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The lectures will be 7-8 weeks long, for March and April, from 4.30pm to 6pm.

It's informal, not a course.

The mathematical universe is inhabited not only by important species but by

interesting individuals - C.L. Siegel

IntroductionIntroduction   

We want:

1. An algebraicalgebraic description of modularmodular varieties. For example, given an elliptic

curve  in Weirstrass form

then the Taniyama-Weil conjecture (proved by Wiles and Taylor) tells us

that if  then there is a parameterization of  by modular

functions.



2. A modularmodular description of algebraicalgebraic varieties. Starting with a variety, we

can extract a modular form under certain circumstances. Another viewpoint

is that, for example, the modular curve

turns out to be an algebraic variety (of genus 1), in other words it can be

given in the form

is a `modular description' of its underlying and so we can think of the

initial form as a 'modular' description of the algebraic variety .

Bruce commentBruce comment

My head is interpreting what Don is saying as follows. Consider the fact that

there is a canonical bijection of sets

and

(It never seems to be said this way in the textbooks, maybe number theorists

don't like a birds eye view...)

Explicitly, given an elliptic curve , we count points  on  over  for all

primes , and write down a -series

which turns out to be a modular form.



In the reverse direction, given a modular form , we interpret it as a

differential form on  and then compute the period lattice  of 

 by integrating it over all the 1-cycles in the first homology group of 

. And then the space

is an elliptic curve. The fact that this process is a bijection means that if you

start with an elliptic curve  given by some explicit algebraic equation, then

count points on it mod  to construct the modular form , and then compute

the period lattice  of , the resulting space  is explicitly

isogenous (geometric correspondence?) with , perhaps in some beautiful

explicit way. So  can be thought of as a 'modular version' of the variety .

End of Bruce commentEnd of Bruce comment

The main characters of the lecture seriesThe main characters of the lecture series  

The icosahedron. Every mathematician loves this. It is connected to so many

parts of mathematics.

The Rogers-Ramanujan identities. I'll introduce these soon. They were first

discovered by Rogers, and later independently by Ramanujan. Then they came

together and gave a third joint proof! But, their proofs were combinatorial.

But the best proofs come from modular forms.

The main exampleThe main example   

There is a particular family of varieties parametrized by  which arises

in mirror symmetry:



Schoen found a modular interpretation of one of these varieties in terms of

a certain modular form :

Basically, for each  you count the number of points  on  over 

, which turns out to be a polynomial in , and one of the coefficients of

this polynomial you call . Then you define a function by

and that will be the modular form. The point is that Faltings (here at the

MPIM) showed that if you have two Galois group representations, and their

characters evaluated on the frobenius map  are equal for a certain

amount of primes  (eg. ), then these Galois representations must be

equal. Schoen checked that this was the case by counting points on .

In the language of motives, it means the motive associated...

This means that there is actually a geometricgeometric correspondence between them.

Somehow,  must be explicitly isomorphic to a certain pulled-back section of

the universal elliptic curve. Moreover, the Calabi-Yau form must pull back

correctly too.

I wrote down a candidate explicit correspondence, but it only works on a

curve subspace. I upgraded this, but I can only get a 'modular' interpretation

of a 2-dimensional part of the 3-dimensional complex variety .

This all has to do with the number , my favourite number in Mathematics!

ApApééry's proofsry's proofs   

In 1978, Roger Apéry gave fascinating arguments for why  and  are

irrational (this didn't use the explicit computation ).



It turns out that his arguments can be rephrased as:

We tried to use this modular interpretation to study  etc. but we

couldn't. Now, the Rogers-Ramanujan identities have to do with  (not 

) so that story is related to Apéry's story.

Modular forms and differential equationsModular forms and differential equations   

From an algebraic variety, one can extract the periods. From a family of

varieties, one gets a family of periods. Pichard-Fuchs (later modernized by

Gauss-Manin) showed that each period, expressed as a function of the varying

parameter, satisfies a certain special differential equation.

For example, the family  of mirror quintic varieties from earlier,

parametrized by . For this family, the associated differential equation is

hypergeometric. There is an explicit solution to this DE as a function of ,

namely

Another example of a family of varieties is as follows. Consider the modular

curve

It happens to be of genus zero, so there is a map ('hauptmodul')

On the other hand,  parametrizes a space  of certain kinds of elliptic

curves (the ones with level  structure), i.e. it is the base space of a bundle

. So the composite map



represents a family of elliptic curves of a certain kind, parametrized by 

. So the periods of this family satisfy a certain linear differential

equation with respect to . This means that a function

which solves the differential equation will have the property that its

coefficients  will satisfy a recursion relation. When we work out this

recursion relation in the above case, we get (Bruce: something like)

which is precisely the same recursion relation that Apéry discovered in an ad-

hoc way! In other words, these integers  are the denominators for

fantastically good approximations to , so good that they imply the

irrationality.

Three special topicsThree special topics   

My lectures will also touch on three special topics in the theory of modular

forms.

1. QuasiperiodsQuasiperiods. These were invented independently by Frances Brown, and

by myself in 2015. But we discovered that actually Martin Eichler had

written a 50 page paper on this in 1957, which somehow got forgotten.

