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Abstract. We investigate the distribution of the number of vertices of a randomly chosen
subtree of a tree. Specifically, it is proven that this distribution is close to a Gaussian
distribution in an explicitly quantifiable way if the tree has sufficiently many leaves and
no long branchless paths. We also show that the conditions are satisfied asymptotically
almost surely for random trees. If the conditions are violated, however, we exhibit by means
of explicit counterexamples that many other (non-Gaussian) distributions can occur in the
limit. These examples also show that our conditions are essentially best possible.

1. Introduction

By a subtree of a tree, we mean any nonempty connected subgraph; obviously, such a
subgraph is again a tree. The distribution of the number of vertices of a randomly chosen
subtree of a tree was first studied by Jamison in two papers [6, 7], in which he investigates
the average subtree order of a tree, i.e. the mean number of vertices of a subtree. Among
his main results is the fact that the average order of subtrees of an n-vertex tree is at least
(n + 2)/3, with equality only for the path. The problems that Jamison proposed in his
papers received considerable attention recently [5, 14, 16], as did other aspects of subtrees in
trees, specifically extremal problems, whose study was initiated by Székely and Wang [12,13].
Jamison’s question whether the average order is always at least n/2 for homeomorphically
irreducible trees, i.e. trees without vertices of degree 2, was only answered (affirmatively) very
recently by Vince and Wang [14], who also showed that the average subtree order of such a
tree is less than 3n/4.

Many other of Jamison’s questions remain open to date. A question of his that was also
discussed in the 2011 edition of the Combinatorics REGS [1] reads as follows:

Question 1. Given a tree T of order n, let sk(T ) denote the number of subtrees of order k.
When is it true that the numbers s2(T ), . . . , sn(T ) form a unimodal list (weakly increasing at
first, then weakly decreasing)? In particular, is it unimodal when T has no vertices of degree
2?

It should be noted here that s1(T ) = n and s2(T ) = n− 1 for every tree T of order n, so
s1(T ) cannot be included if a unimodal list is to be obtained. The question seems to be fairly
hard, and we will not actually answer it in this paper. However, we provide a related result:
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if a tree has sufficiently many leaves and no long branchless paths (this will be made more
precise later), then the distribution of the subtree orders is close to a Gaussian distribution
in an explicitly quantifiable way. In particular, this is the case for trees without vertices of
degree 2. Moreover, the conditions we impose are usually satisfied: for random trees, they
are valid asymptotically almost surely.

Asymptotic normality of the distribution does of course not imply unimodality, nor the
other way around, but the two are clearly connected, so our result provides evidence that
the answer to Question 1 might be affirmative. It should also be pointed out that our main
result parallels a classic theorem of Godsil [4] on matchings: if G1, G2, . . . is a sequence of
graphs, then the distribution of the size of matchings in Gn (suitably renormalised) converges
to a Gaussian distribution, provided that the variance tends to infinity. See [8] for a recent
extension.

Godsil’s theorem is based on properties of the matching polynomial, in particular the fact
that all its zeros are real. Indeed, it is well known that a polynomial with positive coefficients
and only real zeros has log-concave (and thus unimodal) coefficients, so Question 1 could be
answered affirmatively if all zeros of the polynomial

n∑
k=2

sk(T )uk

were real for any T . This “subtree generating polynomial” was already considered by Jamison
himself in [6]. More recently, Yan and Yeh [18] studied a weighted version, and Martin et
al. [9] considered a bivariate generalisation involving the number of leaves.

Unfortunately, the subtree generating polynomial does not have equally nice properties
as the matching polynomial, and the situation for subtrees of trees turns out to be more
intricate than for matchings of graphs. However, we obtain a central limit theorem for the
distribution of subtree orders analogous to Godsil’s theorem under some technical conditions.
Our approach is of a rather different nature, and we hope that it might also prove useful
to deal with other problems, such as a conjecture of Alavi, Malde, Schwenk and Erdős [2]
concerning the independence polynomial of trees that parallels Question 1. Our main theorem
can be stated as follows:

Theorem 1. Let T1, T2, . . . be a sequence of trees such that |Tn| → ∞, the proportion of
leaves among all vertices is bounded below by a positive constant, and the length of the longest
branchless path in Tn is at most |Tn|1/2−ε for some fixed ε (and sufficiently large n). Then the
order distribution of the subtrees of Tn (suitably renormalised) converges weakly to a Gaussian
distribution.

It is easy to find both examples and counterexamples for the normal distribution: for
instance, if Tn is an n-vertex star, then the distribution of the subtree orders is essentially a
binomial distribution, which converges to a Gaussian law. On the other hand, if one considers
the sequence of n-vertex paths, then the limit distribution is quite different. This and other
examples and counterexamples will be discussed in Section 2, where we also show that the
technical conditions of Theorem 1 are indeed important and also essentially best possible.

The main part of the paper is organised as follows: we first obtain some auxiliary results
and prove two versions of our main theorem (a central and a local limit theorem, see Theorem 9
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and Theorem 11 respectively) for rooted trees in Section 4 before passing on to unrooted trees
in Section 5. Rooted trees are more accessible because one can use a recursive approach, and
we will see that an appropriate root can always be chosen in such a way that most subtrees
contain the root. In Section 6, we will see that in the “generic” case of random trees, the
conditions of our main theorem are satisfied, so that the Gaussian distribution is indeed the
typical limit distribution of subtree orders.

2. Examples and counterexamples

For a tree T , we let S(T ) denote the set of all subtrees of T , i.e. all connected induced
subgraphs of T . The polynomial associated with this set, which we call the subtree polynomial
of T , is denoted by S(T, u):

S(T, u) =
∑

τ∈S(T )

u|τ |.

The total number of subtrees is clearly S(T, 1), for which we will simply write S(T ). Our
goal will be to prove central and local limit theorems for the coefficients of this polynomial.

Note also that Su(T, 1) = ∂
∂uS(T, u)

∣∣∣
u=1

is the total number of vertices in T ’s subtrees, so

Su(T, 1)/S(T ) is the mean subtree order. Likewise, the variance is given by

Suu(T, 1) + Su(T, 1)

S(T )
−
(Su(T, 1)

S(T )

)2
. (1)

Before we get to the proof of the main theorem, let us briefly discuss some examples and
counterexamples to illustrate its statement.

The star. If T = Sn is a star of order n, then any subtree either consists of the centre and
an arbitrary set of leaves, or it is a single leaf. Thus we have

S(T, u) = nu+

n∑
k=2

(
n− 1

k − 1

)
uk

and in particular S(T ) = 2n−1 + n − 1. We see that the distribution of subtree orders is
essentially a binomial distribution, which gives us a Gaussian distribution in the limit.

The path. The distribution of subtree orders of a path Pn turns out to be quite different:
every subtree is again a path and uniquely characterised by its endpoints. We obtain

S(Pn, u) =
n∑
k=1

(n− k + 1)uk.

If we divide the subtree orders by n and take the limit, we obtain a distribution whose density
is given by f(t) = 2(1− t) on the interval [0, 1].

