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Abstract. A composition of the positive integer n is a representation of n

as an ordered sum of positive integers n = a1 + a2 + · · · + am. There are

2n−1 unrestricted compositions of n, which can be sorted according to the
number of inversions they contain. (An inversion in a composition is a pair of

summands {ai, aj} for which i < j and ai > aj .) The number of inversions of a

composition is an indication of how far the composition is from a partition of n,
which by convention uses a sequence of nondecreasing summands and thus has

no inversions. We count compositions of n with exactly r inversions in several

ways to derive generating function identities, and also consider asymptotic
results.

1. Introduction

A composition of the positive integer n is a representation of n as an ordered
sum of positive integers n = a1 + a2 + · · ·+ am. An inversion in a composition is a
pair of summands {ai, aj} for which i < j and ai > aj .

In [4] the mean and variance for the number of inversions over all compositions
of n was determined. In the current paper we study the statistics

icr(n) = number of compositions of n with r inversions.

For example, the 5-composition of 9 given as 9 = 1+3+2+1+2 has four inversions,
comparing the second summand to the third, fourth, and fifth, and comparing the
third summand to the fourth. A partition of n written in standard nondecreasing
order has no inversions.

A table of values of icr(n) is provided below. Rows are indexed by n, columns
are indexed by r and give values for icr(n).

Not surprisingly, ic0(n) = p(n), the number of partitions of n. ic1(n) is [6,
A058884]: partial sums of the partition function p(n) with the last term subtracted.

2. Identities

Classical results about Mahonian statistics on permutations apply for composi-
tions as well. Recall that the major index of the permutation τ , MAJ(τ), is the sum
of the indices at which descents occur. We can make calculations more efficient by
working with MAJ , rather than explicitly enumerating the number of inversions,
by virtue of MacMahon’s result [5] that the distribution of the major index on all
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n\r 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0 0 0 0 0 0
3 3 1 0 0 0 0 0 0 0 0 0 0 0
4 5 2 1 0 0 0 0 0 0 0 0 0 0
5 7 5 3 1 0 0 0 0 0 0 0 0 0
6 11 8 7 4 2 0 0 0 0 0 0 0 0
7 15 15 14 10 6 3 1 0 0 0 0 0 0
8 22 23 26 21 17 10 6 2 1 0 0 0 0
9 30 37 44 42 36 27 19 11 6 3 1 0 0
10 42 55 73 74 73 60 50 34 24 13 8 4 2
11 56 83 115 128 133 123 109 87 68 48 32 20 12
12 77 118 177 209 235 230 223 192 166 129 100 70 51

Table 1. Compositions with r inversions, icr(n), 1 ≤ n ≤ 12, 0 ≤
r ≤ 12

permutations (compositions) of a fixed length is the same as the distribution of
inversions.

The approach we take is to build generating functions by studying MAJ . First
we focus on the smallest part.

The generating function for partitions with first (smallest) part k is

f(k, z) = zk
∞∏
i=0

1

1− zi+k
.

This representation can be extended to the generating function for partitions
with first part < k:

P1(k, z) =

k−1∑
i=1

f(i, z).

The complementary sum provides the generating function for partitions with
first part ≥ k:

P2(k, z) =

∞∑
i=k

f(i, z).

Note P1(n, k) + P2(n, k) = P (z) =
∏∞
n=1

1
1−zn for any choice of k. This is the

generating function F0(z) for column r = 0.
Now we exhibit the generating function for column r = 1, the second column

in Table 1, F1(z) =
∑∞
i=0 ic1(n)zn. We observe that by the MacMahon result,

compositions of n with one inversion are equinumerous with compositions of n with
one descent. Such compositions must have exactly one descent at the first summand
i1, with the remaining parts viewed as a partition with smallest part i2 < i1. This
situation is diagrammed below.
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Hence

F1(z) =

∞∑
i1=2

zi1P1(i1, z) =

∞∑
i1=2

zi1
i1−1∑
i2=1

zi2
∞∏
j=0

1

1− zj+i2

Thus we have

(1) F1(z) =

∞∑
i1=2

zi1
i1−1∑
i=1

zi

(zi; z)∞
.

