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For today, I'll mostly be following these survey papers:

John Baez, From the icosahedron to E8.

Oliver Nash, On Klein's icosahedral solution of the quintic.

John covers the connection of the icosahedron with the golden ratio,

quaternions, the qunitic equation, the 600-cell (a 4-dimensional analogue of the

Platonic solids), the Poincaré homology sphere, and he mentions some he'll skip,

like the McKay correspondence, the octonions, and others. I'll add a few more

in this course, namely the representation and invariant theory of ,

automorphisms of the projective plane over , hypergeometric series and q-

hypergeometric series, singularity theory, modular forms, elliptic curves, mirror

symmetry, the Picard-Fuchs differential equation, Apéry's proof of the

irrationality of , and modular forms of fractional weight.

1. Platonic solids1. Platonic solids   

Of course, these weren't first discovered by Plato! He mentions them in

Timaeus, but Euclid says that Theatetus (415-369 BC) discovered them.



Platonic solidPlatonic solid || ||

Tetrahedron 4 6 4

Cube 8 12 6

Octahedron 6 12 8

Dodecahedron 20 30 12

Icosahedron 12 30 20

PointPoint
Coordinates in Coordinates in Coordinates in Coordinates in 

0

The icosahedron looks as follows:

The coordinates of the vertices are (a nice exercise!)



where

and , and I am using stereographic projection to map  to  via

2. Finite groups2. Finite groups   

Let  be the icosahedral rotation group, the group of rotations (i.e.

orientation-preserving orthogonal transformations) of  which leave the

icosahedron set-wise invariant. Then  has 60 elements since you can move any

vertex to the north pole, then rotate five-fold around the north pole

(60=12*5). Let  be the binary icosahedral group (I'll explain this shortly), which

has 120 elements.

Now, we'll see next time that these groups are isomorphic to certain linear

groups over . Consider the following diagram (the horizontal arrows are

inclusions ,the vertical arrows are surjections):

To compute that, for instance, , consider that there are 

 possibilities for the entries of the matrix



but we must remove the  matrices where the bottom row is zero, and the

 matrices where the bottom row is not zero, but the top row is a

multiple of the bottom row. And . Of course, there's

a more intelligent way to do it -  acts transitively on ,

which has  elements, and the stabilizer of  is the set of upper triangular

matrices, and there are  of these so 

.

It turns out that , the alternating group on 5-elements. How do we

see this?

Aside: I was a student of Hirzebruch, and in the German tradition we would

use Gothic letters and write the symmetric group  on  letters as 

and the alternating group  on  letters as  (Bruce: may have gotten

this wrong.)

The simplest argument is to use presentations. We have:

Here,  is rotation by  counterclockwise about a chosen vertex ,  is

rotation by  about the midpoint of an edge adjacent to , and  is

rotation by  about the midpoint of the face adjacent to :



The relation  is a nice exercise! By the way, in  we will drop the

relation :

so the element  has order two, hence we get a central extension

Now, a presentation for  looks just like the presentation for  (exercise),

so this gives . But this is not very illuminating.

A better way is to understand think of  as the even symmetry group of 5

'things'. So what 5 'things' are being permuted by rotations of the

icosahedron? You can see these in two ways. Baez sees these 5 things as the

5 'true crosses' of the icosahedron - the 5 ways you can group the vertices

of the icosahedron into three orthogonal golden rectangles. Here is one, from

his survey paper:



Nash sees the 5 things as the 5 inscribed tetrahedra whose vertices are the

midpoints of the faces of the icosahedron. Here is one:

As I mentioned, I'll explain the isomorphism  when we come

to modular forms.

 

3. The 3. The  lattice lattice   



The  lattice, which I'll write as  to distinguish it from the Lie

group  , is the unique unimodular even lattice in dimension 8. Remember

that Maryna Viazovska proved in 2016 that it gives the densest packing of

spheres (even amongst packings that do not come from lattices), and she came

to Bonn and gave talks on this. Her proof is beautiful and uses modular forms.

Just to digress a bit, as far as unimodular even lattices go, you only find

them in dimensions a multiple of 8, and:

In dimension 8, there is just .

In dimension 16, there are 2, namely  and .

In dimension 24, there are 24, one of which is the famous Leech lattice.

In dimension 32, there are at least a billion...

In dimension 16, the two lattices  and  are distinct but they do

have the same number of points of any length, and that's because the

generating function that records the lengths of the points in the lattice is a

modular form (Bruce: the theta function of the lattice), and here because

they're unimodular it's a modular form of weight 8 and level 1, and that's a

unique form up to a scalar. So, if you form the quotient space

then you get two torii which have the same length spectrum, because a

closed geodesic on such a torus is just a straight line in  from one lattice

point to another, and its length is the Euclidean length. And so these torii 

 and  are compact non-isometric (because the lattices are not

isomorphic) Riemannian manifolds with the same length spectrum and were

Milnor's counterexample to the famous question `Can you hear the shape of a

drum?' Of course, some people didn't like this because it's hard to imagine 16-

dimensional drums! 'Actual drums' can be thought of as two-dimensional regions

of the plane with boundary, and then the question is can you find two

different such boundaries whose enclosing regions have the same length



spectrum? There was an intermediate example by Marta Klausvilliet (?), a good

friend of mine, which were also two non-isometric closed Riemannian manifolds

(constructed using quaternions) with identical length spectra, but at least they

were two-dimensional. And then Gordon and Webb and Wolpert found examples

of 'actual drums' (in the earlier sense).