The examples that we consider in the following are all constructed by suitably combining
paths and stars. Depending on how this is done, a variety of different limit distributions can
be obtained. Of course, there does not even have to be a limit distribution at all: this is
not the case, for example, if we consider a sequence of trees of increasing orders, alternating
between paths and stars.
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2.1. The broom. The simplest possible combination of a star and a path is the broom,
consisting of a path of k vertices and ` leaves attached to one of its ends (the “centre” of
the broom, denoted v in Figure 1). Here, the limit as k + `→∞ depends very much on the
relative sizes of k and `. If k is fixed, then there is very little difference to a star, and we
obtain a Gaussian limit distribution. On the other hand, if ` is fixed, then we have essentially
the same order distribution as for a path (and exactly the same in the limit). As soon as `
grows faster than log2 k, almost all subtrees contain the broom’s centre v (i.e., the proportion
of such subtrees tends to 1). This is because there are k2` subtrees containing it, as opposed
to O(k2 + `) not containing it.

Subtrees containing the centre v have a distribution that is a convolution of a binomial
distribution (stemming from the leaves attached to v) and a discrete uniform distribution
(stemming from the path). In the limit, the distribution with greater variance dominates.
Since the variances are of order k2 and ` respectively, we have three phases:

• k2/` → 0: the leaves dominate, and a suitably renormalised version of the order
distribution converges to a normal distribution.
• k2/` → a > 0: the limit distribution is a convolution of a (continuous) uniform

distribution and a Gaussian distribution.
• k2/` → ∞ (but k/2` → 0): the long path dominates, and the renormalised order

distribution converges to a uniform distribution.

v

k vertices

` leaves

Figure 1. The broom.

The extended star. Figure 2 shows an extended star, obtained by attaching d (≥ 3) paths
of length k to a common vertex v. For fixed d, we obtain (by the same argument as in the
previous example) a convolution of d uniform distributions in the limit as k → ∞. As soon
as d also tends to infinity, however, the limit is Gaussian again (showing that the conditions
of Theorem 1 are important, but not strictly necessary).

v

d paths of lengh k

Figure 2. The extended star.
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A discontinuous limit distribution. By suitably choosing the parameters of a double-star
(see Figure 3), we can even obtain a discontinuous limit distribution. Such a tree consists
of a path of length k and leaves attached to the two endpoints v1 and v2 (` and r leaves,
respectively). We set ` = 3n, r = n+ c for some constant c, and k = 2n. The same argument
that we used for the broom shows that almost all subtrees contain v1 in this case. The
probability that v2 is contained as well is easily found to be 2c/(1 + 2c) in the limit. In
this case, the subtree order is 2n +O(n). Otherwise, it essentially follows a discrete uniform
distribution on the interval [1, 2n] (the leaves attached to v1 only playing a minor role). So if
we divide the subtree orders by 2n, we obtain a limit distribution that is a mix of the uniform
distribution on [0, 1] and a point measure at 1, which means that its distribution function has
a discontinuity at 1.

v1 v2

length k

r leaves` leaves

Figure 3. The double-star.

We remark that another choice of parameters is interesting as well: if we set ` = r = 3n
and k = 2n, then almost all subtrees contain both v1 and v2 (and the probability that
this is not the case is as low as O(4−n)). Thus the subtree order distribution is essentially
a convolution of two binomial distributions, and the variance is O(n). This shows that
the variance of the subtree order distribution can be as low (in order of magnitude) as the
logarithm of the order of the underlying tree, and we conjecture that it cannot be less, i.e. (1)
is bounded below by K log |T | for some positive constant K. On the other hand, the order of
magnitude of the variance can be as high as |T |2, as the example of the path shows.

Short branchless paths are insufficient. The two conditions of Theorem 1 (short branch-
less paths, many leaves) ensure that the trees Tn are not too “path-like”. However, as we
exhibit now, neither of the two conditions suffices on its own to ensure a Gaussian limit dis-
tribution. The broom is a simple example showing that even a proportion of leaves tending
to 1 may not be enough: if we choose k and ` such that ` = ak2 for some fixed constant a,
then we obtain a convolution Gaussian-Uniform rather than a pure normal distribution. This
example also explains why

√
|Tn| is the threshold for the length of branchless paths.

Finding a counterexample that satisfies the condition on paths, but does not have suf-
ficiently many leaves, is a little bit more complicated. It can be constructed as follows (see
Figure 4): fix positive constants α, β, γ such that β < α < 1

2 , α + γ = 1 and 2α > β + γ.
Start with a central vertex v, which is connected to `+1 = bnγc vertices w0, w1, w2, . . . , w` by
paths of length bnαc. To each of these vertices except w0, we attach bnβc leaves. Note that
the order of the resulting tree Tn is |Tn| ∼ nα · nγ = n, so that there are no branchless paths

of length |Tn|1/2−ε if ε < 1
2 − α and n is sufficiently large. On the other hand, the number

of leaves is L(Tn) ∼ nβ · nγ = o(n) (note, however, that the exponent β + γ can be made
arbitrarily close to 1 with an appropriate choice of α, β, γ).
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The limit distribution is not Gaussian in this case: the same argument that we used
in previous examples shows that v, w1, w2, . . . , w` and thus also the paths connecting them
are part of almost all subtrees. The remaining “random” part is the same as for a broom
consisting of a path of length (approximately) nα and (approximately) nβ+γ leaves. Since
2α > β + γ by our choice, we are in the situation where the limit distribution is uniform.

w0 v

w1

w2

w`−1

w`

length bnαc

bnβc leaves

Figure 4. The final counterexample.

3. Preliminary results

Before we start with the actual proof of our main result, let us fix some notation and
prove some auxiliary inequalities.

3.1. Notation. Most of the time, we will be working with rooted trees, since they allow for
a recursive approach. Thus we first define an analogue of the polynomial S(T, u) for rooted
trees. Consider a tree T with root v0, and let S•(T ) be the set of all subtrees of T containing
v0. The generating polynomial for subtrees containing the root is denoted by S•(T, u):

S•(T, u) =
∑

τ∈S•(T )

u|τ |.

The main reason for considering this polynomial is the fact that it can be computed recursively
from the root branches. For a vertex v of T , we let T (v) be the branch of T rooted at v
(consisting of v and all its descendants). Suppose that v1, v2, . . . , vd are the root’s children.
It is not hard to see that S•(T, u) satisfies the following recursive formula:

S•(T, u) = S•(T (v0), u) = u
d∏
i=1

(1 + S•(T (vi), u)). (2)

This follows from the fact that a subtree of T that contains the root v0 induces either the
empty tree or a subtree that contains vi in the branch T (vi) for each vi.

For the convenience of the reader we list some further notation that is used throughout
this paper:

• L(T ) and L(T ) are the set and the number of leaves, respectively.
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• I(T ) and I(T ) are the set and the number of interior vertices, respectively.
• By a branchless path or 2-path, we mean a path in which all vertices, except for the

endpoints, have degree 2. We let P (T ) denote the maximum length of a 2-path of T .

Moreover, we use c0, c1, c2, . . . to denote absolute constants (that do not depend on the
specific tree or any of its parameters), and we make frequent use of the Vinogradov symbol�
interchangeably with the O-notation: f(T ) � g(T ) or f(T ) = O(g(T )) means that f(T ) ≤
Kg(T ) for a suitable positive constant K and all (sufficiently large) trees T .

3.2. Two inequalities. We begin with the following simple but useful lemma, which provides
two inequalities that will be used repeatedly in the following section.

Lemma 2. If T is a rooted tree with |T | ≥ 2, then

S•(T ) ≥ 2L(T ) and L(T ) ≥ |T |
2P (T )

.