Alternatively, using the equivalence with the sum of positions of descents, for
ic1(n) we need to count compositions whose only descent occurs in position 1. Thus
we have a partition into one part followed by a non-empty partition. The generating
function for this is

z

(1− z)
(P (z)− 1).

However, we must subtract off the case where the combined combination is itself
a partition with two or more parts (i.e. when there is no descent at position 1).
The generating function for partitions into at least two parts is

P (z)− 1

1− z
.

Therefore,

(2) F1(z) =
z

1− z
(P (z)− 1)−

(
P (z)− 1

1− z

)
=

2z − 1

1− z
P (z) + 1.

Our first identity equates these two representations of the first column entries.
Since (1) and (2) both represent the generating function for compositions with
exactly one inversion, we have

Theorem 2.1.
∞∑
i1=2

zi1
i1−1∑
i=1

zi

(zi; z)∞
=

2z − 1

1− z
P (z) + 1.

For compositions counted by ic2(n) we need exactly one descent, occurring at
the second summand. We will sum on i2, constrain i1 to be ≤ i2, and constrain
summands after i2 to form a partition with smallest part i3 < i2. The pattern is
indicated below. Note there is no inequality implied in the picture between values
of i1 and i3: i3 could be greater than, equal to, or less than i1, as long as i2 > i1
and i2 > i3.



4 A. KNOPFMACHER†, M. E. MAYS‡, AND S. WAGNER?

r r r�
�@
@�

�
�
�
�
�
��

i1

i2
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F2(z) =

∞∑
i1=2

zi2P1(i2, z)
z(1− zi2)

1− z
.

This can be written as

(3) F2(z) =
z

1− z

∞∑
i2=2

zi2
(
1− zi2

) i2−1∑
i=1

zi

(zi; z)∞
.

An alternate formula involving only P (z) is possible in this case as well. By the
equivalence with the sum of positions of descents, for ic2(n) we see that we need
to count compositions whose only descent occurs in position 2. Here and below a
partition will denote a weakly increasing composition, unless specified as decreasing.
Thus we have a partition into two parts followed by a non-empty partition. The
generating function for this is

z2

(1− z)(1− z2)
(P (z)− 1).

However we must subtract off the case where the combined composition is in fact
itself a partition with 3 or more parts. (This is the case where the combined
composition does not have a descent at position 2). The generating function for
partitions into at least 3 parts is

P (z)− 1

(1− z)(1− z2)
.

Therefore the generating function for ic2(n) is

(4) F2(z) =

(
z2

(1− z)(1− z2)
− 1

)
P (z) +

1

1− z
.

Since (3) and (4) both account for the r = 2 column in Table 1, we have

Theorem 2.2.

z

1− z

∞∑
i2=2

zi2
(
1− zi2

) i2−1∑
i=1

zi

(zi; z)∞
=

(
z2

(1− z)(1− z2)
− 1

)
P (z) +

1

1− z
.

For F3 we need go no further than the third summand i3. There are two cases:
descents in positions 1 and 2 or a descent in position 3. To analyze the first case
we need P2.

Case 1: i1 > i2 > i3 ≤ i4 ≤ i5 . . . .
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We insure that i1 > i2 > i3 in the generating function via the factor

∞∑
i2=i3+1

zi2
∞∑

i1=i2+1

zi1 =
z(z2)1+i3

(1− z)(1− z2)
.

The first term in the trailing partition must be at least i3 to guarantee no more
inversions.

Thus

F3,1(z) =

∞∑
i3=1

zi3
z2i3+3

(1− z)(1− z2)
P2(i3, z).

Case 2: i1 ≤ i2 ≤ i3 > i4 ≤ i5 ≤ . . . .
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i2

i3

i4

In this case the trailing partition is like that enumerated for ic2. Let us get the
contribution from i1 ≤ i2 ≤ i3 by evaluating a sum.

i3∑
i2=1

zi2
i2∑
i1=1

zi1 =
z2(1− zi3)(1− z1+i3)

(1− z)(1− z2)
.