2. Modular forms of fractional weight.Modular forms of fractional weight. For example, the Rogers-

Ramanujan story is related to modular forms of weight 

3. Square roots of central values of Square roots of central values of -series-series. Old work of FRV and

myself. Let me say a few words on this. The Langlands programme is

essentially about -series.

If you start with an algebraic variety , you can form its -series



by taking its cohomology  and computing a certain trace to get the

numbers  (in simple cases this corresponds to counting points mod ).

On the other hand, automorphic forms also give -series, by the simple

procedure of taking the -series of the form and re-interpreting it as

an -series:

The Langlands programme comes down to saying that the -series

associated to object 1 is equal to the -series associated to object 2.

Now, every -series has a set of integers called the critical numbers. For

some -series there are no critical numbers, for some just a single one,

for some infinitely many. For the Riemann zeta function, the critical

numbers are the even positive numbers and the negative odd numbers. In

general, Deligne conjectured that if  is a critical points of the 

function, then

If we divide by the period, then we can say that the renormalised -

values at the critical points are algebraic numbers. In a good situation,

rational numbers or integers. What integers?

For instance, for an elliptic curve over , there is only one critical value, 

, and after renormalizing you get an integer. Maybe it's zero, maybe

it's not zero. The Birch-Swinnerton-Dyer conjecture, which is proved in

many cases, says that if that number is zero, then the equation for your

curve will have a rational solution. If the number is not zero, then your

equation will not have a rational solution. So if you want to work out if

you can solve



for a specific  and , all you have to do is look at the -function of

this elliptic curve at .

Now, we can interpret the -series of an elliptic curve as the -series

of a modular form of weight 2 (see Bruce's comment above). For modular

forms of higher weight , the critical values will be 

. Consider  for instance, There is a symmetry

, which acts on the critical values, so there is a middle point 

 which has an automorphism group of order 2. This means (by the

principle of counting things by taking automorphism groups into account) is

that the right object to consider is the square root of the value of the

-series at . So in fact the claim will be that  will be the

square of some integer. For elliptic curves, this is the statement that

after tidying up,  is always a perfect square. Diegos(?) and I could

prove it for a series of examples in some nice way, and it turns out to

be closely related to the other examples I want to talk about anyway.

Various kinds of automorphicVarious kinds of automorphic
objectsobjects

  

1. Classical modular forms1. Classical modular forms   

For example,

These are functions of one variable. The level  forms can be thought of as

functions (forms really... i.e. sections of a line bundle) living on the 1-dimensional

complex curve



2. Jacobi forms2. Jacobi forms   

Now, the space  is really the `moduli space of elliptic curves'. Sitting

above each point  inside it, we have the elliptic curve  corresponding to

it. In other words, we have the universal bundle of elliptic curves

and we instead of simply considering generalized functions living on the base

space (i.e modular forms), we can think of functions living on the total space 

. We call these Jacobi forms. Indeed, this is precisely what the Weierstrass 

 function is.

Think about it - if we start with an elliptic curve  defined over ,

and if we find  satisfying

where  and  are the Eisenstein series, then we get an explicit

parametriztion of  via

where  is the Weirstrass function. So  and  are really functions on the

universal elliptic curve . I wrote a book on Jacobi forms with Eichler.

Now, nothing stops you from considering functions living on the fiber product 

 sitting above . These are called the Kuga-Sato varieties, and these

functions are called Kuga-Sato forms.

3. Functions on the Hilbert modular surface3. Functions on the Hilbert modular surface   



If  is a quadratic number field, then we have two different embeddings of

 in , and so  embeds inside . The Hilbert

modular surface is

where  is a real quadratic field. More generally, we have the Hilbert modular

variety

where  is a totally real field of dimension  over . A function (resp.

section of a certain line bundle) on the Hilbert modular variety is called a

Hilbert modular function (resp. Hilbert modular form).

4. Teichm4. Teichmüüller curvesller curves   

Beautiful example due to Bouw-Möller on this. I hope to come to these in the

lecture series.

5. Siegel modular forms5. Siegel modular forms   

I might give an example here, or I might not.

6. Picard modular forms6. Picard modular forms   

If you try to do the same thing we did to construct the Hilbert modular

surface when  is an imaginary quadratic field, then there is an issue because

 sits inside of  and not  (there are actually two complex embeddings),

and  does not act on the upper half plane . But it does act on 

, the 3-dimensional real hyperbolic space. So we must consider the 3-

dimensional real manifold



(Bruce wonders - howcome you don't consider the two different complex

embeddings here...) So we've left the realm of algebraic geometry, but there

are still wonderful things you can say. A Picard modular form is a function

(section of a line bundle) on this space.

7. More general modular forms7. More general modular forms   

We can consider functions transforming more generally than under the group 

. Indeed, in higher Langlands theory, it is , and so on. You could look

at the group  for instance. It acts on the complex -ball (i.e. the

real -ball)

For ,  is the open unit disc  in , which is biholomorphic to the

upper half plane , so this is a familiar situation. But for , it is

completely different, and we can consider for example

See the work of Bruce HuntBruce Hunt called Nice algebraic varieties which has many of

the same themes as this lecture series.
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