Proof. Every subset A of L(T ) gives rise to a subtree obtained as the union of all paths
connecting the leaves in A to the root. If A is empty, we take the subtree consisting only of
the root as the corresponding subtree. This proves the first inequality.

For the proof of the second inequality, we let V2(T ) be the number of non-root vertices
of degree 2 and V≥3(T ) the number of non-root vertices of degree at least 3. Note first
that we can uniquely associate each maximal 2-path with its endpoint that is further away
from the root, which is either a leaf or a (non-root) vertex of degree at least 3, so there are
L(T ) +V≥3(T ) such paths. Since the total number of edges, which is |T | − 1, is at most P (T )
times the number of maximal 2-paths, we obtain

(L(T ) + V≥3(T ))P (T ) ≥ |T | − 1.

On the other hand, the handshake lemma gives us

2(L(T ) + V2(T ) + V≥3(T )) = 2(|T | − 1) ≥ L(T ) + 2V2(T ) + 3V≥3(T ) + 1,

the final 1 being the trivial lower bound for the root degree. Thus L(T ) ≥ V≥3(T ) + 1, and
consequently

2L(T )P (T ) ≥ (L(T ) + V≥3(T ) + 1)P (T ) ≥ (L(T ) + V≥3(T ))P (T ) + 1 ≥ |T |,

which is equivalent to the second inequality in the statement of the lemma. �

4. Rooted trees

4.1. The moment generating function. In order to prove the central limit theorem for
the order distribution of subtrees, we study the associated moment generating function, first
only for rooted trees. Note that

S•(T, u)

S•(T, 1)
=
S•(T, u)

S•(T )
=

1

S•(T )

∑
τ∈S•

u|τ |
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is the probability generating function for the order of a randomly chosen subtree of T that
contains the root. Likewise,

S•(T, et)

S•(T )

is the moment generating function. For our purposes, it turns out to be useful to consider
the auxiliary function

F (T, t) = log(1 + S•(T, et)). (3)

In view of (2), F (T, t) satisfies the following additive relation:

F (T, t) =
∑
i

F (T (vi), t) + f(T, t), (4)

where

f(T, t) = t+ log

(
1 +

1

S•(T, et)

)
. (5)

As a first step, we show that the expression 1 + S•(T, et) is bounded away from 0 if t is
sufficiently small, so that we can actually take the logarithm in (3).

Lemma 3. There exist absolute constants δ > 0 and c0 > 0 with the following property: if
the lengths of the 2-paths of some tree T are all bounded above by some positive integer P ,
then we have the bound

|1 + S•(T, et)| ≥ ec0L(T ) (6)

whenever |t| ≤ δ
P . Moreover, the function f(T, t) as defined in (5) is analytic in the closed

disk defined by the inequality |t| ≤ δ
P .

Remark 1. It is important to bear in mind that t is complex in this context. If we were
to consider only real values of t, it would e.g. be trivial that 1 + S•(T, et) > 1. From the
analyticity of f(T, t), it follows by means of the recursion (4) that F (T, t), regarded as a
function of t, is also analytic in the same disk, hence it admits a Taylor expansion around 0.

Proof. The statement of the lemma is trivial for |T | = 1 (if δ is chosen suitably). Note in
particular that

f(T, t) = t+ log
(

1 +
1

et

)
= log(et + 1)

in this case. Thus we can assume in the following that |T | ≥ 2. For every vertex v of T , we
set

m(v, t) = |1 + S•(T (v), et)|.

Let v1, v2, . . . be v’s children. Using (2), we find that for |t| ≤ δ
P ,

m(v, t) ≥ e−δ/P
∏
i

m(vi, t)− 1. (7)

Let A be the set of vertices in “small branches”, defined formally as the set of all w for
which |T (w)| ≤ 12P . By our assumptions on t, we have |t| · |τ | ≤ 12δ for any subtree τ
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of T that lies entirely in A. If we choose δ to be less than π
24 (as we may), it follows that

Re(et|τ |) ≥ e−12δ cos(12δ). Thus for every w ∈ A, we have

m(w, t) =
∣∣∣1 +

∑
τ∈S•(T (w))

et|τ |
∣∣∣

≥ 1 +
∑

τ∈S•(T (w))

Re
(
et|τ |

)
≥ e−12δ cos(12δ)

(
1 + S•(T (w))

)
. (8)

In particular, m(w, t) ≥ m0 = 2e−12δ cos(12δ) for every w ∈ A. Note that we can make m0

arbitrarily close to 2 by choosing δ appropriately. Furthermore, if |T | ≤ 12P , we get

|1 + S•(T, et)| ≥ e−12δ cos(12δ)
(
1 + S•(T )

)
≥ e−12δ cos(12δ) · 2L(T )

by Lemma 2, from which the first statement of the lemma follows immediately. Moreover, if
δ is chosen sufficiently small and |T | ≥ 2, then we also have

|1 + S•(T, et)| ≥ e−12δ cos(12δ)
(
1 + S•(T )

)
≥ 3e−12δ cos(12δ) ≥ 5

2
,

thus |S•(T, et)| ≥ 3
2 , from which we can infer that f(T, t) is indeed analytic in the disk defined

by |t| ≤ δ
P . Hence we may assume in the following that |T | > 12P .

Next we show that m(v, t) ≥ 3P for all v ∈ T \A if δ is chosen appropriately. To this end,
let us assume that this is not the case and let w ∈ A be a counterexample (i.e. m(w, t) < 3P )
with maximum distance from the root. In addition, let w0 = w,w1, . . . , wr be the longest
sequence of vertices (possibly, r = 0) such that none of these vertices lies in A, wj+1 is wj ’s
only child for 0 ≤ j < r and wr has either more than one child or a single child that does not
lie in A. Now consider two different cases:

• Suppose that all of wr’s children x1, x2, . . . , xd lie in A. Since wr 6∈ A, we have
|T (wr)| > 12P , so at least one of these children is the root of a branch of order at
least 12P/d. Without loss of generality, |T (x1)| ≥ 12P/d. We have

m(x1, t) ≥
m0

2
(1 + S•(T (x1))) ≥ m0

2
(1 + |T (x1)|) ≥ m0

2
· 12P

d

by (8) (the inequality S•(T (x1)) ≥ |T (x1)| simply follows from the fact that we can
associate the path from the root, which is also a subtree, to each vertex). Moreover,
we know that m(x2, t), . . . ,m(xd, t) ≥ m0. Now (7) gives us

m(wr, t) ≥ e−δ/P ·
m0

2
· 12P

d
·md−1

0 − 1 = 6e−δ/P · m
d
0

d
· P − 1.

If we choose δ small enough (so that m0 is close to 2 as well), we can ensure that

md
0 ≥ d for all d as well as 6e−δ/P ≥ 6e−δ ≥ 11

2 , so that

m(wr, t) ≥
11P

2
− 1 ≥ 9P

2
.

• Otherwise, wr has at least 2 children x1, x2, . . . , xd, at least one of which (without
loss of generality, x1) does not lie in A. By our choice of w, we have m(x1, t) ≥ 3P .
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Moreover, m(xj , t) ≥ min(3P,m0) = m0 for all other children (the lower bound 3P
applies if xj 6∈ A, the lower bound m0 otherwise). It follows that

m(wr, t) ≥ e−δ/P · 3P ·md−1
0 − 1 ≥ 3m0e

−δ/P · P − 1.