Hence

F3,2(z) =

∞∑
i3=1

zi3
z2(1− zi3)(1− z1+i3)

(1− z)(1− z2)
P1(i3, z)

and

F3(z) = F3,1(z) + F3,2(z)
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is equivalent to

F3(z) =
1

(1− z)(1− z2)

∞∑
i3=1

zi3
(
z2i3+3

( ∞∑
i=i3

zi

(zi; z)∞
+ 1

)

+ z2(1− zi3)(1− zi3+1)

(
i3−1∑
i=1

zi

(zi; z)∞

))
(5)

In an alternate formulation there are also two case to consider. Firstly, the case
where the only descent is in position 3. We then have a partition into 3 parts
followed by a nonempty partition, with generating function

z3

(1− z)(1− z2)(1− z3)
(P (z)− 1).

From this we subtract the case where the combined composition forms a partition
into 4 or more parts, that is

P (z)− 1

(1− z)(1− z2)(1− z3)
.

Combining and simplifying gives the generating function

(6)

(
z3

(1− z)(1− z2)(1− z3)
− 1

)
P (z) +

1

(1− z)(1− z2)
.

In the second case we have descents at both positions 1 and 2. Thus we have a
strictly decreasing partition of 3 parts, followed by a possibly empty partition, with
generating function

z6

(1− z)(1− z2)(1− z3)
P (z).

We must subtract the case of a strictly decreasing partition into 4 parts followed
by a partition

z10

(1− z)(1− z2)(1− z3)(1− z4)
P (z).

However we must add back the case of a strictly decreasing partition into 5 parts,
and continue to consider the cases of even longer strictly decreasing partitions by
an inclusion-exclusion argument, which leads to the generating function

P (z)

∞∑
k=3

(−1)k−1 zk(k+1)/2∏k
j=1(1− zj)

.

Applying Euler’s partition identity

∞∑
k=0

(−1)k
zk(k+1)/2∏k
j=1(1− zj)

= P (z)−1

this becomes

(7)

(
1− z

1− z
+

z3

(1− z)(1− z2)

)
P (z)− 1.
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Combining the two cases gives that the generating function for ic3(n) is(
− z

1− z
+

z3

(1− z)(1− z2)
+

z3

(1− z)(1− z2)(1− z3)

)
P (z)

+
1

(1− z)(1− z2)
− 1.(8)

We can note the equality of the representations of F3(z) provided in (5) and (8)
to obtain another identity.

The analysis of F3(z) provides a general template for constructing an arbitrary
generating function Fr(z). The technique is to consider cases indexed by the par-
titions of r into distinct parts, and in each case set up the primary sum over the
last summand ak before the trailing partition. All the terms before ik consolidate
to contribute a rational function factor to the generating function, and the trailing
partition contributes a factor of form either P1 or P2. Summing over cases gives
the generating function for Fr(z). If we cannot find a nice simplification to write
the general case in a compact form, we can at least claim that in principle the g.f.
is constructible, see also Theorem 2.3 later.

We use this method to find F4 and F5.

F4(z) =
1

(1− z)(1− z2)(1− z3)

∞∑
i4=1

zi4(z4+i4(z3 − 1− (z − 1)(z2+2i4))P2(i4, z)+

z3(1− zi4)(1− z1+i4)(1− z2+i4)P1(i4, z)),

which we can write as

F4(z) =
1

(z; z)3

∞∑
i4=1

zi4
(

(−z2i4+2 + z2 + z + 1)zi4+4

( ∞∑
i=i4

zi

(zi; z)∞
+ 1

)

+ z3(1− zi4)(1− zi4+1)(1− zi4+2)

(
i4−1∑
i=1

zi

(zi; z)∞

))
(9)

Alternatively, again there are two case to consider. Firstly, the case where the
only descent is in position 4. We then have a partition into 4 parts followed by a
nonempty partition, with generating function

z4

(1− z)(1− z2)(1− z3)(1− z4)
(P (z)− 1).

