallel transports
itself.

More generally, every Riemannian manifold has an
associated connection.

Now, let k£ be an inner product on g, and let 7 : P — M be
a principal G-bundle over a Riemannian manifold (M, g)
equipped with a connection w. Then we can construct a
natural metric h on P:

h=mn"g+ kw

So P becomes a Riemannian manifold in its own right.



What do geodesics in P look like, when projected to M?
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Consider P = Fr(S5?). What is this Riemannian manifold?
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A frame on S? can be thought of as an orthonormal basis
(e1, e, e3) of vectors:




Consider P = Fr(S5?). What is this Riemannian manifold?

A frame on S? can be thought of as an orthonormal basis
(e1, e, e3) of vectors:

So - Fr(S?) is SO(3)! The projection map 7 : SO(3) — S?
sends (e, eq,€3) > €.



So, a particle moving around on SO(3) is the same thing as
a frame moving around on S2...a ‘charged particle’ on S?
with a hidden U(1) gauge degree of freedom!




We can ask that the ‘spinning velocity’ in the gauge
direction is constant.. this is called the charge g of the
‘charged particle’ on S2.




To give a geodesic v on P = SO(3) we must give an initial
point v(0) and an inital velocity 7/(0). Since we take the
charge to be constant, giving +/(0) amounts to giving a
tangent vector v on S2.

What will happen?




If ¢ = 0, the projection 7 on S? will just be a great circle
(i.e. a geodesic on S?):




If ¢ # 0, the projection 7 on S? will steer away from the
great circle! It will be a ‘not-so-great circle’.




To understand this, consider ordinary parallel transport
along 7. The frame rotates clockwise!

Evidently, the charge of the particle precisely cancels this
rotation. An insect living on S? reasons that the particle is
experiencing a force, but in fact the ‘charged particle’ is
travelling along a geodesic in the 3d space P! The insect is
wrong!






4. The equation for 7
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Let v be a curve in a Riemannian manifold M. Choose an
orthonormal frame ug at v(0), and let u(s) be the parallel
transported ‘moving frame’ along +. The acceleration
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of 7 is the derivative of 7/(s) with respect to the moving
frame u(s).

=0 <« ~isageodesicin M.



Theorem. (See Bleecker). Let m: P — M be a principal
G-bundle equipped with a connection w, and let v be a
geodesic in P with respect to the bundle metric, with
corresponding curve ¥ = w o~y in M. Then
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where ) = Q%¢, and Q¥ = Q%EZ A ajea.



For instance, let P be the trivial U(1)-bundle over
Minkowski spacetime R*, and A a connection (=vector
potential) on P. Then this reduces to the relativistic
Lorentz force law,

d
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a(moﬂv) =q(E+v x B).



For instance, let P be the trivial U(1)-bundle over
Minkowski spacetime R*, and A a connection (=vector
potential) on P. Then this reduces to the relativistic
Lorentz force law,

d
%(mo/@) =qE-v,

%(moﬂv) =q(E+v x B).

Conclusion: electrically charged particles are moving along
geodesics in 5-dimensional space! Similarly, charged
particles in the standard model with gauge group

U(1) x SU(2) x SU(3) are moving along geodesics in 4 + 1
+ 3 + 8 = 16 dimensions!
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