Again, if we choose δ appropriately, we have 3m0e
−δ/P ≥ 11

2 , so that

m(wr, t) ≥
9P

2
.

Now note that w0, w1, . . . , wr is a branchless path, so that r ≤ P by definition. We apply (7)
repeatedly to wr−1, wr−2, . . . , w0 = w to obtain

m(w0, t) ≥
(
e−δ/P

)r
m(wr, t)−

r−1∑
k=0

e−δk/P ≥ e−δm(wr, t)− P ≥
(9e−δ

2
− 1
)
P.

If δ is sufficiently small, the last expression is greater than 3P , and we reach a contradiction.

Thus we know now that m(v, t) ≥ 3P for all v ∈ T \ A, and m(v, t) ≥ m0 for all v ∈ A.
In particular, this means that for the root v0 (which lies in T \ A, since we are assuming
|T | > 12P ), we have m(v0, t) = |1 + S•(T, et)| ≥ 3P ≥ 3, so |S•(T, et)| ≥ 2, from which it
follows that f(T, t) is indeed analytic in the disk defined by |t| ≤ δ

P in this case as well.

Taking the logarithm of inequality (7), we obtain

logm(v, t) + log
(

1 +
1

m(v, t)

)
≥
∑
i

logm(vi, t)−
δ

P
. (9)

The set A can be written as a disjoint union of trees T (y1), T (y2), . . . rooted at y1, y2, . . ..
Since A clearly contains all leaves, we have |T \ A| ≤ I(T ). Iterating (9) from the root v0 to
the vertices y1, y2, . . . yields

logm(v0, t) ≥
∑
i

logm(yi, t)−
∑
v∈T\A

log
(

1 +
1

m(v, t)

)
− δ|T \A|

P

≥
∑
i

log
(m0

2
S•(T (yi))

)
−
∑
v∈T\A

log
(

1 +
1

m(v, t)

)
− δ|T \A|

P

≥
∑
i

log
(m0

2
2L(T (yi))

)
−
∑
v∈T\A

log
(

1 +
1

m(v, t)

)
− δ|T \A|

P
.

Furthermore, since m0 < 2 and the trees T (y1), T (y2), . . . contain all leaves of T , we have∑
i

log
(m0

2
2L(T (yi))

)
≥
∑
i

log
(
m
L(T (yi))
0

)
= log(m0)

∑
i

L(T (yi))

= log(m0)L(T ).
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Now recall that m(v, t) ≥ 3P for all v 6∈ A, which gives us∑
v∈T\A

log
(

1 +
1

m(v, t)

)
+
δ|T \A|

P
≤
(

log
(

1 +
1

3P

)
+
δ

P

)
|T \A|

≤
(1

3
+ δ
) |I(T )|

P
.

From Lemma 2, we know that

L(T ) ≥ I(T )

2P
.

Hence,

log |1 + S•(T, t)| = logm(v0, t) ≥ log(m0)L(T )−
(1

3
+ δ
) |I(T )|

P

≥
(

log(m0)− 2

3
− 2δ

)
L(T ).

The proof is completed by noting that the constant log(m0)− 2
3−2δ is positive for sufficiently

small δ. �

We have shown that f(T, t) and consequently F (T, t) can be regarded as complex analytic
functions in a disk around zero, so F (T, t) admits a Taylor expansion near zero, which we are
now going to investigate further. Let us consider the two derivatives

µ(T ) =
d

dt
F (T, t)

∣∣∣
t=0

=
S•u(T )

1 + S•(T )

and

σ2(T ) =
d2

dt2
F (T, t)

∣∣∣
t=0

=
S•uu(T )

1 + S•(T )
+ µ(T )− µ2(T ),

where we use S•u(T ) as a shorthand for S•u(T, 1) = d
duS

•(T, u)
∣∣∣
u=1

in the same way as S•(T ),

and S•uu(T ) is defined analogously for the second derivative. The intuition behind the notation
µ(T ) and σ2(T ) is that these two quantities are essentially the average order of subtrees in
S•(T ) and the variance respectively, if we include an additional dummy subtree of order 0 in
the count. This is asymptotically irrelevant and simplifies the following calculations.

For the rest of this section, we let γ be a fixed positive number, let P be a positive integer
that represents an upper bound on the length of all 2-paths in T , and set

∆ =
δ

2P 1+γ
,

where δ is defined in Lemma 3. It also follows from Lemma 3 that for every vertex v in T ,
the function F (T (v), t) is analytic in the closed disk centred at zero with radius 2∆. So we
can define the quantity

r(T (v)) = sup
0<|t|≤∆

∣∣∣∣∣F (T (v), t)− F (T (v), 0)− µ(T (v))t− σ2(T (v)) t
2

2

t3

∣∣∣∣∣ ,
which represents the error in the second-order Taylor approximation of F (T (v), t). Then by
definition, for |t| ≤ ∆ we have

F (T (v), t) = F (T (v), 0) + µ(T (v))t+ σ2(T (v))
t2

2
+O

(
r(T (v))|t|3

)
.
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In particular, if v is the root of T , then we obtain

F (T, t) = F (T, 0) + µ(T )t+ σ2(T )
t2

2
+O

(
r(T )|t|3

)
. (10)

Next, we estimate the quantities σ2(T ) and r(T ). They satisfy the following additive relations
that we can easily deduce from their respective definitions and (4):

σ2(T ) =
S•(T )

1 + S•(T )

∑
i

σ2(T (vi)) +
µ(T )2

S•(T )
, (11)

and

r(T ) ≤
∑
i

r(T (vi)) + sup
|t|≤∆

|f ′′′(T, t)|. (12)

Once again we iterate (11) and (12) along the tree to obtain a lower estimate for σ2(T )
and an upper estimate for r(T ). To this end, we introduce a (now slightly different) notion of
“small branches” again: we let B be the set of all vertices w for which |T (w)| ≤ P 1+γ . Our
first lemma gives an upper estimate for r(T ).

Lemma 4. We have

r(T )� |T |+
∑

v∈I(T )∩B

|T (v)|3

S•(T (v))
. (13)

Proof. Iterating (12), we have

r(T )� L(T ) +
∑

v∈I(T )\B

max
|t|≤∆

|f ′′′(T (v), t)|+
∑

v∈I(T )∩B

max
|t|≤∆

|f ′′′(T (v), t)|.

The term L(T ) on the right hand side bounds the contribution from the leaves. We now
consider two cases each estimating one of the sums above:

• We first consider the case that v /∈ B. Cauchy’s integral formula yields, for |t| ≤ ∆,

f ′′′(T (v), t) =
1

2πi

∮
C(t,∆)

f(T (v), z)− z
(z − t)4

dz,

where C(t,∆) is the circle centred at t with radius ∆. The integral form of f ′′′(T (v), t)
gives us the bound

|f ′′′(T (v), t)| ≤ ∆−3 max
z∈C(t,∆)

|f(T (v), z)− z|

= ∆−3 max
z∈C(t,∆)

∣∣∣∣log

(
1 +

1

S•(T (v), ez)

)∣∣∣∣ .
Hence,

max
|t|≤∆

|f ′′′(T (v), t)| ≤ ∆−3 max
|z|≤2∆

∣∣∣∣log

(
1 +

1

S•(T (v), ez)

)∣∣∣∣
≤ ∆−3 max

|z|≤ δ
P

∣∣∣∣log

(
1 +

1

S•(T (v), ez)

)∣∣∣∣ .
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Now we apply Lemma 3 to estimate |S•(T (v), ez)| for |z| ≤ δ
P (recall that |S•(T (v), ez)|

is bounded below by 3
2 in this case). We obtain

max
|t|≤∆

|f ′′′(T (v), t)| � ∆−3e−c0L(T (v)).