From this we subtract the case where the combined composition forms a partition
into 5 or more parts, that is

P (z)− 1

(1− z)(1− z2)(1− z3)(1− z4)
.

Combining and simplifying gives the generating function

(10)

(
z4

(1− z)(1− z2)(1− z3)(1− z4)
− 1

)
P (z) +

1

(1− z)(1− z2)(1− z3)
.

In the second case we have descents at both positions 1 and 3. Firstly we attach
the generating function for a single part to that found for ic2(n) in order to make



8 A. KNOPFMACHER†, M. E. MAYS‡, AND S. WAGNER?

a descent at position 3, getting

(11)
z

1− z

((
z2

(1− z)(1− z2)
− 1

)
P (z) +

1

1− z

)
.

We must subtract the case where we do not have a descent also at position 1, which
from (6) is

(12)

(
z3

(1− z)(1− z2)(1− z3)
− 1

)
P (z) +

1

(1− z)(1− z2)
.

Combining (10), (11) and (12) gives(
− z

1− z
+

z3

(1− z)2 (1− z2)
− z3

(1− z) (1− z2) (1− z3)

+
z4

(1− z) (1− z2) (1− z3) (1− z4)

)
P (z)

+
z

(1− z)2
− 1

(1− z) (1− z2)
+

1

(1− z) (1− z2) (1− z3)

=
z
(
z9 − z8 − 2z7 − z6 − z5 + 2z4 + 3z3 + z2 − 1

)
(z − 1)4(z + 1)2 (z2 + 1) (z2 + z + 1)

P (z)

+
z
(
z4 + z3 − z2 − z − 1

)
(z − 1)3(z + 1) (z2 + z + 1)

.(13)

We can build a complicated identity from (9) and (13).
Applying the first technique to five inversions, we find

F5(z) =
1

(z; z)4

∞∑
i5=1

zi5+4(1− zi5)(1− zi5+1)(1− zi5+2)(1− zi5+3)

i5−1∑
i=1

zi

(zi; z)∞

+
1

(z; z)3

∞∑
i4=1

zi4
(

(−zi4+2 + z2 + z + 1)z2i4+4(

∞∑
i=i4

zi

(zi; z)∞
+ 1)

+ z4(1− zi4)(1− zi4+1)(zi4+1 + z + 1)

(
i4−1∑
i=1

zi

(zi; z)∞

))
.

For the second technique there are three case to consider. Firstly, the case where
the only descent is in position 5. We then have a partition into 5 parts followed by
a nonempty partition, which leads in the same way as previously to the generating
function (

z5

(1− z) (1− z2) (1− z3) (1− z4) (1− z5)
− 1

)
P (z)

+
1

(1− z) (1− z2) (1− z3) (1− z4)
.(14)

In the second case we have descents at both positions 1 and 4. Firstly we attach
the generating function for a single part to that found in (6) in order to make a
descent at position 4, getting

(15)
z

1− z

((
z3

(1− z)(1− z2)(1− z3)
− 1

)
P (z) +

1

(1− z)(1− z2)

)
.
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We must subtract the case where we do not have a descent also at position 1, that
is, where the only descent is in position 4, found already in (10).

In the third case we have descents at both positions 2 and 3. Firstly, attach a
single part in front of the compositions counted in (7) leading to

(16)
z

1− z

((
1− z

1− z
+

z3

(1− z)(1− z2)

)
P (z)− 1

)
and subtract the case in which the extra initial part would lead to descents at
positions 1, 2 and 3. Using inclusion-exclusion as in (7) leads to

P (z)

∞∑
k=4

(−1)k−1 zk(k+1)/2∏k
j=1(1− zj)

=

(
1− z

1− z
+

z3

(1− z)(1− z2)
− z6

(1− z)(1− z2)(1− z3)

)
P (z)− 1.(17)

Now we combine (14), (15), (10), (16) and (17) to obtain our result for ic5(n)(
1− z

1− z
+

z3

(z; z)2
− z6

(z; z)3
− z4

(z; z)4
+

z5

(z; z)5
+

z

1− z

(
− z

1− z
+

z3

(z; z)2
+

z3

(z; z)3

))
P (z)

+
1

(z; z)4
+

z

(1− z)(z; z)2
− 1

(z; z)3
− z

1− z
− 1.