Concretely, the  lattice is

It has a basis

The inner products  are either  (if , that's why it's an even

lattice), or else  or . We can record this data as a Dynkin diagram where

the vertices label the basis vectors, and there is no edge connecting them if

they are orthogonal, and one edge if their inner product is -1 (i.e. they have

an angle of ):

So, this diagram tells us that  is the  root lattice.

4. Quaternions4. Quaternions   

Hamilton's quaternions is the 4-dimensional real algebra



with multiplication relations

Aside: as a number theorist, I don't like thinking of quaternion algebras over 

. Over the rational numbers, a quaternion algebra is a non-commutative 4-

dimensional algebra with no zero divisors, and they're indexed by a discriminant

(which is a property of the ramified primes), this is the canonical way and it

gives you a better way to understand the icosians below, but the real way is

the way it is presented everywhere, and I haven't worked out if there is a

more natural way to present the story from this rational point of view.

I now want to introduce a subalgebra of  called the icosians (see Conway

and Sloane's book on lattice packings). Firstly, the underlying vector space of 

 is , and the Euclidean norm written out in terms of quaternions 

 is

where the conjugate quaternion is . We note, using

the property  that the quaternions of unit norm are closed

under multiplication and hence form a group , which can also be

identified with , or . I will write it as , to indicate 'unit

quaternions'.

Now, each unit quaternion  acts as an orthogonal transformation of

the 3-dimensional vector space of `purely real' quaternions (those with )

by conjugation,

and this gives rise to a covering map



which is 2:1 since  and  conjugate in the same way. And, finally, this is

how we define the binary icosahedral group  which is also called the group

of icosians:

In a fascinating way,  can itself be thought of as the vertices of a

4-dimensional regular polytope called the -cell.

Aside: When I was 16, I read a book from the library about the classification

of the 5 Platonic solids, and I kind of understood the proof, and I wondered

what happened in other dimensions. In dimension 2, you get an -gon for

every , and that's it. In dimension 3, there are 5. I found (and I was

very proud), in dimension , that there are at most  regular things (I didn't

prove the existence), and in all other dimensions there are again only 3. Years

later I told Atiyah about this, and he told me that he also did that when he

was 16! My strategy involved patching together a bunch of icosahedra, and I

had to show that the angles matched up, and to do that I had to compute

some 3-dimensional integral; I could do two integrations but the last I could

only do numerically. I didn't know any of the group-theoretic point of view, so

I couldn't prove existence.

The reason there are at least 3 is that you always have the tetrahedron (

 equally spaced points in -dimensional space). You also have the unit

cube (the vertices are the boundary points of , and its dual, the

octahedron (its vertices are the points at  along each axis). And they're

obviously different because the number of faces is different. And that's all

you have in dimensions 5 and above. In dimension 4 there are 3 others, and it's

like the Platonic ones. One is a dual pair (I've forgotten) and one is the most

exotic one, that is the -cell, which has  faces, and  vertices,

which are precisely the elements of !



Explicitly, the elements of  are the points (see Baez)

5. Invariant theory for 5. Invariant theory for   

Since we can think of  as a subset of , it acts on , and we

can talk about the ring of invariants

Let's compute this.

Remember the coordinates  of the vertices of the icosahedron,

or thought of as complex numbers,

Now, if you have an unordered set of  complex numbers, the natural thing

to do is to think of them as the roots of the unique monic polynomial with

these numbers as roots. In the same way, if you have an unordered set of 

 points on , you should construct the corresponding homogenous bilinear

form of order . If a group acts on these numbers, then the form will be

invariant under the group action.

So, in our case, we'll have a vertex form , an edge form 

(associated to the midpoints of the edges) and a face form 

(associated to the midpoints of the faces), well-defined up to a scalar

multiple. These forms will be invariant under the action of .

Who can calculate  in their head? Time's up! If we think of it as a

polynomial in 1 variable, it is a degree 11 polynomial (because of the point at 

) with roots at ,  and . So if  is one of these roots, then



But every number theorist can immediately compute that

because you notice that  which is the correct norm. So these

two numbers  and  are the roots of

So therefore  is a root of the same polynomial where we replace .

So,

where the extra  comes from the root at infinity. If I write this in

homogenous form,

It's not obvious, but one way to compute the other invariant polynomials 

and , is to take  to be the Hessian, and compute

and then we can put these together and form



So, when we think of the action of  on , we see that it

preserves the degree, so the ring of invariants  is a graded ring.

In degree 12 you have , in degree 20 you have , and in degree 30 you

have , and you have their products, like in dimension 24 you have , and

that's all. But in degree 60, you get a beautiful relation:

This reminds us of modular forms! Recall that the Eisenstein series  and 

 satisfy a very similar equation:

This suggests that

is an analogue of the function  for modular forms, and that's

where we're going in the next lecture.

Here are the platonic solides .
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