The assumption v /∈ B implies |T (v)| > P 1+γ . In addition, we know that P (T (v)) is
bounded above by P since T (v) is a branch of T , so by Lemma 2 we have

L(T (v)) ≥ |T (v)|
2P

>
1

2
P γ .

Therefore,

max
|t|≤∆

|f ′′′(T (v), t)| � ∆−3e−
c0
2 P

γ

� P 3(1+γ)e−
c0
2 P

γ

,

which is bounded above by a constant. Thus∑
v∈I(T )\B

max
|t|≤∆

|f ′′′(T (v), t)| � |T |. (14)

• If v ∈ I(T ) ∩ B, then the function f(T (v), z) is analytic in the disk centred at zero
with a slightly larger radius δ

|T (v)| . To see this, we can use the same argument that

gave us (8): for |z| ≤ δ
|T (v)| , we have

|S•(T (v), ez)| ≥ e−δ cos(δ)S•(T (v)) ≥ 2e−δ cos(δ) (15)

which in turn is strictly greater than 1 by the choice we have made for δ. Again, by
Cauchy’s integral formula we have

f ′′′(T (v), t) =
1

2πi

∮
C(t,R)

f(T (v), z)− z
(z − t)4

dz

for |t| ≤ ∆, where we take the radius to be R = δ
2|T (v)| . Using (15) to estimate

|f(T (v), z)− z| in the same way as in the first case, we deduce

max
|t|≤∆

|f ′′′(T (v), t)| � |T (v)|3

S•(T (v))
. (16)

The lemma follows by combining (14) and (16). �

Let P(v) denote the set of all vertices on the path in T from v to the root v0 (excluding
v, but including v0). We define

η(v) =

{
1 if v = v0,∏
w∈P(v)

S•(T (w))
1+S•(T (w)) otherwise.

Lemma 5. Suppose that L(T ) ≥ λ|T | for some fixed constant λ > 0. We have

σ2(T )� |T |+
∑

v∈I(T )∩B

η(v)
|T (v)|2

S•(T (v))
. (17)

The implied constant only depends on λ.
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Proof. Iterating (11) (and noting that σ2(T ) = 1
4 > 0 if |T | = 1), we obtain

σ2(T )�
∑

v∈L(T )

η(v) +
∑

v∈I(T )

η(v)
µ(T (v))2

S•(T (v))

≥
∑

v∈L(T )

η(v) +
∑

v∈I(T )∩B

η(v)
µ(T (v))2

S•(T (v))
.

It remains to show that ∑
v∈L(T )

η(v)� |T |. (18)

To this end, we define a set of “exceptional branches” in such a way that η(v) is bounded
below by an explicit constant unless v lies in one of these branches. Choose two constants
β ∈ (0, 1) and K > (λ/2)−1/β, and let z1, z2, . . . , zM be the vertices that satisfy

L(T (zi)) ≤ |T (zi)|1−β and |T (zi)| ≥ K

and are closest to the root with this property (in the sense that any vertex on the path from
the root to zi does not satisfy both inequalities). We set Ei = T (zi) and let E be the union
of all Ei. Now take any leaf v that does not lie in E, and let v′ be its ancestor closest to the
root that satisfies |T (v′)| < K (possibly, v′ = v). For every vertex w on the path from the
root to v′, we must have |T (w)| ≥ K by the choice of v′, and L(T (w)) > |T (w)|1−β since v
does not lie in E. It follows that

η(v) =
∏

w∈P(v)

1

1 + S•(T (w))−1

=
∏

w∈P(v)\P(v′)

1

1 + S•(T (w))−1

∏
w∈P(v′)

1

1 + S•(T (w))−1

≥ 2−K
∏

w∈P(v′)

(
1 + 2−L(T (w))

)−1

≥ 2−K
∏

w∈P(v′)

(
1 + 2−|T (w)|1−β

)−1

≥ 2−K
∏
j≥1

(
1 + 2−j

1−β
)−1

.

Note that the infinite product converges. So we can deduce that η(v) is bounded below by a
constant that only depends on β and K unless v ∈ E. Consequently,∑

v∈L(T )

η(v)� |L(T ) \ E|. (19)

We will see that E cannot contain more than half of the leaves. We may assume that E is
non-empty, for otherwise this statement is trivial. So let us assume that

M∑
i=1

L(Ei) >
L(T )

2
≥ λ

2
|T |.



ON THE DISTRIBUTION OF SUBTREE ORDERS OF A TREE 15

By the definition of the branches E1, E2, . . . , EM , this gives us

M∑
i=1

|Ei|1−β ≥
λ

2
|T |.

On the other hand, since E1, E2, . . . , EM are pairwise disjoint, we also have

M∑
i=1

|Ei| ≤ |T |.

Since we assumed that E is non-empty, we have M 6= 0. Hence, by Jensen’s inequality,

λ

2
|T | ≤

M∑
i=1

|Ei|1−β ≤M

(∑M
i=1 |Ei|
M

)1−β

≤M
(
|T |
M

)1−β
.

It follows that

M ≥ (λ/2)1/β|T |.
On the other hand, each Ei contains at least K vertices, so we have

|T | ≥
M∑
i=1

|Ei| ≥MK.

Combining the last two inequalities, we obtain

K ≤ (λ/2)−1/β, (20)

which contradicts the choice of K. This means that |E| ≤ L(T )/2, so (19) finally yields∑
v∈L(T )

η(v)� L(T )� |T |,

which completes the proof. Note that the implied constant does indeed only depend on λ
(and our choice of β, which was arbitrary). �

To make use of the previous lemma, we also need to bound η(v) from below, which is
done in the following lemma:

Lemma 6. For a vertex v ∈ T and any vertex v′ ∈ P(v), we have

η(v) ≥ η(v′)
|T (v)|

2|T (v′)|
.

Proof. The statement is void if v is the root v0, so we assume from now on that v is not the
root. Let v′ = w0, w1, w2, . . . , wk = v be the vertices of the path connecting v′ and v (which
form part of the path connecting v0 and v). By definition, we have

η(v)

η(v′)
=

k−1∏
j=0

S•(T (wj))

1 + S•(T (wj))
.

Clearly, S•(T (wj)) ≥ 1 + S•(T (wj+1)) for j = 0, 1, . . . , k − 1; iterating further, we obtain

S•(T (wj)) ≥ k − j + S•(T (v)).
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Thus, for j = 0, 1, . . . , k − 1 we have

S•(T (wj))

1 + S•(T (wj))
≥ k − j + S•(T (v))

1 + k − j + S•(T (v))
.

Therefore,

η(v)

η(v′)
≥

k−1∏
j=0

k − j + S•(T (v))

1 + k − j + S•(T (v))
=

1 + S•(T (v))

1 + k + S•(T (v))
≥ S•(T (v))

k + S•(T (v))
.

Now we consider two cases:

• First, if S•(T (v)) ≥ k then

η(v)

η(v′)
≥ S•(T (v))

k + S•(T (v))
≥ 1

2
≥ |T (v)|

2|T (v′)|
.