Alternatively this is

2z15 − 3z14 − 3z13 + z11 + 4z10 + 5z9 + 4z8 − 2z7 − 3z6 − 6z5 − 2z4 − z3 + 2z2 + 2z − 1

(z − 1)5(z + 1)2 (z2 + 1) (z2 + z + 1) (z4 + z3 + z2 + z + 1)
P (z)

+
z9 − 2z7 − 2z6 − 2z5 + 2z4 + 2z3 + 2z2 + z − 1

(z − 1)4(z + 1)2 (z2 + 1) (z2 + z + 1)
.

With these special cases as a template, we now formulate a general theorem on
the structure of the generating function of the sequence icr(n).

Theorem 2.3. For every fixed positive integer r, we have

Fr(z) =

∞∑
n=0

icr(n)zn = fr(z)P (z) + gr(z)

for certain rational functions fr and gr. Neither fr nor gr has poles of modulus
less than 1, and we have, as z → 1,

fr(z) ∼
1

r!
(1− z)−r.

Proof. We use the approach via the major index. For a fixed set A = {a1, a2, . . . , a`}
of positive integers, we consider the set of compositions with ascents at all positions
that do not lie in A (in other words, descents can only occur at positions that are
elements of A). Following the approach shown in the examples above, we see
that any such composition can be decomposed as follows: if its length is at least
maxA = a`, then it consists of

• a partition of length a1,
• a partition of length a2 − a1,
• · · ·
• a partition of length a` − a`−1,
• a partition of arbitrary length.
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Otherwise, it decomposes as follows, for some positive integer k ≤ `:
• a partition of length a1,
• a partition of length a2 − a1,
• · · ·
• a partition of length ak−1 − ak−2,
• a partition of length at most ak − ak−1 − 1.

Here, we set a0 = 0 for k = 1. The generating function associated with such
compositions is thus

SA(z) = za1
a1∏
j=1

(1− zj)−1 · za2−a1
a2−a1∏
j=1

(1− zj)−1 · · · za`−a`−1

a`−a`−1∏
j=1

(1− zj)−1 ·
∞∏
j=1

(1− zj)−1

+
∑̀
k=1

za1
a1∏
j=1

(1− zj)−1 · za2−a1
a2−a1∏
j=1

(1− zj)−1 · · ·
ak−ak−1−1∏

j=1

(1− zj)−1.

The first term rewrites as

(18) za`
∏̀
k=1

ak−ak−1∏
j=1

(1− zj)−1 · P (z),

while the rest is a rational function. We remark that S∅(z) = P (z).
Now we obtain the generating function for compositions with descents exactly at

all positions that are elements of A, by means of the inclusion-exclusion principle:

(19) TA(z) =
∑
B⊆A

(−1)|A|−|B|SB(z).

Finally, let N be the set of all positive integers, and let Σ(A) = a1 + a2 + · · · +
a` denote the sum of elements in A. By definition, the generating function for
compositions whose major index is r is given by

(20) Fr(z) =
∑

A⊆N:Σ(A)=r

TA(z).

We observe that each function SA(z) has the form fA(z)P (z) + gA(z) for certain
rational functions fA and gA. Since TA and eventually Fr are linear combinations of
such functions, they must have the same shape. We also note that all poles of these
rational functions lie on the unit circle, hence there are no poles of modulus less
than 1. It only remains to prove the last statement about the asymptotic behaviour
of fr.