• Otherwise, if S•(T (v)) < k, then

η(v)

η(v′)
≥ S•(T (v))

2k
≥ |T (v)|

2|T (v′)|
.

The last inequality holds because S•(T (v)) ≥ |T (v)| and |T (v′)| > k (the latter since
T (v′) contains the k + 1 vertices w0, w1, . . . , wk).

Hence, the lemma follows. �

The bound on η(v) is now used to bound r(T ) in terms of σ2(T ).

Lemma 7. Suppose that L(T ) ≥ λ|T | for a fixed constant λ > 0. We have

r(T )� P 1+γσ2(T ).

Proof. Recall that B consists of all vertices w for which T (w) ≤ P 1+γ . We write B as the
disjoint union of branches T (y1), T (y2), . . .. If v lies on the path connecting the root v0 and
one of the yi, then by definition we have

|T (v)| > P 1+γ .

By Lemma 2, this implies

L(T (v)) ≥ |T (v)|
2P

≥ |T (v)|
2|T (v)|1/(1+γ)

=
1

2
|T (v)|γ/(1+γ).

Using this inequality, we can argue as in the proof of (19) that η(yi) is bounded below by an
absolute constant for every i. Applying Lemma 6, we deduce that for v ∈ T (yi),

η(v)� |T (v)|
|T (yi)|

≥ |T (v)|
P 1+γ

.

Therefore, ∑
v∈I(T )∩B

η(v)
|T (v)|2

S•(T (v))
=
∑
i

∑
v∈I(T (yi))

η(v)
|T (v)|2

S•(T (v))

� P−1−γ
∑

v∈I(T )∩B

|T (v)|3

S•(T (v))
.
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The desired statement now follows from Lemma 4 and Lemma 5. �

As a consequence of Lemma 7, we now obtain the required information on the Taylor
expansion of F (T, t).

Proposition 8. Let δ be the constant defined in Lemma 3, and let λ, γ > 0 be fixed constants.
If L(T ) ≥ λ|T |, then we have

F (T, t) = F (T, 0) + µ(T )t+ σ2(T )
t2

2
+O

(
P (T )1+γσ2(T )|t|3

)
(21)

for |t| ≤ δ
2P (T )1+γ

, where the constant implied in the O-term only depends on λ and γ.

Proof. This statement follows directly from Lemma 7 and (10). �

4.2. Central limit theorem. We are now ready to prove the central limit theorem for the
order distribution of subtrees.

Theorem 9. Let T1, T2, . . . be a sequence of rooted trees such that |Tn| → ∞ as n→∞ and
the following two conditions are satisfied for all sufficiently large n:

• P (Tn) ≤ |Tn|
1
2
−ε for some constant ε > 0,

• L(Tn) ≥ λ|Tn| for some constant λ > 0.

Then the distribution of the random variable Xn, defined as the order of a randomly chosen
subtree of Tn containing the root, is asymptotically Gaussian. More precisely, if Φn(x) denotes
the distribution function of the renormalised random variable

Yn =
Xn − µ(Tn)

σ(Tn)
,

then we have the following estimate for the speed of convergence:

sup
x∈R

∣∣∣Φn(x)− 1√
2π

∫ x

−∞
e−t

2/2dt
∣∣∣ = O

(
|Tn|−α

)
(22)

for any positive constant α < ε/3. The constant implied in the O-term only depends on α
and λ.

Proof. For ease of notation, we drop the dependence on n. Recall that the moment generating
function of X = Xn is

E
(
etX
)

=
S•(T, et)

S•(T )
.

Instead of working directly with X, we use the modified random variable X∗ = X∗n that also
includes an empty dummy subtree. The moment generating function of this random variable
is given by

E
(
etX

∗)
=

1 + S•(T, et)

1 + S•(T )
,

and if Y ∗ = Y ∗n = (X∗n − µ(Tn))/σ(Tn) is the associated renormalised random variable, it is
easy to see that the distribution functions Φ of Y and Φ∗ of Y ∗ differ only by very little:∣∣∣Φ(x)− Φ∗(x)

∣∣∣ ≤ 1

1 + S•(T )
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for all x ∈ R, so it is sufficient to prove the estimate for Φ∗ instead of Φ. The condition
L(T ) ≥ λ|T | implies

σ2(T )� |T |
by Lemma 5, in particular σ(T ) → ∞ as |T | → ∞. The moment generating function of the
renormalised random variable Y ∗ is

E(etY
∗
) = e−µ(T )t/σ(T )E(etX

∗/σ(T ))

= exp

(
−µ(T )t

σ(T )
+ F

(
T,

t

σ(T )

)
− F (T, 0)

)
.

The expansion in Proposition 8 gives us

F
(
T,

t

σ(T )

)
= F (T, 0) +

µ(T )t

σ(T )
+
t2

2
+O

(
P (T )1+γ√
|T |

|t|3
)

and thus

E(etY
∗
) = exp

(
t2

2
+O

(
P (T )1+γ√
|T |

|t|3
))

(23)

if |t| ≤ δσ(T )
2P (T )1+γ

. The condition P (T ) ≤ |T |
1
2
−ε allows us to choose γ in such a way that

P (T )1+γ√
|T |

→ 0.

Therefore,

E(etY
∗
) −→ et

2/2

for any fixed t as n→∞, which would already prove a central limit theorem. For the precise
error estimate, we use the following Berry-Esseen type inequality [10, Theorem 5.1]:

sup
x∈R

∣∣∣∣Φ∗(x)− 1√
2π

∫ x

−∞
e−t

2/2dt

∣∣∣∣ ≤ c2

∫ M

−M

∣∣∣∣∣ϕT (t)− e−t2/2

t

∣∣∣∣∣ dt+
c3

M
,

where

ϕT (t) =

∫ ∞
−∞

eitydΦ∗(y) = E(eitY
∗
).

In view of (23), we have

|ϕT (t)− e−t2/2| � |t|3e−t2/2P (T )1+γ√
|T |

if |t|3 = O
(√
|T |/P (T )1+γ

)
. Therefore,

sup
x∈R

∣∣∣∣Φ∗(x)− 1√
2π

∫ x

−∞
e−t

2/2dt

∣∣∣∣ = O

(
P (T )1+γ√
|T |

+
1

M

)

for any M satisfying M3 = O
(√
|T |/P (T )1+γ

)
. The result follows by choosing

M =
( √

|T |
P (T )1+γ

)1/3
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and γ in such a way that

1

M
=
(P (T )1+γ√

|T |

)1/3
≤
( |T |(1+γ)(1/2−ε)√

|T |

)1/3
= |T |γ(1−2ε)/6−ε/3 ≤ |T |−α.

�

4.3. Local limit theorem. Now that we have established a central limit theorem, it is
natural to ask whether a local limit theorem for single coefficients of S•(T, u) also holds. To
be precise, if we are given a rooted tree T , or rather a sequence of rooted trees T1, T2, . . .
satisfying both properties of Theorem 9, can we give an estimate for the number of subtrees
of order k, for values of k around the mean µ(Tn)? In this section, we show that it is indeed
possible to obtain such a result. Before we come to the proof, an estimate for |S•(T, u)| when
u lies on the unit circle is required. This is precisely what we state in the next lemma.