To this end, note first that fA has a pole of order∑̀
k=1

(ak − ak−1) = a` = maxA

at 1, since each factor (1−zj)−1 in (18) contains a single factor (1−z)−1. It follows
from (19) that the order of 1 as a pole of the rational factor occurring in TA is at
most a` = maxA. Considering (20) next, we see that the dominant contribution
to the sum comes from the set A = {r}:

T{r}(z) = S{r}(z)− S∅(z) = zr
r∏
j=1

(1− zj)−1 · P (z) +

r−1∏
j=1

(1− zj)−1 − P (z),
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which contributes a pole of order r to the function fr, while all other terms in (20)
have poles of lower order. Since 1− zj ∼ j(1− z) as z → 1, we have

zr
r∏
j=1

(1− zj)−1 ∼ 1

r!
(1− z)−r

as z → 1, which completes the proof.

3. Asymptotic Estimates

In the analysis of partition statistics, one often has to study generating functions
of the form P (x)F (x), where

P (x) =

∞∏
j=1

(1− xj)−1

is the generating function for the number of partitions. In the paper [3], a general
asymptotic scheme was derived that allows one to derive an asymptotic formula for
the n-th coefficient of P (x)F (x) from the behaviour of F (x) as x → 1. It is well

known that p(n) = [xn]P (x) essentially behaves like 1
4
√

3n
exp

(
π
√

2n/3
)

, which is

made much more precise by Rademacher’s celebrated formula

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
√
k
d

dn

sinh

(
π
k

√
2
3

(
n− 1

24

))
√
n− 1/24

,

a sum formula that is both exact and asymptotic (in the sense that the asymptotic
order of the summands is decreasing).

It is necessary that F (z) does not grow too quickly as |z| → 1. Specifically, we
assume that

(21) |F (z)| = O
(
eC/(1−|z|)

η
)

as |z| → 1 for some C > 0 and η < 1.

These technical conditions are easily seen to hold if F (z) is a rational function
without poles of modulus less than 1, and this is the case in all our examples.

Theorem 3.1. Suppose that the function F (z) satisfies (21) and that

F (e−t+iu)

F (e−t)
→ 1

if |u| ≤ At1+ε for some A > 0 and some ε < 1−η
2 , uniformly in u as t → 0. Then

one has

1

p(n)
[xn]P (x)F (x) = F

(
e−π/

√
6n
)

(1 + o(1)) +O
(

exp
(
−Bn1/2−ε

))
as n→∞ for some B > 0.

To obtain more precise asymptotic formulae in the case that F (e−t) can be
expanded into powers of t around t = 0, we also need the following result from [3]:
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Theorem 3.2. Suppose that the function F (z) satisfies (21) and F (e−t) = atb +
O(f(|t|)) as t→ 0 for real numbers a, b. Then one has

1

p(n)
[xn]P (x)F (x) = a

(
2π√

24n− 1

)b
·
I|b+3/2|

(√
2π2

3

(
n− 1

24

))
I3/2

(√
2π2

3

(
n− 1

24

))
+O

(
exp

(
−n1/2−ε

)
+ f

(
π√
6n

+O
(
n−1/2−ε

)))
as n→∞ for any 0 < ε < 1−η

2 , where Iν denotes a modified Bessel function of the
first kind.

For computational purposes we can make use of the following asymptotic formula

I|b+3/2|

(√
2π2

3

(
n− 1

24

))
I3/2

(√
2π2

3

(
n− 1

24

)) =
m

m− 1
·
J∑
j=0

(
h+ j

2j

)
(2j)!

j!

(
− 1

2m

)j
+O(m−J−1)

for any fixed J , with h = |b+ 3/2| − 1/2 and m =
√

2π2

3

(
n− 1

24

)
.

Of course the theorem generalises to asymptotic expansions of the form

F (e−t) =

J∑
j=1

ajt
bj +O(f(|t|)).

Using the above formulas, together with computer algebra to carry out the
lengthy calculations, we can obtain precise asymptotic estimates for the number
of compositions with a fixed number of inversions.

Recall that the generating function for ic1(n) is

2z − 1

1− z
P (z) + 1.

Here

F (e−t) =
2e−t − 1

1− e−t
=

1

t
− 3

2
+

t

12
+O(t3),

and we obtain

ic1(n)

p(n)
=

√
6
√
n

π
−

3
(
π2 − 2

)
2π2

+
216− 3π2 + 2π4

24
√

6π3
√
n

+O

(
1

n

)
.