Lemma 10. Let λ, γ > 0 be fixed constants, and suppose that L(T ) ≥ λ|T |. There exist
constants δ1, c4, c5 depending on λ, γ such that, with

∆ =
δ1

2P (T )1+γ
,

we have

|1 + S•(T, eit)|
1 + S•(T )

≤

{
e−c4t

2σ(T )2 if t ∈ [−∆,∆]

e−c5t
2|T | for all t ∈ [−π, π].

Proof. The bound corresponding to |t| ≤ ∆ follows easily from Proposition 8 if δ1 ≤ δ is
chosen sufficiently small. Thus it suffices to prove the second bound.

Recall that we have

S•(T, eit) =

d∏
j=1

(1 + S•(T (vj), e
it))

if v1, v2, . . . , vd are the root’s children, and consequently∣∣1 + S•(T, eit)
∣∣ ≤ 1 +

d∏
j=1

∣∣1 + S•(T (vj), e
it)
∣∣. (24)

This motivates the definition of a polynomial R(T, x) similar to S•(T, u) by R(T, x) = x if
|T | = 1 and the recursion

R(T (v), x) = 1 +

d∏
j=1

R(T (vj), x). (25)

In view of (24), we have ∣∣1 + S•(T, eit)
∣∣ ≤ R(T, |1 + eit|) (26)

and 1 + S•(T, 1) = 1 + S•(T ) = R(T, 2). Note that R(T, x) is a polynomial of degree L(T )
with positive coefficients. Therefore, it is a strictly increasing function of x, and it admits the
trivial lower bound

R(T, x) ≥ xL(T ) (27)
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for all positive x. We also define the function G(T, x) = log(R(T, x)), which satisfies the
recurrence

G(T, x) =

d∑
j=1

G(T (vj), x)− log

(
1− 1

R(T, x)

)
, (28)

where G′(T, x) = x−1 if T only has one vertex. In order to estimate S•(T, eit) by means
of (26), we establish an upper bound for the difference G(T, 2)−G(T, x) for x in the interval
[
√

2, 2]. By the mean value theorem, there exists some y ∈ [x, 2] such that

G(T, 2)−G(T, x) = (2− x)G′(T, y).

It is not hard to see from (25) that the derivative G′(T, y) satisfies

G′(T, y) =
R(T, y)− 1

R(T, y)

d∑
j=1

G′(T (vj), y). (29)

We essentially use the same argument as in the proof of Lemma 5 to estimate G′(T, y)
from below. Iterating (29) starting from the root of T down to the leaves, we obtain, with

ξ(v, y) =

{
1 if v is the root of T,∏
w∈P(v)

R(T (w),y)−1
R(T (w),y) otherwise,

that
G′(T, y) = y−1

∑
v∈L(T )

ξ(v, y).

Recall that we are assuming x ∈ [
√

2, 2] and thus also y ∈ [
√

2, 2]. Since R(T (v), y) ≥
yL(T (v)) ≥ 2L(T (v))/2, the same argument that gave us (18) now yields

G′(T, y) ≥ 1

2

∑
v∈L(T )

ξ(v, y)�
∑

v∈L(T )

ξ(v, y)� |T |.

This implies that there exists a positive constant c6 such that

G(T, x)−G(T, 2) ≤ c6(x− 2)|T |.
Equivalently, if

√
2 ≤ x ≤ 2, then

R(T, x)

R(T, 2)
≤ ec6(x−2)|T |. (30)

To complete the proof, recall that (by (26)) |1+S•(T, eit)| is bounded above by R(T, |1+eit|)
while R(T, 2) = 1 + S•(T ). For |t| ≤ π/2, we have |1 + eit| ≥

√
2 and

|1 + eit| − 2 = 2(cos t
2 − 1) ≤ − 2

π2
t2,

thus
|1 + S•(T, eit)|

1 + S•(T )
≤ R(T, |1 + eit|)

R(T, 2)
≤ e−(2c6/π2)t2|T | ≤ e−c5t2|T |

if we choose c5 ≤ 2c6/π
2. For the case that |t| ≥ π/2, we simply note that R(T, x) is an

increasing function of x, so that

|1 + S•(T, eit)|
1 + S•(T )

≤ R(T, |1 + eit|)
R(T, 2)

≤ R(T,
√

2)

R(T, 2)
≤ e−c6(2−

√
2)|T | ≤ e−c5t2|T |
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if we choose c5 ≤ (2−
√

2)c6/π
2. This completes the proof. �

Now we have all required ingredients for a local limit theorem. In the following, we let
s•k(T ) denote the number of subtrees of order k in T that contain the root, so that

S•(T, u) =

|T |∑
k=1

s•k(T )uk.

Theorem 11. Suppose that the sequence T1, T2, . . . of rooted trees satisfies the conditions of
Theorem 9. If k = µ(Tn) + xσ(Tn), then we have

s•k(Tn)

S•(Tn)
∼ e−x

2/2

√
2πσ(Tn)

,

uniformly for x in any fixed compact interval as n→∞.

Proof. Once again, we drop the index n for convenience. By Cauchy’s integral formula, the
number s•k(T ) can be expressed as

s•k(T ) =
1

2πi

∮
C(0,1)

(
1 + S•(T, z)

) dz

zk+1
,

where C(0, 1) is the unit circle. If we set z = eit, then we obtain

s•k(T ) =
1

2π

∫ π

−π

(
1 + S•(T, eit)

)
e−ikt dt.

Choose γ > 0 and κ > 0 in such a way that γ/2 + 3κ < ε, and set M = |T |κ/σ(T ). We split
the integral into two parts: the central part

1

2π

∫ M

−M

(
1 + S•(T, eit)

)
e−iktdt,

and the rest. Recall that we are assuming P (T ) ≤ |T |1/2−ε and that we have already estab-
lished σ(T )2 � |T |. Since

∆

M
=

δ1σ(T )

2P (T )1+γ |T |κ
� |T |1/2−κ−(1/2−ε)(1+γ) � |T |ε−γ/2−κ

is greater than 1 for sufficiently large |T |, we have M ≤ ∆ = δ1
2P (T )1+γ

, so we can apply

Proposition 8, which gives us, for |t| ≤M ,

1 + S•(T, eit) = exp(F (T, t))

= exp
(
F (T, 0) + iµ(T )t− σ2(T )

t2

2
+O

(
|T |3κ+(1/2−ε)(1+γ)−1/2

))
= exp

(
F (T, 0) + iµ(T )t− σ2(T )

t2

2

)(
1 +O

(
|T |−(ε−γ/2−3κ)

))
.
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We plug in k = µ(T ) + xσ(T ) and obtain

1

2π

∫ M

−M

(
1 + S•(T, eit)

)
e−iktdt

=
1

2π

∫ M

−M
eF (T,0)−ixσ(T )t−σ2(T )t2/2 dt+O

(
|T |−(ε−γ/2−3κ)

∫ M

−M
eF (T,0)−σ2(T )t2/2 dt

)
.

Since we have∫ M

−M
eF (T,0)−ixσ(T )t−σ2(T )t2/2 =

√
2π

σ(T )
eF (T,0)−x2/2 +O

(∫ ∞
M

eF (T,0)−σ2(T )t2/2
)

=

√
2π

σ(T )
eF (T,0)−x2/2 +O

(
eF (T,0)−σ2(T )M2/2

)
=

√
2π

σ(T )
eF (T,0)−x2/2 +O

(
eF (T,0)−|T |2κ/2

)
,

and eF (T,0) = 1 + S•(T ), we end up with

1

2π

∫ M

−M

(
1 + S•(T, eit)

)
e−iktdt = S•(T )

e−x
2/2

√
2πσ(T )

(
1 +O

(
|T |−(ε−γ/2−3κ)

))
.

For the remaining integrals, where |t| ≥ M , we use the estimates from Lemma 10. For

|t| ≤ ∆ = δ1
2P (T )1+γ

, it gives us

|1 + S•(T, eit)|
1 + S•(T )

≤ e−c4M2σ(T )2 = e−c4|T |
2κ
,

and for |t| ≥ ∆, we get

|1 + S•(T, eit)|
1 + S•(T )

≤ e−c5∆2|T | ≤ e−δ21c5|T |1−(1−2ε)(1+γ)/4 ≤ e−δ21c5|T |2ε−γ/4.

Since these decay faster than any power of T , the parts of the integral for which |t| ≥M will
only contribute to the error term. In summary, we have

s•k(T )

S•(T )
=

e−x
2/2

√
2πσ(Tn)

(
1 +O

(
|T |−(ε−γ/2−3κ)

))
,

which completes the proof. �

Remark 2. Theorem 11 provides a positive answer to Question 1 in an asymptotic sense for
large rooted trees (and as we will see in the following section, also unrooted trees) without
vertices of degree 2, since both technical conditions are trivially satisfied in this case.

5. Unrooted trees

Now that we have established both a central and a local limit theorem for the number
of subtrees containing the root of a rooted tree, we would like to carry the results over to
unrooted trees as well. This is achieved by means of the following lemma, which guarantees
the existence of a vertex that is contained in most subtrees:

Lemma 12. For every tree T , there exists a vertex v of T such that the proportion of subtrees
of T that do not contain v is at most |T |2−L(T )/2.
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Proof. Let v be a vertex that minimises the sum of the distances to all leaves, i.e. the expres-
sion

∑
w∈L(T ) d(v, w) attains its minimum (this is called a “leaf centroid” in [17], in analogy to

the centroid). Let T1, T2, . . . , Tk be the branches of T , rooted at v, and v1, v2, . . . , vk the cor-
responding neighbours of v. The important observation about v is that none of the branches
can contain more than half of the leaves: if Ti contains more than L(T )/2 leaves, then we
have ∑

w∈L(T )

d(v, w) >
∑

w∈L(T )

d(vi, w),

since we have d(vi, w) = d(v, w) − 1 if w is in Ti, and d(vi, w) = d(v, w) + 1 otherwise. This
would contradict the choice of v.

Let τ be a subtree of T that does not contain v. It must then be completely contained in
some branch Ti. It has a unique vertex closest to v, which we denote by w. We can associate
2|L(T )∩(T\Ti)| ≥ 2L(T )/2 subtrees to τ that contain v, obtained by adding the path from w to
v as well as all non-leaves not contained in Ti and any subset of the |L(T ) ∩ (T \ Ti)| leaves
that do not lie in Ti. Finally, we root the resulting subtrees at w.

Let the total number of subtrees of T be denoted by S(T ) and the number of those

subtrees not containing v by S◦(T ). The construction above yields at least 2L(T )/2 rooted
subtrees of T associated with every subtree τ that does not contain v. The original tree τ
can be recovered uniquely from such a tree σ: it consists of the root w of σ and all vertices
for which the unique path from v passes through w. Thus our construction is an injection to
the set of rooted subtrees of T (whose cardinality is clearly at most |T |S(T )), and we obtain
the inequality

S◦(T ) · 2L(T )/2 ≤ |T | · S(T ),

from which the statement of the lemma follows. �

Our main theorem now follows immediately both in the central and local version:

Theorem 13. Let T1, T2, . . . be a sequence of trees such that |Tn| → ∞ as n → ∞ and the
following two conditions are satisfied:

• P (Tn) ≤ |Tn|
1
2
−ε for some constant ε > 0,

• L(Tn) ≥ λ|Tn| for some constant λ > 0.

Then the distribution of the random variable Xn, defined as the order of a randomly chosen
subtree of Tn, is asymptotically Gaussian. More precisely, if Φn(x) denotes the distribution
function of the renormalised random variable

Yn =
Xn − E(Xn)√

V(Tn)
,

then we have the following estimate for the speed of convergence:

sup
x∈R

∣∣∣Φn(x)− 1√
2π

∫ x

−∞
e−t

2/2dt
∣∣∣ = O

(
|Tn|−α

)
. (31)
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for any positive constant α < ε/3. The constant implied in the O-term only depends on α

and λ. Moreover, if k = E(Xn) + x
√
V(Xn) ∈ N, then we have the local limit theorem

P(Xn = k) ∼ e−x
2/2√

2πV(Xn)
,

uniformly for x in any fixed compact interval.

Proof. As in the proofs of Theorem 9 and Theorem 11, we suppress the dependence on n for
ease of notation. Choose v as in Lemma 12, and let X(v) be the random variable defined as
the order of a randomly selected subtree of T containing v. By Lemma 12, the total variation
distance between the two random variables X = Xn and X(v), which is defined as

sup
A

∣∣P(X(v) ∈ A)− P(X ∈ A)
∣∣,

is O(|T |/2L(T )/2). In view of our assumption on the number of leaves, this goes to 0 even at
an exponential rate. Letting µ(T ) and σ2(T ) be defined as before for the tree T rooted at v, it
is also easy to see by the same argument that E(X) = µ(T )+O(1) and V(X) = σ2(T )+O(1)
(in fact, both error terms can be made exponentially small). The two statements now follow
directly from Theorem 9 and Theorem 11. �

6. Random trees

The technical conditions of Theorems 9, 11 and 13 are not satisfied for all possible se-
quences of trees, but they do hold for “generic” (randomly chosen) trees. In fact, it was shown
in [11] that the length of the longest branchless path of a random labelled tree of order n is
concentrated around log n for large n (with a limit distribution of double exponential type),
and the number of leaves of a random labelled tree of order n is concentrated around n/e
(with a Gaussian limit distribution, see e.g. [3, Section 3.2.1]). Analogous statements (with
different constants) hold for other families of random trees (e.g. random plane trees, random
binary trees).

If Tn denotes a random labelled tree of order n for n = 1, 2, . . ., then a simple application
of the Borel-Cantelli Lemma shows that the conditions of Theorem 13 with arbitrary ε < 1

2

and λ < 1
e are satisfied for all but finitely many Ti almost surely (for both conditions, it is not

difficult to obtain exponential bounds for the probability that they are not satisfied). Thus
we obtain the following theorem:

Theorem 14. Let T1, T2, . . . be a sequence of uniformly random labelled trees, where the order
of Tn is n, let Xn denote the order of a randomly chosen subtree of Tn, and let Φn be the
distribution function of the renormalised random variable

Xn − E(Xn)√
V(Xn)

.

We have

sup
x∈R

∣∣∣Φn(x)− 1√
2π

∫ x

−∞
e−t

2/2dt
∣∣∣→ 0

as n→∞ almost surely.
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Informally, this means that the distribution of subtree orders is close to a Gaussian
distribution for almost all trees. We remark that the average subtree order of a random
labelled tree Tn of order n was shown to follow a Gaussian limit distribution itself (see [15]
for details).
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