The generating function for ic2(n) is(
z2

(1− z)(1− z2)
− 1

)
P (z) +

1

1− z
.

Here

F (e−t) =
1

2t2
− 1

4t
− 25

24
+O(t),

and we obtain

ic2(n)

p(n)
=

3n

π2
−

√
3
2

(
π2 − 6

)√
n

2π3
− 7

8π2
+

9

2π4
− 25

24
+O

(
1√
n

)
.
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The generating function for ic3(n) is(
− z

1− z
+

z3

(1− z)(1− z2)
+

z3

(1− z)(1− z2)(1− z3)

)
P (z)

+
1

(1− z)(1− z2)
− 1.

Here

F (e−t) =
1

6t3
+

1

2t2
− 133

72t
+O(1),

and we obtain

ic3(n)

p(n)
=

√
6n3/2

π3
+

3n

π2
−
(
266π2 − 207

)√
n

24
√

6π3
+O (1) .

The generating function for ic4(n) is

z
(
z9 − z8 − 2z7 − z6 − z5 + 2z4 + 3z3 + z2 − 1

)
(z − 1)4(z + 1)2 (z2 + 1) (z2 + z + 1)

P (z)

+
z
(
z4 + z3 − z2 − z − 1

)
(z − 1)3(z + 1) (z2 + z + 1)

.

Here

F (e−t) =
1

24t4
+

3

8t3
− 17

32t2
+O

(
t−1
)
,

and we obtain

ic4(n)

p(n)
=

3n2

2π4
+

3
√

3
2

(
3π2 − 2

)
n3/2

2π5
+

(
36− 2π2 − 51π4

)
n

16π6
+O

(√
n
)
.

The generating function for ic5(n) is P (z)F (z) +R(z) where

F (z) =
2z15 − 3z14 − 3z13 + z11 + 4z10 + 5z9 + 4z8 − 2z7 − 3z6 − 6z5 − 2z4 − z3 + 2z2 + 2z − 1

(z − 1)5(z + 1)2 (z2 + 1) (z2 + z + 1) (z4 + z3 + z2 + z + 1)
.

Here

F (e−t) =
1

120t5
+

7

48t4
+

31

144t3
+O

(
t−2
)
,

and we obtain

ic5(n)

p(n)
=

3
√

3
2n

5/2

5π5
+

3
(
7π2 − 6

)
n2

4π6
+

(
432− 507π2 + 124π4

)
n3/2

16
√

6π7
+O (n) .

Having seen these examples, we would now like to prove a more general theorem
in which we identify the leading term of the asymptotics for arbitrary r. This is
easily achieved by means of Theorem 2.3:

Theorem 3.3. For every fixed positive integer r, the number of compositions of n
with r inversions satisfies the asymptotic formula

(22) icr(n) ∼ 1

r!

(√6n

π

)r
p(n).

Proof. As mentioned before, the technical conditions of Theorem 3.2 are satisfied,
since the factor fr is a rational function. The additional rational function gr only
makes a contribution to icr(n) that grows polynomially, so it is irrelevant.
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Theorem 2.3 tells us that

fr(e
−t) ∼ 1

r!
(1− e−t)−r ∼ 1

r!
t−r,

so the result follows immediately by means of Theorem 3.2.

Remark 3.4. A heuristic argument for Theorem 3.3 can be given as follows: for
large n, most compositions with r inversions are obtained from a partition by switch-
ing a pair of two consecutive distinct summands in r different places (there are of
course other ways to achieve precisely r inversions, but those provide fewer choices).
It is well known that the number of distinct parts in a random partition of n satisfies
a central limit theorem with an average that is asymptotically equal to

√
6n/π. Since

we are choosing r pairs of consecutive distinct parts, this means that the number of
ways to turn a partition into a composition with r inversions is typically about(√

6n/π

r

)
∼ 1

r!

(√6n

π

)r
,

which explains the asymptotic formula (22).
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